
An Effective Algorithm For Project Scheduling With Arbitrary Temporal
Constraints

Tristan B. Smith
CIS Department

University of Oregon
Eugene, OR 97403

tsmith@cs.uoregon.edu

John M. Pyle
On Time Systems, Inc.

1850 Millrace Drive, Suite 1
Eugene, OR 97403
john@otsys.com

Abstract

The resource-constrained project scheduling problem with
time windows (RCPSP/max) is an important generalization
of a number of well studied scheduling problems. In this
paper, we present a new heuristic algorithm that combines
the benefits of squeaky wheel optimization with an effective
conflict resolution mechanism, called bulldozing, to address
RCPSP/max problems. On a range of benchmark problems,
the algorithm is competitive with state-of-the-art systematic
and non-systematic methods and scales well.

Introduction
Project scheduling requires the assignment of resources and
times to activities in a plan with the goal of makespan min-
imization. Such problems arise in a range of fields includ-
ing construction, manufacturing, software development and
a number of space applications. Because of their impor-
tance, many varieties of project scheduling problems have
been well studied by the OR and AI communities.

Less attention has been paid to RCPSP/max problems.
These generalize many of the well-known and well-studied
classes of scheduling problems (including job-shop prob-
lems and their variants) through non-unary resource con-
straints and, most importantly, arbitrary temporal con-
straints. The latter permit both minimum and maximum time
lags between activities to be represented. This allows a vast
number of real-world constraints to be modelled, including
fixed start times, releases and deadlines, set-up times, min-
imum and maximum overlaps, activities that must start or
finish simultaneously, and shelf life constraints.

RCPSP/max problems have been tackled by both the AI
and OR communities with most results achieved by the lat-
ter (Dorndorf, Pesch, & Phan-Huy 2000; Cesta, Oddi, &
Smith 2002; Neumann, Schwindt, & Zimmerman 2003).
Successful exact methods incorporate constraint propaga-
tion into a variety of branch and bound algorithms. Since
these algorithms have limited scalability, a number of non-
systematic methods, including tabu search, simulated an-
nealing and genetic algorithms have also been developed.

In this paper, we describe how another heuristic ap-
proach, squeaky wheel optimization (SWO), can be applied

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

effectively to RCPSP/max problems. The main component
of SWO is a priority-based greedy schedule constructor.
Search is used to find effective prioritizations for that con-
structor.

Arbitrary temporal constraints can cause problems for a
greedy constructor since it is NP-hard to find any feasible
schedule; if most prioritizations do not yield feasible sched-
ules, SWO will be ineffective. Therefore, to increase the
power of the greedy constructor, we have added a new con-
flict resolution mechanism, called bulldozing that allows the
greedy constructor to move sets of activities later in a par-
tial schedule to maintain feasibility. Finally, similar mecha-
nisms move sets of activities earlier in a feasible schedule to
allow shorter schedules to be discovered.

Our algorithm is compared with the best reported results
in the OR and AI literature for benchmark RCPSP/max
problems ranging from 10 to 500 activities. Competitive for
all problem sizes, it begins to outperform most algorithms as
problem size increases.

The RCPSP/max Problem
An RCPSP/max problem contains a set{A1, ..., An} of ac-
tivities and a set{R1, ..., Rm} of resources. Each activity
Ai has a start timeSi and a durationdi. Each resource has
a maximum capacityck and execution of each activityAi

requires an amountrik of resourcek for each time unit of
execution. Binary precedence constraints[Tmin

i,j , Tmax
i,j] en-

force minimum (Tmin
i,j) and maximum (Tmax

i,j) time lags be-
tween the start times of activitiesAi andAj .

The two constraints types of an RCPSP/max problem can
be summarized as follows:

• Precedence Constraints:Tmin
i,j ≤ Sj − Si ≤ Tmax

i,j

• Resource Constraints:Σ{i|Si≤t<Si+di}rik ≤ ck,∀t,∀k
A schedule is an assignment of a value to the start timeSi

of each activity. A schedule istime-feasibleif it satisfies all
precedence (temporal) constraints and isresource-feasibleif
it satisfies all resource constraints. A schedule that satisfies
all constraints isfeasible.

