
Distributed Representation of Syntactic Structure by
Tensor Product Representation and Non-Linear Compression

Heidi H. T. Yeung Peter W. M. Tsang

City University of Hong Kong
Tat Chee Road, Kowloon Tong,

Kowloon, Hong Kong, China

Abstract
Representing lexicons and sentences with the sub-
symbolic approach (using techniques such as Self
Organizing Map (SOM) or Artificial Neural Network
(ANN)) is a relatively new but important research
area in natural language processing. The performance
of this approach however, is highly dependent on
whether representations are well formed so that
members within each cluster are corresponding to
sentences or phrases of similar meaning. Despite the
moderate success and the rapid advancement of
contemporary computing power, it is still difficult to
establish an efficient learning method so that natural
language can be represented in a way close to the
benchmark exhibited by human beings. One of the
major problems is due to the general lack of effective
method(s) to encapsulate semantic information into
quantitative expressions or structures. In this paper,
we propose to alleviate this problem with a novel
technique based on Tensor Product Representation
and Non-linear Compression. The method is capable
of encoding sentences into distributed representations
that are closely associated with the semantic contents,
being more comprehensible and analyzable from the
perspective of human intelligence.

Introduction
In the early days, Symbolic and Sub-symbolic approaches
were generally treated as 2 separated and competing fields
in the realm of Artificial Intelligence. Apparently, neither
of them seemed to be capable of attaining significant
breakthrough on complicated task such as natural language
understanding. Prince (1997) suggested that the integration
of these 2 fields could possibly achieve graceful rewards
when the combined effort was focused on the principle of
optimization involving language grammar and cognitive
architectures. In this paper, our scope of study is formal
English which is one of the most common languages
tackled in the research of Natural Language Processing
(NLP). For clarity of explanation we shall present a brief

Copyright © 2004, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

introduction on the Symbolic and Sub-symbolic processing,
and techniques for integrating these two approaches.

In the early stage of study in NLP, it had been assumed
that a sentence, in its raw form, should be sufficient for
processing and analysis. The result of this simple intuitive
concept was soon found to be disappointing as phrases or
sentences could vary dramatically even if they conveyed
identical meaning. Later, researchers discover what human
interpretation of natural language was largely derived from
the sentence structures rather than the exact sequence of
words. It was also in line with the rule-governed models
that were adopted in linguistics research for defining the
inter- and intra-relations between lexicons in formal
languages.

Context-free grammar (CFG) was often considered as a
fundamental paradigm for generating complete
specifications of syntax in regular languages. It involves
categories (titles of words with same syntactic meaning
and phrases), productions (e.g. , NP ART NBAR→), and
parsers (algorithms for generating the complete syntactic
structures with a given set of productions). An effective
formulation of the CFG in linguistic studies was given by
the Chomsky Normal Form (under constrained by X-bar
scheme [Chomsky 1957]) which imposed constraints in the
production rules to restrict the maximum number of
siblings in any non-terminal nodes. An example of
applying the X-bar scheme in parsing a sentence was
illustrated in Figure 1.

S

NP VP

V NPART NBAR

N ART NBAR

N
Figure 1 The parse tree of the sentence “The man feeds the dog” where
“The” = ART (Article), “Dog” and “Man” = N (Noun) and “Feeds” = V
(Verb)

NATURAL LANGUAGE PROCESSING & INFORMATION EXTRACTION 437

Sub-symbolic processing was based on the idea of
cognitive science in expressing concepts, patterns,
sequences or structures. Instead of deriving information
explicitly from the hierarchical grouping of words and
phrases in a parse tree, an implicit representation was built
to encapsulate sentences to certain degree of abstraction.
The task could be accomplished with an encoder, often
implemented as an Artificial Neural Network (ANN)
formed by a massive network of interconnecting
processors. In the investigation of sub-symbolic processing
in NLP, Elman (1990, 1991 & 1995), Miikkulaninen
(FGREP, 1993) and Farkaš (SOM on lexicon cluster, 2001)
proposed some well-known researches. Conclusively, the
advantages of sub-symbolism were twofold. First, the
approach enabled sentences to be represented in the form
of holographic memories that were implicitly recorded in
the synaptic connections of a massive network. The
memory established for each learned sentence was robust
towards lexical variations as long as the overall sequence
was not substantial changed. Second, the learning process
was performed in an autonomous and black-box fashion,
avoiding the meticulous analytical procedures in symbolic
processing. On the downside, the approach was relatively
weak in modeling syntactic structures. In addition,
methods based on ANN also inherited all its problems such
as lengthy computation time and pre-mature termination in
sub-optimal states even for small set of training samples.

