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Abstract 
Representing lexicons and sentences with the sub-
symbolic approach (using techniques such as Self 
Organizing Map (SOM) or Artificial Neural Network 
(ANN)) is a relatively new but important research 
area in natural language processing. The performance 
of this approach however, is highly dependent on 
whether representations are well formed so that 
members within each cluster are corresponding to 
sentences or phrases of similar meaning. Despite the 
moderate success and the rapid advancement of 
contemporary computing power, it is still difficult to 
establish an efficient learning method so that natural 
language can be represented in a way close to the 
benchmark exhibited by human beings. One of the 
major problems is due to the general lack of effective 
method(s) to encapsulate semantic information into 
quantitative expressions or structures. In this paper, 
we propose to alleviate this problem with a novel 
technique based on Tensor Product Representation 
and Non-linear Compression. The method is capable 
of encoding sentences into distributed representations 
that are closely associated with the semantic contents, 
being more comprehensible and analyzable from the 
perspective of human intelligence. 

Introduction   
In the early days, Symbolic and Sub-symbolic approaches 
were generally treated as 2 separated and competing fields 
in the realm of Artificial Intelligence. Apparently, neither 
of them seemed to be capable of attaining significant 
breakthrough on complicated task such as natural language 
understanding. Prince (1997) suggested that the integration 
of these 2 fields could possibly achieve graceful rewards 
when the combined effort was focused on the principle of 
optimization involving language grammar and cognitive 
architectures. In this paper, our scope of study is formal 
English which is one of the most common languages 
tackled in the research of Natural Language Processing 
(NLP). For clarity of explanation we shall present a brief 
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introduction on the Symbolic and Sub-symbolic processing, 
and techniques for integrating these two approaches.   
 
In the early stage of study in NLP, it had been assumed 
that a sentence, in its raw form, should be sufficient for 
processing and analysis. The result of this simple intuitive 
concept was soon found to be disappointing as phrases or 
sentences could vary dramatically even if they conveyed 
identical meaning. Later, researchers discover what human 
interpretation of natural language was largely derived from 
the sentence structures rather than the exact sequence of 
words.  It was also in line with the rule-governed models 
that were adopted in linguistics research for defining the 
inter- and intra-relations between lexicons in formal 
languages. 
 
Context-free grammar (CFG) was often considered as a 
fundamental paradigm for generating complete 
specifications of syntax in regular languages. It involves 
categories (titles of words with same syntactic meaning 
and phrases), productions (e.g. ,  NP ART NBAR→ ), and 
parsers (algorithms for generating the complete syntactic 
structures with a given set of productions). An effective 
formulation of the CFG in linguistic studies was given by 
the Chomsky Normal Form (under constrained by X-bar 
scheme [Chomsky 1957]) which imposed constraints in the 
production rules to restrict the maximum number of 
siblings in any non-terminal nodes. An example of 
applying the X-bar scheme in parsing a sentence was 
illustrated in Figure 1.  

S

NP VP

V NPART NBAR

N ART NBAR

N  
Figure 1 The parse tree of the sentence “The man feeds the dog” where 
“The” = ART (Article), “Dog” and “Man” = N (Noun) and “Feeds” = V 
(Verb) 
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Sub-symbolic processing was based on the idea of 
cognitive science in expressing concepts, patterns, 
sequences or structures. Instead of deriving information 
explicitly from the hierarchical grouping of words and 
phrases in a parse tree, an implicit representation was built 
to encapsulate sentences to certain degree of abstraction. 
The task could be accomplished with an encoder, often 
implemented as an Artificial Neural Network (ANN) 
formed by a massive network of interconnecting 
processors. In the investigation of sub-symbolic processing 
in NLP, Elman (1990, 1991 & 1995), Miikkulaninen 
(FGREP, 1993) and Farkaš (SOM on lexicon cluster, 2001) 
proposed some well-known researches. Conclusively, the 
advantages of sub-symbolism were twofold. First, the 
approach enabled sentences to be represented in the form 
of holographic memories that were implicitly recorded in 
the synaptic connections of a massive network. The 
memory established for each learned sentence was robust 
towards lexical variations as long as the overall sequence 
was not substantial changed. Second, the learning process 
was performed in an autonomous and black-box fashion, 
avoiding the meticulous analytical procedures in symbolic 
processing. On the downside, the approach was relatively 
weak in modeling syntactic structures. In addition, 
methods based on ANN also inherited all its problems such 
as lengthy computation time and pre-mature termination in 
sub-optimal states even for small set of training samples. 
 