The goal of an RCPSP/max problem is to find a fea-
sible schedule such that the project makespan,MK =
max1≤i≤n{Si+di}, is minimized. Unlike scheduling prob-
lems without both minimum and maximum time lags, even

544 PLANNING & SCHEDULING

finding a feasible schedule for the RCPSP/max problem is
NP-hard (Bartusch, M̈ohring, & Radermacher 1988).

Solving RCPSP/max Problems
Time Windows and Constraint Propagation
At the core of our algorithm is a greedy schedule constructor
that selects a start times for each activity from a domain of
possible values. We represent each such domain with atime
window, [ESAi

, LSAi
], representing all time points between

the earliest and latest start times we wish to consider.
Temporally consistent time windows are efficiently main-

tained via well known constraint propagation techniques. In
our algorithm, each window is initialized to[0, horizon−di]
(where horizon is the goal makespan) and then temporal
constraint propagation achieves arc-consistency (Dechter,
Meiri, & Pearl 1991).

Windows are updated during schedule construction.
When a start timet is selected for an activityAi, the
PLACEACTIVITY (Ai,t) method will reduce windows as
necessary to maintain temporal consistency. Similarly, when
a start time is retracted (as we do in bulldozing), the
UNPLACEACTIVITY (Ai) method will expand windows if
possible. These methods allow schedule construction to al-
ways produce time feasible schedules without the need for
backtracking (Dechter, Meiri, & Pearl 1991).

While the above propagation considers only precedence
constraints, the propagation of resource constraints can fur-
ther reduce start time domains (Muscettola 2002; Laborie
2003).While some resource constraint propagation is clearly
beneficial, it comes at a computational cost and limits the
scalability of algorithms.

The algorithms we describe in this paper explicitly avoid
resource constraint propagation as our intent is to show that
search can be effective without it and to highlight the dif-
ferences between our algorithm and others that have been
proposed. However, there is no inherent reason for us to
avoid resource constraint propagation and it could comple-
ment our approach.

Squeaky Wheel Optimization
Squeaky Wheel Optimization (SWO) is an iterative ap-
proach to optimization that combines a greedy algorithm
with a priority scheme (Joslin & Clements 1999). A num-
ber of results suggest that SWO can be applied effectively
to a range of real-world problems and scales well (Joslin &
Clements 1999; Chen, Fu, & Lim 2002).

Each iteration of the SWO algorithm can be divided into
two stages: construction and prioritization. The construction
stage takes a variable ordering and builds a solution using a
greedy algorithm. In the prioritization stage, a variable is
penalized with ‘blame’ depending on how well that variable
was handled during construction. The updated priorities re-
sult in a new variable ordering for the next iteration.

The key to SWO is that elements that are handled poorly
by the greedy constructor have their priority increased and
are therefore handled sooner (and hopefully better) the next
time (“The squeaky wheel gets the grease”). Over time, el-
ements that are difficult to handle drift toward the top of the

queue, those that are always easy to handle drift toward the
bottom, and the rest settle somewhere in between.

A SWO implementation that uses the time window frame-
work for the RCPSP/max problem, embedded in a binary
search over possible horizons, is outlined here:

SWO(MaxIter)

1 counter ← 1
2 MKbest ← +∞
3 SETHORIZONLOWERBOUND
4 (P1, ..., Pn) = initial priorities
5 for counter ← 1 to MaxIter
6 do feasible← TRUE
7 for i← 1 to n
8 do
9 Ai ← unscheduled activity with

highestPi

10 if SCHEDULE(Ai) fails
11 then feasible← FALSE
12 if feasible
13 then MKbest ←MKcurrent

14 DECREASEHORIZON
15 if 10 iterations without feasible solution
16 then INCREASEHORIZON
17 (P1, ..., Pn) = updated priorities

Line 3 and lines 14 through 16 perform a version of
binary search over possible makespans, ranging from the
resource-unconstrained lower bound to double the trivial up-
per bound.1 Although not included in the pseudocode, our
algorithm will quit if the minimum makespan is reached.