A solution for the first problem was proposed by Pollack
(1990) with the Recursive Auto-Associative Memory
(RAAM). In this method, a collection of sentences were
first decomposed into their corresponding parse trees and
encoded in the form of multidimensional vectors. The
latter were taken to train up a Recurrent Neural Network
(RNN) via repetitive epochs of synaptic weight adjustment.
Upon convergence, the syntactic structures of the sample
sentences were memorized in the RNN. Later, Kwasny
(1993, 1995) had introduced a simplified version of RAAM
known as the Sequential RAAM (SRAAM). A different
direction was suggested by Smolensky who adopted
Tensor product to represent the symbolic structures in
connectionist systems [Smolensky 1990]. In his approach,
a concept was encoded into a compound or multiple-rank
tensor by summing up (Boolean Addition) the outer
product of each constituting components vfilter and its
corresponding role vector vrole, as

Overall filter roleA v v= ⊗∑ (1)

Equation (1) resulted in an expression AOverall known as the
Tensor Product Representation (TPR) that encapsulated the
constituents of the concept as well as their infrastructure
exhibited distributed representation properties (Figure 2).
The method was much faster than those based on ANN as
iterative computation was not required. Moreover, if the
role vectors are linear independent of each other the TPR
could be perfectly reverted back to all the constituents with
the Unbinding Process [Smolensky 1990].

Role-vector (101100)

Figure 2 The tensor formed with Filler-vector (0101) and Role vector
(101100)

The major limitation of this approach was that the size of
the TPR was unbounded, directly determined by the
complexity of the concept as well as the quantity of
constituents. This prohibited the use of this method in
natural language representation when a fixed-size
expression was required for representing an unbounded
syntactic structure as Figure 3.

Left node (10) Right node (01)

Resulted tensor

S

John VP

Loves Mary

+

Tree "John loves Mary"

Figure 3 The tensor product representation of syntactic structure

Proposed encoding method - Tensor Product
Representation with Non-linear Compression
In view of the above problems, we have developed a novel
method based on Tensor Product with Non-Linear
Compression so to translate sentences of varying length
into fixed size representations. To start with, each unique
category in a syntactic tree is mapped into a corresponding
vector selected from an orthonormal basis. For clarity of
description the following terminologies have been defined:

Let T and G denote the sets of tree and representation
vectors, respectively. Following the Constraint Language
for Attribute Trees CLAT(L) [Palm 1999], the first-order
tree (e.g. Chomsky Normal Form) expression t is given by

{ }()()1 1

1 2
, k c

S k k
t x Xδ π =

=
= (2a)

Sequence of children of node 1x { }
2

k c

k k
X =

=
= (2b)

where 1x represents the root node of tree t and kX is the
unexpanded thk child (noted that a node may or may not
contain a child) of its parent node. 1δ is the immediate
dominance of 1x to its sequence of children, and 1

S
π is the

immediate sibling precedence among the sequence of
children. In addition, t may be a null collection σ if it is a
termination node.

Mapping from T to G is :ξ →T G and the mapping
function

1
(,)

T
g tξ ε= .

j
ε is the Level of Projection (LoP)

438 NATURAL LANGUAGE PROCESSING & INFORMATION EXTRACTION

of thj node in the tree and
1

1ε = is the starting node for
(

j
ε +∀ ∈ I).