A solution for the first problem was proposed by Pollack 
(1990) with the Recursive Auto-Associative Memory 
(RAAM). In this method, a collection of sentences were 
first decomposed into their corresponding parse trees and 
encoded in the form of multidimensional vectors. The 
latter were taken to train up a Recurrent Neural Network 
(RNN) via repetitive epochs of synaptic weight adjustment. 
Upon convergence, the syntactic structures of the sample 
sentences were memorized in the RNN. Later, Kwasny 
(1993, 1995) had introduced a simplified version of RAAM 
known as the Sequential RAAM (SRAAM). A different 
direction was suggested by Smolensky who adopted 
Tensor product to represent the symbolic structures in 
connectionist systems [Smolensky 1990]. In his approach, 
a concept was encoded into a compound or multiple-rank 
tensor by summing up (Boolean Addition) the outer 
product of each constituting components vfilter and its 
corresponding role vector vrole, as 

 

Overall filter roleA v v= ⊗∑        (1) 
 

Equation (1) resulted in an expression AOverall known as the 
Tensor Product Representation (TPR) that encapsulated the 
constituents of the concept as well as their infrastructure 
exhibited distributed representation properties (Figure 2). 
The method was much faster than those based on ANN as 
iterative computation was not required. Moreover, if the 
role vectors are linear independent of each other the TPR 
could be perfectly reverted back to all the constituents with 
the Unbinding Process [Smolensky 1990].  

 

Role-vector (101100)  
 

Figure 2 The tensor formed with Filler-vector (0101) and Role vector 
(101100) 
 
The major limitation of this approach was that the size of 
the TPR was unbounded, directly determined by the 
complexity of the concept as well as the quantity of 
constituents. This prohibited the use of this method in 
natural language representation when a fixed-size 
expression was required for representing an unbounded 
syntactic structure as Figure 3. 
 

Left node (10) Right node (01)

Resulted tensor

S

John VP

Loves Mary

+

Tree "John loves Mary"  
 

Figure 3 The tensor product representation of syntactic structure 

Proposed encoding method - Tensor Product 
Representation with Non-linear Compression 
In view of the above problems, we have developed a novel 
method based on Tensor Product with Non-Linear 
Compression so to translate sentences of varying length 
into fixed size representations. To start with, each unique 
category in a syntactic tree is mapped into a corresponding 
vector selected from an orthonormal basis. For clarity of 
description the following terminologies have been defined: 
 
Let T and G denote the sets of tree and representation 
vectors, respectively. Following the Constraint Language 
for Attribute Trees CLAT(L) [Palm 1999], the first-order 
tree (e.g. Chomsky Normal Form) expression t  is given by 
 

{ }( )( )1 1

1 2
, k c

S k k
t x Xδ π =

=
=      (2a) 

Sequence of children of node 1x { }
2

k c

k k
X =

=
=   (2b) 

  
where 1x  represents the root node of tree t  and kX  is the 
unexpanded thk child (noted that a node may or may not 
contain a child) of its parent node. 1δ is the immediate 
dominance of 1x  to its sequence of children, and 1

S
π  is the 

immediate sibling precedence among the sequence of 
children. In addition, t may be a null collection σ  if it is a 
termination node. 
 
Mapping from T to G is :ξ →T G and the mapping 
function 

1
( , )

T
g tξ ε= . 

j
ε  is the Level of Projection (LoP) 
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of thj node in the tree and 
1

1ε =  is the starting node for 
(

j
ε +∀ ∈ I ).  

 
From the expression defining t and the mapping function g, 
we have 

( ) { }( )( )( )1 1

1 1 12
, , ,

k c

T T S k k
g t x Xξ ε ξ δ π ε

=

=
= =     (3) 

 
The mapping function exhibited distributive properties, as  

( ) ( ){ }
1 1 1 2
, , 1

k c

T T k k
g x Xξ ε ξ ε

=

=
= +         

( ) { }( )( )( ){ }1 1

1 1 1 2
, , , 1

k cm c n

T T k S m m c k
g x x Xξ ε ξ δ π ε

== +

= =
= +   (4) 

 
( ),

T j j
xξ ε  contains both the information of its category 

and the Level of Projection of the thj  node in the tree. 
Each category is belonged to a specific unit vector ( d

i
e ∈ E  

for thi category). The thj  node in the tree is represented by 
its class vector d

j
f ∈ E  which is an element of the set Ed. 