Line 4 initializes the priorities. Lines 7 to 11 make up
the greedy schedule constructor and priorities are updated
on line 17.

The basic SCHEDULE(Ai) method is outlined below. It
looks for the earliest time-feasible and resource-feasible
place to startAi. If none is found, resource constraints are
ignored andAi is put at the earliest time-feasible start time
ESAi

.

SCHEDULE(Ai)

1 t← earliest resource-feasible time forAi

in [ESAi , LSAi]
2 if t = NIL
3 then PLACEACTIVITY (Ai, ESAi)
4 returnFALSE
5 else PLACEACTIVITY (Ai, t)
6 returnTRUE

Example 1 Consider the following three activity, one re-
source problem:

• Durationsd1 = d2 = d3 = 2
• Resource capacityr1 = 2
• Resource requirementsr11 = r21 = r31 = 1

1ub = Σn
i=1max(di, max(T min

i,j)) (Dorndorf, Pesch, & Phan-
Huy 2000). We found that doubling this enabled bulldozing to find
feasible schedules more easily.

PLANNING & SCHEDULING 545

Priority Order: A1 A2 A3

A3 cannot be scheduled feasibly A1

A2

A3

0 2 4

2

Priority Order: A3 A1 A2

A2 cannot be scheduled feasibly A3

A1

A2

0 2 4

2

Priority Order: A2 A3 A1
All activities can be feasibly scheduled

A2

A3

0 2 4

2
A1

Figure 1: The third iteration ofSWO finds a feasible sched-
ule. For illustration, an activity is moved to the beginning of
the priority queue when it cannot be scheduled feasibly.

• A constraint thatA3 must start exactly 1 unit beforeA2.
That is,S3 − S2 = −1 (or Tmin

2,3 = Tmax
2,3 = −1).

Figure 1 demonstratesSWO beginning with the priority
order (A1, A2, A3). Using this order, no resource-feasible
time is available forA3, its priority is increased and the
priority order (A3, A1, A2) is obtained. On the second it-
eration, A2 has the same problem. Finally, in the third it-
eration, the order(A2, A3, A1) leads to a feasible schedule
with MK = 4. SWO will then reduce the horizon to 3,
recompute time windows and continue.2

For initial priorities, we have chosen to use theLSAi

values calculated by the temporal constraint propagation
(where the activity with the earliestLSAi

value gets the
highest priority).

In our implementation, the priorities of activities that are
not scheduled feasibly are increased by a constant amount.
To add randomness, priorities of other activities are in-
creased by a smaller amount with a small probability. Since
binary search ensures that the horizon is less than the best
makespan found, we know that on each iteration either a
new best schedule will be found or at least one activity will
have its priority changed.

Bulldozing
In Example 1, we see howSWO can find a feasible schedule
by getting the three activities in the right priority order. For
large or highly constrained problems, there can be many sub-
problems of this nature and it may be difficult forSWO to
get all of them right at the same time.

To avoid this potential problem and strengthen the greedy
construction, we add a conflict-resolution method called

2Notice that this schedule is optimal. However, with only tem-
poral constraint propagation, a schedule of length 3 cannot be ruled
out andSWO will continue to try to find one.

To be resource-feasible,

A3 must wait until time 2 A1 A3

0 2 4

2

To be time-feasible, this

requires A2 to be delayed A3A1

A2

0 2 4

2

A2 can be delayed feasibly
and bulldozing works

A2

A3

0 2 4

2

A1

A2

Figure 2: Bulldozing.

bulldozing to the SCHEDULE method.
Bulldozing is inspired by the complication of maximum

time lags. Without maximum time lags, a greedy algorithm
can always find a feasible schedule since eachAi can be
postponed as long as necessary until resources are available.
When there are maximum time lags, however,Ai may not be
able to be postponed long enough if activities that constrain
it have been placed ‘too early’ (consider the first iteration
of Example 1 whereA3 cannot be postponed long enough
since it is constrained byA2).

If such anAi is encountered, bulldozing will attempt to
delay the activities that constrain it so thatAi can be sched-
uled in the postponed position.