From the expression defining t and the mapping function g,
we have

() { }()()()1 1

1 1 12
, , ,

k c

T T S k k
g t x Xξ ε ξ δ π ε

=

=
= = (3)

The mapping function exhibited distributive properties, as

() (){ }
1 1 1 2
, , 1

k c

T T k k
g x Xξ ε ξ ε

=

=
= +

() { }()()(){ }1 1

1 1 1 2
, , , 1

k cm c n

T T k S m m c k
g x x Xξ ε ξ δ π ε

== +

= =
= + (4)

(),

T j j
xξ ε contains both the information of its category

and the Level of Projection of the thj node in the tree.
Each category is belonged to a specific unit vector (d

i
e ∈ E

for thi category). The thj node in the tree is represented by
its class vector d

j
f ∈ E which is an element of the set Ed.

Thus, the information encapsulated in the thj node can be
expressed as ()(),

j T j j
f Rep xξ ε= with

()(),
j T j j

LoP xε ξ ε= .

According to the original definition of TPR on syntactic
structure, both nodes and branching information are
deemed to be the elements contributing to the overall
representation. This deviates from our approach where the
LoP [Chomsky 1981] of the nodes is considered instead of
the intra-relationships between them. To begin with, we
define the set of vectors max

k
r ∈ E to represent the LoP of

the tree nodes. Suppose max is the maximum depth of an
arbitrary tree structure, we have

()
1 2 max

k
r r r r r
ε
= � � � �… … where

1

0 otherwise
k

k
r

ε=
=
⎧
⎨
⎩

� (5)

Next, the mapping :Φ →G U is defined for associating
the concept of a node and its LoP. For a tree consisting of
N nodes, the corresponding concepts can be concatenated
through superimposition into a binary matrix given by

() () (){ }()1 1 1 2
, , 1

k c

G G T T k k
u g x Xξ ε ξ ε

=

=
= Φ = Φ +

()() ()()
1 1 1

2

, , 1
c

G T G T k

k

x Xu ξ ε ξ ε
=

= Φ + Φ +∑ (6a)

where ()(),
G T j

ξ σ εΦ = 0 and

()() ()() ()(),
, ,

T j j j
G T j j T j j LoP x j

x Rep x r f r
ξ ε ε

ξ ε ξ εΦ = ⊗ = ⊗

(6b)

From (6a) and (6b) a general form of the mapping

:Φ →G U for N number of nodes in the tree can be
expressed as

()
1

j

N

G j

j

u g f r
ε

=

= Φ = ⊗∑ (7)

In the above derivations, it appears that the branching
information has been neglected in building the
representation. However, a closer look at (6a) reveals that
the recursive expansion is in fact progressing through the
nodes in a strict sequence defined by the hierarchical
syntactic tree structure. The latter is derived from a parsing
algorithm based on production rules and constraints
governing the formation of language. For instance, the
assertion of finite tree depth (non-recurrent relation),
unique structure for individual sentence, and those nodes
of the same category will not appear in the same LoP. All
these imply that the branching information has been
already been implicitly embedded in the representation.

The representation obtained in (7) is varying in size and
difficult to be utilized by subsequent processes (a classifier,
for instance) that accept fixed length inputs. To overcome
this problem, we propose a novel method known as Non-
linear Compression (NLC) for lossless compression of
multiple-rank tensors to fixed-size vectors. In our method,
a non-linear function (:Θ →U V) is defined to transform
a vector into a scalar value.

In essence, suppose ()

1 2

k
a a a a= � � �… (where ka ∈ I) is a

vector to be converted and (),a BΩ is the base-B
transformation function (B +∈ I). The transformation can
result in either an integer (),a B+Ω or a floating-point
value (),a B−Ω . To avoid truncation error, we have chosen
the latter to be the compression formula to convert an
integer vector to a floating point value, as

()
1

max 1
max

, j
j

j
a B a B

−
−

+ +
=−

Ω = ∑ � (8)

The compression is lossless and reversible if the maxB− can
be perfectly represented within the precision of the
processor (e.g. a computer). Otherwise, the data may be
subject to certain degree of distortion depending on the
extent of k. The base B in the transformation is governed
by the maximum discrete values that are defined within a.
For binary vector, B is equals to 2.