Thus, the information encapsulated in the thj node can be 
expressed as ( )( ),

j T j j
f Rep xξ ε=  with 

( )( ),
j T j j

LoP xε ξ ε= . 
 
According to the original definition of TPR on syntactic 
structure, both nodes and branching information are 
deemed to be the elements contributing to the overall 
representation. This deviates from our approach where the 
LoP [Chomsky 1981] of the nodes is considered instead of 
the intra-relationships between them. To begin with, we 
define the set of vectors max

k
r ∈ E  to represent the LoP of 

the tree nodes. Suppose max is the maximum depth of an 
arbitrary tree structure, we have 
 

( )
1 2 max
 

k
r r r r r
ε
= � � � �… …  where 

1 

0 otherwise
k

k
r

ε=
=
⎧
⎨
⎩

�     (5) 

 
Next, the mapping :Φ →G U  is defined for associating 
the concept of a node and its LoP. For a tree consisting of 
N nodes, the corresponding concepts can be concatenated 
through superimposition into a binary matrix given by 
 

( ) ( ) ( ){ }( )1 1 1 2
, , 1

k c

G G T T k k
u g x Xξ ε ξ ε

=

=
= Φ = Φ +     

( )( ) ( )( )
1 1 1

2

, , 1
c

G T G T k

k

x Xu ξ ε ξ ε
=

= Φ + Φ +∑   (6a) 

where ( )( ),
G T j

ξ σ εΦ = 0 and  

( )( ) ( )( ) ( )( ),
, ,

T j j j
G T j j T j j LoP x j

x Rep x r f r
ξ ε ε

ξ ε ξ εΦ = ⊗ = ⊗  

(6b) 
 
From (6a) and (6b) a general form of the mapping 

:Φ →G U  for N number of nodes in the tree can be 
expressed as  

( )
1

j

N

G j

j

u g f r
ε

=

= Φ = ⊗∑        (7) 

In the above derivations, it appears that the branching 
information has been neglected in building the 
representation. However, a closer look at (6a) reveals that 
the recursive expansion is in fact progressing through the 
nodes in a strict sequence defined by the hierarchical 
syntactic tree structure. The latter is derived from a parsing 
algorithm based on production rules and constraints 
governing the formation of language. For instance, the 
assertion of finite tree depth (non-recurrent relation), 
unique structure for individual sentence, and those nodes 
of the same category will not appear in the same LoP. All 
these imply that the branching information has been 
already been implicitly embedded in the representation. 
 
The representation obtained in (7) is varying in size and 
difficult to be utilized by subsequent processes (a classifier, 
for instance) that accept fixed length inputs. To overcome 
this problem, we propose a novel method known as Non-
linear Compression (NLC) for lossless compression of 
multiple-rank tensors to fixed-size vectors. In our method, 
a non-linear function ( :Θ →U V ) is defined to transform 
a vector into a scalar value. 
 
In essence, suppose ( )

1 2
   

k
a a a a= � � �…  (where ka ∈ I ) is a 

vector to be converted and ( ),a BΩ  is the base-B 
transformation function ( B +∈ I ). The transformation can 
result in either an integer ( ),a B+Ω  or a floating-point 
value ( ),a B−Ω . To avoid truncation error, we have chosen 
the latter to be the compression formula to convert an 
integer vector to a floating point value, as 
 

( )
1

max 1
max

, j
j

j
a B a B

−
−

+ +
=−

Ω = ∑ �        (8) 

 
The compression is lossless and reversible if the maxB−  can 
be perfectly represented within the precision of the 
processor (e.g. a computer). Otherwise, the data may be 
subject to certain degree of distortion depending on the 
extent of k. The base B in the transformation is governed 
by the maximum discrete values that are defined within a. 
For binary vector, B is equals to 2.  
 
The representation obtained in (7) can be expressed in the 
form of a two dimensional matrix. The row vector (fixed 
size) contains the category information of the tree and the 
column vector (variable size) encapsulates the LoP 
information. The latter is compressed into scalar value with 
the formula below: 

( ) ( )
1

,
d

U i i
i

u u e B e−

=

Θ = Ω ⋅ ×∑ T  
j

j
u r f

ε
= ⊗T∵   (9) 

The LoP of each category is extracted by dot product and 
the Base Transformation is applied on each of them. 
Finally, a value contributing to specific category vector 
and the representation is formed by summing all 
contributing category vectors. The 2 mapping functions 
can be integrated into a general form given by the mapping 
function ( :Ψ →G V ): 
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( )
1

j
N

G j
j

g B fε−

=

Ψ = ⋅∑         (10) 

 
Using the Figure 1 as an example, the TP Representation 
with NLC is as Table 1 (B = 2).  
 