Example 2 Consider again the simple problem of Exam-
ple 1. Figure 2 shows what happens if we add bulldozing
to the constructor. ActivitiesA1 and A2 are placed suc-
cessfully. WhenA3 is considered there is no feasible start
time. Timest ≥ 2 are resource-feasible but only timet = 0
is time-feasible sinceA3 is constrained by the chosen start
time forA2. Therefore, we placeA3 at 2 and bulldozeA2.
SinceA2 can then be feasibly scheduled at time 3, bulldoz-
ing is successful and the resulting schedule is feasible.

We get algorithmSWO(B) by replacing SCHEDULE(Ai)
with SCHEDULEWITHDOZING(Ai, X), a recursive proce-
dure outlined below (X is the set of activities that must
be delayed; in the initial call,X = ∅). Instead of simply
searching the current window[ESAi

, LSAi
] for a feasible

time, SCHEDULEWITHDOZING considers the larger inter-
val [ESAi

, LSorig
Ai

] (whereLSorig
Ai

is the latest start ofAi

when no other activities are scheduled). Ift is not a feasible
time or is beforeLSAi

, the algorithm proceeds as before.
However, if the earliest resource-feasible time is outside

of the current window but within the original window, bull-
dozing is invoked. ActivityAi is placed at this potential
start time and line 9 updates setX with the activities that
must be moved.3 EachAj in this set is then unplaced (one

3These will be activities that forcedLSAi < t in the first place.

546 PLANNING & SCHEDULING

at a time) and a recursive SCHEDULEWITHDOZING(Aj ,X)
call is made. If all activities can find new feasible start times,
bulldozing succeeds. Otherwise, all delayed activities revert
to their previous positions andAi is placed back atESAi

.

SCHEDULEWITHDOZING(Ai, X)

1 t← earliest resource-feasible time forAi

in [ESAi
, LSorig

Ai
]

2 if t = NIL
3 then PLACEACTIVITY (Ai, ESAi)
4 returnFALSE
5 else ift ≤ LSAi

6 then PLACEACTIVITY (Ai, t)
7 returnTRUE
8 else PLACEACTIVITY (Ai, t)
9 X ← X ∪ {Aj forced to move byAi}

10 while X 6= ∅
11 do Ak ← randomly selected element ofX
12 UNPLACEACTIVITY (Ak)
13 if SCHEDULEWITHDOZING(Ak, X) fails
14 then UNDOALL BULLDOZING
15 UNPLACEACTIVITY (Ai)
16 PLACEACTIVITY (Ai, ESAi

)
17 returnFALSE

The recursive nature of bulldozing means that more ac-
tivities can be moved than the original set forced byAi. In
fact, we have observed thatAi itself is often bulldozed fur-
ther in attempts to settle on start times where all activities are
resource-feasible. The reason seems to be that a highly con-
strained sub-problem may need to be moved out past other
activities to fit. This is the motivation for selecting activi-
ties to bulldoze randomly on line 11; if a subset of activities
proves difficult to schedule, attempts to reschedule them will
be done in different orders.

This suggests a nice feature of bulldozing. If a prob-
lem has subsets of activities that are highly constrained, the
subsets will be pushed out past other activities until they
can be feasibly scheduled. It is interesting to note that
in other work (Neumann, Schwindt, & Zimmerman 2003),
RCPSP/max problems are explicitly divided into such sub-
problems that are solved separately and then combined into
an overall solution. Bulldozing similarly isolates subprob-
lems from the rest of the problem but does so only when
subproblems prove difficult.

If there is a difficult subproblem,SWO without bulldoz-
ing may also work because the activities involved are likely
to move up in the priority queue and be scheduled before
others. However, if there are multiple such subproblems,
they will likely be jumbled together in the early part of the
priority queue and SWO may have trouble fitting them all
together. Bulldozing appears to overcome this problem.

Bulldozing can be considered a form of intelligent back-
tracking (Ginsberg 1993) since we unvalue and revalue the
variables whose values contribute to an infeasible state. It
also has the flavor of iterative repair algorithms that build
schedules and then eliminate conflicts through local search.
However, a key difference with local repair is that bulldoz-
ing is done with partial rather than complete schedules.