The representation obtained in (7) can be expressed in the
form of a two dimensional matrix. The row vector (fixed
size) contains the category information of the tree and the
column vector (variable size) encapsulates the LoP
information. The latter is compressed into scalar value with
the formula below:

() ()
1

,
d

U i i
i

u u e B e−

=

Θ = Ω ⋅ ×∑ T
j

j
u r f

ε
= ⊗T∵ (9)

The LoP of each category is extracted by dot product and
the Base Transformation is applied on each of them.
Finally, a value contributing to specific category vector
and the representation is formed by summing all
contributing category vectors. The 2 mapping functions
can be integrated into a general form given by the mapping
function (:Ψ →G V):

NATURAL LANGUAGE PROCESSING & INFORMATION EXTRACTION 439

()
1

j
N

G j
j

g B fε−

=

Ψ = ⋅∑ (10)

Using the Figure 1 as an example, the TP Representation
with NLC is as Table 1 (B = 2).

Table 1 TPR with NLC of “The man feeds the cat”

S NP VP NBAR VBAR ART N V
0.5 0.375 0.25 0.1875 0.125 0.1875 0.09375 0.0625

Mathematically, an inverse transform for (9) is available as
given by

() () ()()11

1
, ,max

d

G V i i
i

g v e B eθ
−− −

=

Φ = Θ = Ω ⋅ ⊗∑ (11)

where ()Uv u= Θ

Furthermore, the level of projection of the thi category in a
tree can be extracted by the Unbinding Process, as

() []1

1 :
,

j j

j i

N N

U i j i
j j f e

u i u e f r e rε ε
−

= =

⎡ ⎤
Φ = ⋅ = ⊗ ⋅ =⎢ ⎥

⎣ ⎦
∑ ∑

T
T (12)

According to (12), the tree can be recovered by back-
tracking the nodes with reference to the parsing rules taken
to construct the syntactic structures. Experimental results
reveal that the full reconstruction can be achieved if the
maximum depth of tree is less than 7 (cropping operation
may be required for larger tree).

Experiment results
We examine the characteristics of our approach with 3
experiments. Cluster analysis is one of the important tools
to explore the features inside the representation [Pollack
1990] [Kwasny 1993, 1995] by grouping candidates of
similar characteristics. To evaluate the proposed method,
the TPR of 44 sentences and phrases with different
structures are computed and further encoded with NLC.
The representations are clustered according to their
Euclidean distance the result is illustrated in Figure 4.

Figure 4 Cluster result of representation of 44 generated sentences

It can be seen that the sentences have been grouped
according to the similarity of structures and insensitive to
the actual constituents and positioning of words. For
example, “The man is fat” and “The fat man” are very
similar as they have three words in common. However, out
method has successfully identifying them as moderately
different in structure.

We have also explored the effectiveness of our method in
associating representations with their semantic information.
A second experiment has been conducted following the
works reported by Tsang and Wong (2002). In their
experiment, the RAAM representations were built for a set
of sentences and classified into frame-based semantics (e.g.
AGENT_ACTION_PATIENT) with a three-layer Back-
Propagation Neural Network (BPNN). We repeat the test
with identical set of sentences and identical settings given
below (Table 2):

Table 2 Experiment parameters of second experiment

Number of grammatical categories 15
Number of semantic frame types 5
Number of Parsing Rules 18
Size of hidden layer of BPNN 12
Number of training and testing sentences 28
BPNN Training epochs 2000

Each sample sentence is presented in a shuffling manner to
the BPNN for 100 times, each involving 2000 epochs of
iterations. A plot of the average Root-Mean-Square (RMS)
Error of M sentences and p output in BPNN against the
number of iterations is plotted in Figure 5. The light and
bolded lines illustrate results obtained with the
representations constructed with RAAM and our method,
respectively. It can be seen that throughout the entire
training period, the RMS error is considerably lowered in
our case except at the very beginning of the process. A
very low error is finally reached (about 0.1893) with our
approach whereas the system using RAAM is
comparatively larger by ten times (about 1.04).