Table 1 TPR with NLC of “The man feeds the cat” 
 

S NP VP NBAR VBAR ART N V 
0.5 0.375 0.25 0.1875 0.125 0.1875 0.09375 0.0625

 
 
Mathematically, an inverse transform for (9) is available as 
given by  

( ) ( ) ( )( )11

1
, ,max

d

G V i i
i

g v e B eθ
−− −

=

Φ = Θ = Ω ⋅ ⊗∑    (11) 

where ( )Uv u= Θ  
 
Furthermore, the level of projection of the thi  category in a 
tree can be extracted by the Unbinding Process, as 

( ) [ ]1

1 :
,

j j

j i

N N

U i j i
j j f e

u i u e f r e rε ε
−

= =

⎡ ⎤
Φ = ⋅ = ⊗ ⋅ =⎢ ⎥

⎣ ⎦
∑ ∑

T
T    (12)  

 
According to (12), the tree can be recovered by back-
tracking the nodes with reference to the parsing rules taken 
to construct the syntactic structures. Experimental results 
reveal that the full reconstruction can be achieved if the 
maximum depth of tree is less than 7 (cropping operation 
may be required for larger tree). 

Experiment results 
We examine the characteristics of our approach with 3 
experiments. Cluster analysis is one of the important tools 
to explore the features inside the representation [Pollack 
1990] [Kwasny 1993, 1995] by grouping candidates of 
similar characteristics. To evaluate the proposed method, 
the TPR of 44 sentences and phrases with different 
structures are computed and further encoded with NLC. 
The representations are clustered according to their 
Euclidean distance the result is illustrated in Figure 4.  
 
 
 
 
 
 
 
 

Figure 4 Cluster result of representation of 44 generated sentences 
 
It can be seen that the sentences have been grouped 
according to the similarity of structures and insensitive to 
the actual constituents and positioning of words. For 
example, “The man is fat” and “The fat man” are very 
similar as they have three words in common. However, out 
method has successfully identifying them as moderately 
different in structure. 

 
We have also explored the effectiveness of our method in 
associating representations with their semantic information. 
A second experiment has been conducted following the 
works reported by Tsang and Wong (2002). In their 
experiment, the RAAM representations were built for a set 
of sentences and classified into frame-based semantics (e.g. 
AGENT_ACTION_PATIENT) with a three-layer Back-
Propagation Neural Network (BPNN). We repeat the test 
with identical set of sentences and identical settings given 
below (Table 2): 
 

Table 2 Experiment parameters of second experiment 
 

Number of grammatical categories 15 
Number of semantic frame types 5 
Number of Parsing Rules 18 
Size of hidden layer of BPNN 12 
Number of training and testing sentences 28 
BPNN Training epochs 2000 

 
Each sample sentence is presented in a shuffling manner to 
the BPNN for 100 times, each involving 2000 epochs of 
iterations. A plot of the average Root-Mean-Square (RMS) 
Error of M sentences and p output in BPNN against the 
number of iterations is plotted in Figure 5. The light and 
bolded lines illustrate results obtained with the 
representations constructed with RAAM and our method, 
respectively. It can be seen that throughout the entire 
training period, the RMS error is considerably lowered in 
our case except at the very beginning of the process. A 
very low error is finally reached (about 0.1893) with our 
approach whereas the system using RAAM is 
comparatively larger by ten times (about 1.04).  
 

 
 
Figure 5 RMS Error of classification during training BPNN using 
Tsang’s data set 
 
In addition, 100% of the training and test sentences are 
classified properly with the use of the NLC-TP 
representation whereas only a success rate of 85.71% is 
recorded in Tsang and Wong’s article. 
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The experiment is further extended to classify 14 sentences 
that are similar to the samples but deviated in the syntactic 
arrangements. Representations obtained with our method 
exhibit excellent graceful degradation. For instance, “The 
man sleep” and “The fat man sleep” are both classified as 
AGENT-ACTION although the second sentence can easily 
be misinterpreted as ADJ-AGENT if the first three words 
are considered first. The word “fat” can be considered as a 
kind of noise which has been successfully discarded in the 
NLC-TP representation. The difference again, is clearly 
reflected with the NLC-TP representation. However, both 
of the above tests failed with the RAAM representation. 
 