A1

A2

A3

0 2 4

2
A1 A2

A3

0 2 4

2

Figure 3: With refilling,A2 andA3 are bulldozed left and
the makespan is reduced from 5 units to 4.

Refilling
Consider our simple example once more. In Example 2, we
see how bulldozing can allow feasible schedules to be con-
structed with priority queues that result in infeasible sched-
ules without bulldozing. However, notice that the resulting
schedule is not optimal. As shown in Figure 3, the two activ-
ities involved in bulldozing (A2 andA3) can be shifted left
to fill in the space vacated by the bulldoze.

Algorithm SWO(BR) results from adding two such ‘re-
filling’ pieces to the SCHEDULEWITHDOZING procedure:

1. Left Bulldozing After a successful bulldoze, an attempt is
made to bulldoze the same set of activities back to earlier
start times. This often works because of the space vacated
by the bulldozed activities. This step is also bulldozing
because the subset of activities considered may be highly
constrained among themselves (hence the bulldoze in the
first place). Therefore, it may not be possible to left-shift
any of them individually but they may move as a group.

2. Left Shifting After a successful bulldoze, an attempt is
made to left-shift activities that can take advantage of re-
sources vacated by bulldozed activities. We simply con-
sider each activityAi for whichSi > ESAi

.

These refilling mechanisms are able to reduce the
makespan of an already feasible schedule or partial sched-
ule. When the horizon is small, they may also indirectly
help the construction of more feasible schedules since they
leave more room for activities that have yet to be scheduled.

Example 3 In the simple problem of Example 1, there are
6 possible priority orders. ForSWO , 2 of them are both
feasible and optimal. ForSWO(B), all 6 become feasible
and 4 are optimal. Finally, forSWO(BR), 6 are feasible
and 5 are optimal.

It is straightforward to show that each version of our al-
gorithm is guaranteed to terminate in polynomial time and
therefore cannot be guaranteed to find a feasible solution
(since the problem is NP-hard).

Experimental Results
We have tested our algorithms on five sets of benchmark
problems (set A is divided into 3 subsets). All benchmarks
were generated with ProGen/Max (Schwindt 1995) using a
number of parameters to vary problem characteristics. Ta-
ble 1 lists the benchmarks with the number of instances and
how many are feasible as well as the number of activities
and resources of each instance.

Our algorithm has been implemented in C++ and was run
on a 1700 MHz Pentium 4. It uses well under 15 MB of
memory on the largest problems.

PLANNING & SCHEDULING 547

Table 1: Benchmark names and parameters
Set Ninstances Nfeas Nact Nres

J10 270 187 10 5
J20 270 184 20 5
J30 270 185 30 5
B 1080 1059 100 5
C 120 119 500 5

Table 2: Results of schedule construction with all priority
queues for feasibleJ10 problems

%feas %opt

Constructor worst avg best worst avg best
SWO 0 4 54 0 2 53

SWO(B) 18 94 100 0.0002 7 100
SWO(BR) 15 94 100 0.02 13 100

Quality of the Greedy Constructor
For a SWO algorithm to be effective, it is crucial that the
greedy constructor be capable of finding feasible and opti-
mal solutions. We want to be confident that there are at least
some (preferably many) priority orders from which optimal
schedules will be produced. TheJ10 problems are small
enough that all10! = 3628800 possible priority queue per-
mutations can be tried for each one.

In table 2, we see what percentage of those queues lead to
feasible and optimal schedules using the constructors of our
three versions of SWO. For both%opt and%feas, we give
the worst and best cases among all 187 feasible problems in
J10 as well as the average.

The benefits of strengthening the constructor are clear;
bulldozing yields an enormous jump in the number of feasi-
ble schedules produced while refilling yields another jump
in the number of optimal schedules produced. While the
SWO constructor fails to find any solution to 3 feasible
problems, the other two find feasible solutions with at least
15% of the prioritizations for every feasible problem.4

Another consideration, of course, is time. On average,
theSWO(B) constructor took 3.2 times longer than that of
SWO and theSWO(BR) constructor took twice again as
long. Experiments suggest that these computational costs
are worth paying.