Figure 5 RMS Error of classification during training BPNN using
Tsang’s data set

In addition, 100% of the training and test sentences are
classified properly with the use of the NLC-TP
representation whereas only a success rate of 85.71% is
recorded in Tsang and Wong’s article.

440 NATURAL LANGUAGE PROCESSING & INFORMATION EXTRACTION

The experiment is further extended to classify 14 sentences
that are similar to the samples but deviated in the syntactic
arrangements. Representations obtained with our method
exhibit excellent graceful degradation. For instance, “The
man sleep” and “The fat man sleep” are both classified as
AGENT-ACTION although the second sentence can easily
be misinterpreted as ADJ-AGENT if the first three words
are considered first. The word “fat” can be considered as a
kind of noise which has been successfully discarded in the
NLC-TP representation. The difference again, is clearly
reflected with the NLC-TP representation. However, both
of the above tests failed with the RAAM representation.

In order to examine the representational capacities and
capabilities of our approach, we design the third
experiment similar to the second one but it computes with
a much larger grammatical data set which can handle the
more complicated linguistic structures (e.g. tenses,
negation & question) and a more powerful BPNN (with
doubled hidden neurons) are involved shown as Table 3.

Table 3 Experiment parameters of third experiment

Number of grammatical categories 44
Number of semantic frame types 39
Number of Parsing Rules 79
Size of hidden layer of BPNN 30
Number of sample sentences 91
Number of test sentences 50
BPNN Training epochs 2000

From the experimental results, the proposed representation
seems much more compatible with BPNN than RAAM in
terms of training stability and classifying correctness.

Figure 6 RMS Error of classification during training BPNN with the
larger data set

We plot the average case (not the best or worst one) of
RMS Error converging progress of classifying the training
sentences in to assigned semantic frame type as the same
way as the second experiment does in Figure 6 above. In
the first half of training epochs, a significant drop of RMS
Error is experienced in the training using RAAM and the
error value retains around 2.27 (about 0.025 per sentence).

It is obviously trapped in a local minimum of error surface
in pre-mature state. Again, the training with NLC-TP
Representation converges in slower rates but a lower error
state at 0.7176 (0.0079 per sentence) is finally reached
with stable converging rates. At the mention of correctness
of semantic type classification, the system with proposed
representation classifies entire training set correctly but
that with RAAM only achieve usually less than 70%
successful rate.

Analogously, the set of testing sentences is designed for
challenge the graceful degradation ability of the semantic
extraction system. A difficult case is examined with the
pair of sentences: “The cat would not be fed by the man”
and “The cat would not be fed” that are rather similar at
higher level of projection (from 5th level) but differ in the
semantic frame type. The former is of type AGENT-
INDIRECTACTION-PATIENT while the latter is a
member of AGENT-INDIRECTACTION. The system
with our representation recognizes this distinction with a
clear sense (very low classification error). Nonetheless,
that with RAAM representation is also failed this test as
second experiment and it even cannot signify a most
possible semantic type for the second sentence.

Comparing the classifying correctness on both second and
third experiments, the results are generalized as Table 4a
and 4b below averaging of 100 result sets. NLC-TP
representation exhibits the overwhelming success in this
semantic extraction application.

Table 4a Generalized results of second experiment for 100 result sets

 RAAM NLC-TPR
Lowest Error 1.1412 0.1866
Average Error per sentence 0.0815 0.0133
Correctness of Training Set (%) 85.17 100
Correctness of Testing Set (%) 57.14 100
Computation time (in terms of t) 30 t t

Table 4b Generalized results of third experiment for 100 result sets

 RAAM NLC-TPR
Lowest Error 2.1607 0.6082
Average Error per sentence 0.0237 0.0067
Correctness of Training Set (%) 69.23 100
Correctness of Testing Set (%) 32 94
Computation time (in terms of t) 100 t t

Conclusions
In this paper we have developed a novel scheme based on
Tensor Product and Non-linear Compression for encoding
syntactic structures of English language into fixed size
vector representations. The proposed method has a number
of major advantages over existing approaches based on
RAAM. First, the computing time is significantly reduced
as ANN is not required in encoding the sentences. Second,