In order to examine the representational capacities and 
capabilities of our approach, we design the third 
experiment similar to the second one but it computes with 
a much larger grammatical data set which can handle the 
more complicated linguistic structures (e.g. tenses, 
negation & question) and a more powerful BPNN (with 
doubled hidden neurons) are involved shown as Table 3. 
 

Table 3 Experiment parameters of third experiment 
 

Number of grammatical categories 44 
Number of semantic frame types 39 
Number of Parsing Rules 79 
Size of hidden layer of BPNN 30 
Number of sample sentences 91 
Number of test sentences 50 
BPNN Training epochs 2000 

 
From the experimental results, the proposed representation 
seems much more compatible with BPNN than RAAM in 
terms of training stability and classifying correctness.  
 

 
Figure 6 RMS Error of classification during training BPNN with the 
larger data set 
 
We plot the average case (not the best or worst one) of 
RMS Error converging progress of classifying the training 
sentences in to assigned semantic frame type as the same 
way as the second experiment does in Figure 6 above. In 
the first half of training epochs, a significant drop of RMS 
Error is experienced in the training using RAAM and the 
error value retains around 2.27 (about 0.025 per sentence). 

It is obviously trapped in a local minimum of error surface 
in pre-mature state. Again, the training with NLC-TP 
Representation converges in slower rates but a lower error 
state at 0.7176 (0.0079 per sentence) is finally reached 
with stable converging rates. At the mention of correctness 
of semantic type classification, the system with proposed 
representation classifies entire training set correctly but 
that with RAAM only achieve usually less than 70% 
successful rate.  
 
Analogously, the set of testing sentences is designed for 
challenge the graceful degradation ability of the semantic 
extraction system. A difficult case is examined with the 
pair of sentences: “The cat would not be fed by the man” 
and “The cat would not be fed” that are rather similar at 
higher level of projection (from 5th level) but differ in the 
semantic frame type. The former is of type AGENT-
INDIRECTACTION-PATIENT while the latter is a 
member of AGENT-INDIRECTACTION. The system 
with our representation recognizes this distinction with a 
clear sense (very low classification error). Nonetheless, 
that with RAAM representation is also failed this test as 
second experiment and it even cannot signify a most 
possible semantic type for the second sentence.  
 
Comparing the classifying correctness on both second and 
third experiments, the results are generalized as Table 4a 
and 4b below averaging of 100 result sets. NLC-TP 
representation exhibits the overwhelming success in this 
semantic extraction application. 
 

Table 4a Generalized results of second experiment for 100 result sets 
 

 RAAM NLC-TPR 
Lowest Error  1.1412 0.1866 
Average Error per sentence 0.0815 0.0133 
Correctness of Training Set (%) 85.17 100 
Correctness of Testing Set (%) 57.14 100 
Computation time (in terms of t) 30 t t 

 
Table 4b Generalized results of third experiment for 100 result sets 

 
 RAAM NLC-TPR 
Lowest Error  2.1607 0.6082 
Average Error per sentence 0.0237 0.0067 
Correctness of Training Set (%) 69.23 100 
Correctness of Testing Set (%) 32 94 
Computation time (in terms of t) 100 t t 

Conclusions   
In this paper we have developed a novel scheme based on 
Tensor Product and Non-linear Compression for encoding 
syntactic structures of English language into fixed size 
vector representations. The proposed method has a number 
of major advantages over existing approaches based on 
RAAM.  First, the computing time is significantly reduced 
as ANN is not required in encoding the sentences. Second, 
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the representations are stable as they are clustered 
according to the similarity of their corresponding syntactic 
structures, rather than the detail positioning or presence of 
individual words. Third, similar finding is obtained in the 
classification of representations into semantic categories 
through the use of Artificial Neural Network. Experimental 
results reflect that representations attained with our method 
are capable of extracting correct semantic from sentences 
even if they are absent in the training set. In addition 
considerably fewer amounts of iterations are required by 
the ANN to converge to a state with relatively lower Mean 
Square Error (MSE). These favorable results demonstrated 
the feasibility of the proposed method and its potential in 
real-time application on NLP such as Translation and 
Semantic Extraction. 
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