Benchmark Results
We compareSWO(BR) with the best methods reported in
the literature:

• B&BS98 (Schwindt 1998) is a branch and bound algo-
rithm that delays activities by adding precedence con-
straints.

• B&BD98 (Dorndorf, Pesch, & Phan-Huy 2000) is a
branch and bound algorithm that reduces the search space

4It is unclear to us why theSWO(BR) constructor did worse
than theSWO(B) one in the worst case.

Table 3: Results for benchmark problems
Set Algorithm ∆LB% %opt %feas Scaled

Cpusec

J10
SWO(BR) 0.2 94.0 100 0.31
B&BS98 0.0 100 100 -

ISES 1.3(a) 85.9 99.5 0.08

J20
SWO(BR) 4.9 66.4 100 0.63
B&BS98 4.3 85.3 100 -

ISES 5.4 64 100 0.53

J30
SWO(BR) 10.3 51.1 100 1.07
B&BS98 9.6(a) 62.3 98.9 -

ISES 11.0 49.4 100 2.67

B

SWO(BR) 6.8 64.2 100 1.85
KDE 4.6(a) 63.8 99.9 1.97
ISES 8.0(a) 63.2 99.9 (b)

B&BS98 9.6 63.7 100 -
B&BD98 4.6 73.1 100 3.49
B&BF99 7.0 72.5 100 (b)

C
SWO(BR) 0.5 79.2 100 3.27
B&BD98 0.5(a) 71.4 97.5 11.53
B&BF99 5.2 58.8 100 (c)

(a) Not directly comparable to other numbers since problems not
feasibly solved are excluded.
(b) Cutoff of 11.8 seconds used but no average time reported.
(c) Cutoff of 23.6 seconds used but no average time reported.

with a significant amount of resource constraint propaga-
tion.

• B&BF99 (Festet al. 1999) is a branch and bound algo-
rithm that dynamically increases the release dates of some
activities.

• ISES (Cesta, Oddi, & Smith 2002) is a heuristic algo-
rithm that begins with all activities scheduled as early as
possible and then iteratively finds and levels “resource
contention peaks”, by imposing additional precedence
constraints and restarting.

• KDE (Cicirello 2003) improves upon priority rule meth-
ods by using models of search performance to guide
heuristic based iterative sampling.

For each of the above, results are available for a subset of
the benchmark problems. The results from a number of al-
gorithms that do less well than the above four algorithms are
not reported. These include a genetic algorithm, tabu search,
simulated annealing and priority rule based methods (Dorn-
dorf, Pesch, & Phan-Huy 2000, see this paper for a summary
of results).

For SWO(BR), we report the average of 5 runs for each
benchmark set. Each run was capped at 10 seconds (or 1000
iterations, whichever came first) in an attempt to ensure that
we used no more computation time than other algorithms.

Results are summarized in table 3. Measure∆LB% gives
the average relative deviation from the known lower bounds.

548 PLANNING & SCHEDULING

Measures%opt and%feas give the percentage of feasible
problems for which optimal5 and feasible solutions, respec-
tively, were found. Finally,Cpusec gives the average com-
putation time, scaled by processor speed. This last measure
should only be used for rough comparisons since the algo-
rithms were developed in different languages and run on dif-
ferent platforms.

Algorithm SWO(BR) was able to find solutions to all
1733 feasible problems (on all 5 runs). The only other al-
gorithm that does not miss feasible solutions isB&BF99 ,
which does so at the expense of quality, especially on setC.

Not surprisingly, exact methods get the best results for
small problems.B&BS98 is able to solve allJ10 problems
optimally, does fairly well on theJ20 problems but already
fails to find a number of feasible solutions to some of the
problems inJ30 . B&BD98 is better able to handle larger
problems and is by far the best algorithm on problem setB.
However, when the number of activities is increased from
100 to 500 (setC), it fails to find all feasible solutions and
solves fewer to optimality thanSWO(BR).

SWO(BR) is also very competitive with the best non-
systematic algorithms. It outperformsISES on all metrics
and on all problem sets. WhileKDE is significantly better
on measurement∆LB%, SWO(BR) is slightly better than
KDE on the other three dimensions.