Copyright © 2004, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

NATURAL LANGUAGE PROCESSING & INFORMATION EXTRACTION 441

the representations are stable as they are clustered
according to the similarity of their corresponding syntactic
structures, rather than the detail positioning or presence of
individual words. Third, similar finding is obtained in the
classification of representations into semantic categories
through the use of Artificial Neural Network. Experimental
results reflect that representations attained with our method
are capable of extracting correct semantic from sentences
even if they are absent in the training set. In addition
considerably fewer amounts of iterations are required by
the ANN to converge to a state with relatively lower Mean
Square Error (MSE). These favorable results demonstrated
the feasibility of the proposed method and its potential in
real-time application on NLP such as Translation and
Semantic Extraction.

References
Kwasny, S. C., Kalman, B. L., & Chang, N. 1993.
Distributed Patterns as Hierarchical Structures.
Proceedings of the World Congress on Neural Networks,
Portland, OR, July 1993, v. II, pp. 198-201.

Kwasny, S. C., & Kalman, B. L. 1995. Tail-recursive
distributed representations and simple recurrent neural
networks. Con. Sci., 7 (1), pp. 61-80.

Chomsky, N. 1957. Syntactic structure. The Hague, The
Netherlands: Mouton.

Chomsky, N. 1981. Lectures on Government and Binding.
Foris Publications, Dordrecht.

Costa, F., & Frasconi, P., & Lombardo, V., & Soda, G.
2003. Towards Incremental Parsing of Natural Language
Using Recursive Neural Networks. Applied Intelligence 19,
pp. 9-25

Elman, J. L. 1990. Finding structure in time. Cognitive
Science, 14, 179-211.

Elman, J. L. 1991. Distributed representations, simple
recurrent networks, and grammatical structure. Machine
Learning, vol. 7, no. 2/3, pp. 195-226.

Elman, J. L., 1995. Language as a dynamical system. Mind
as Motion: Explorations in the Dynamics of Cognition,
Eds. R. F. Port and T. van Gelder, pages 195--225. MIT
Press, Cambridge, MA, (cited in pages 23, 44).

Farkas, I., & Li, P. 2001. A Self-Organizing Neural
Network Model of the Acquisition of Word Meaning.
Proceedings of the 4th Int. Conf. on Cognitive Modeling,
Fairfax, VA, pp. 67-72.

Miikkulainen, R. 1993. Subsymbolic Natural Language
Processing - An integrated model of scripts, lexicon, and
memory. MIT Press, Cambridge, MA, London.

Palm, A. 1999. The expressivity of tree languages for
syntactic structures. The Mathematics of Syntactic
Structure: Trees and Their Logics Eds. H. P. Kolb; U.
Monnich, Mouton-de Gruyter. The theory of syntactic
domains. Technical Report 75, Department of Philosophy,
University of Utrecht. pp. 113-152

Pollack, J. B. 1989. Implications of recursive distributed
representations. Technical report, OH 43210.

Pollack, J. B. 1990. Recursive distributed representations.
Artificial Intelligence, 36, pp. 77-105.

Prince, A., & Smolensky, P. 1997. Optimality: From
neural networks to Universal Grammar. Science, 275,
1604-1610.

Smolensky, P. 1990. Tensor product variable binding and
the representation of symbolic structures in connectionist
systems. Artificial Intelligence, pp. 46, 159-216.

Smolensky, P. 1994. Grammar-based connectionist
approaches to language. Cognitive Science. Stabler, E.P.
(1994). The finite connectivity of linguistic structure. Eds.
C. Clifton, L. Frazier & K. Rayner, Perspectives on
sentence processing (pp. 303--336). Hillsdale, NJ:
Lawrence Erlbaum Associates.

Tsang, W. M., & Wong, C. K. 2002. Extracting Frame
Based Semantics from Recursive Distributed
Representation - A Connectionist Approach to NLP. IC-AI'
02.

442 NATURAL LANGUAGE PROCESSING & INFORMATION EXTRACTION

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