Finally, in addition to scaling well in terms of relative
solution quality,SWO(BR) appears to scale effectively in
terms of running time. For example, whileISES takes 33
times longer onJ30 than onJ10 , SWO(BR) takes less
than 4 times longer.6 Similarly, B&BD98 takes 3.3 times
longer onC than onB; the difference forSWO(BR) is un-
der 2. It is unclear howKDE scales since results are only
reported for problems of a single size.

Concluding Remarks
We have described a new heuristic algorithm,SWO(BR),
for RCPSP/max problems. It uses bulldozing and refilling
to improve the performance of greedy schedule construc-
tion in SWO. On a range of benchmarksSWO(BR) is com-
petitive with systematic and non-systematic state-of-the-art
techniques. Able to consistently solve all feasible problems,
it scales well, both in terms of solution quality and running
time, relative to the best known OR and AI algorithms.

There are a number of waysSWO(BR) could be im-
proved. We have already mentioned that some resource con-
straint propagation should help guide SWO. Preliminary ex-
periments using one of the consistency tests of Dorndorf
et al. (Dorndorf, Pesch, & Phan-Huy 2000) give improve-
ments forJ10 andJ20 . However, the benefits seem to be
outweighed by the extra computational costs for the larger
problem sizes.

It might be effective to incorporateSWO(BR) into a
meta-heuristic like tabu search (Chen, Fu, & Lim 2002, they

5Solutions that matched the lower bound or have been proven
optimal by some algorithm.

6Of course, such comparisons must be taken with a grain of
salt; running times depend partly on the cutoff times chosen.

find that tabu search combines well with SWO) or simu-
lated annealing so that priority space is explored more in-
telligently; the current search is relatively unstructured.

Finally, SWO(BR) should be tested on more difficult
problems. While it didn’t struggle with the above bench-
marks, we do not know how it will do on problems that are
larger or more difficult.

References
Bartusch, M.; M̈ohring, R. H.; and Radermacher, F. J.
1988. Scheduling project networks with resource con-
straints and time windows.Annals of OR16:201–240.
Cesta, A.; Oddi, A.; and Smith, S. 2002. A constraint-
based method for project scheduling with time windows.
Journal of Heuristics8(1):109–136.
Chen, P.; Fu, Z.; and Lim, A. 2002. The yard allocation
problem.AAAI-20023–8.
Cicirello, V. A. 2003.Boosting Stochastic Problem Solvers
Through Online Self-Analysis of Performance. Ph.D. Dis-
sertation, The Robotics Institute, Carnegie Mellon Univ.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks.Artificial Intelligence49:61–95.
Dorndorf, U.; Pesch, E.; and Phan-Huy, T. 2000. A
time-oriented branch-and-bound algorithm for resource-
constrained project scheduling with generalised prece-
dence constraints.Manag. Sci.46(10):1365–1384.
Fest, A.; M̈ohring, R. H.; Stork, F.; and Uetz, M. 1999. Re-
source constrained project scheduling with time windows:
A branching scheme based on dynamic release dates. Tech-
nical Report 596, TU Berlin, Germany.
Ginsberg, M. L. 1993. Dynamic backtracking.Journal of
AI Research1:25–46.
Joslin, D. E., and Clements, D. P. 1999. Squeaky wheel
optimization.Journal of AI Research10:353–373.
Laborie, P. 2003. Algorithms for propagating resource
constraints in AI planning and scheduling: Existing ap-
proaches and new results.Artif. Intel. 143(2):151–188.
Muscettola, N. 2002. Computing the envelope for stepwise
constant resource allocations. InCP 2002, 139–154.
Neumann, K.; Schwindt, C.; and Zimmerman, J. 2003.
Project Scheduling with Time Windows and Scarce Re-
sources. Germany: Springer-Verlag.
Schwindt, C. 1995. ProGen/max: A new problem gen-
erator for different resource constrained project scheduling
problems with minimal and maximal time lags. Technical
report WIOR-449, Universitat Karlsruhe, Germany.
Schwindt, C. 1998. A branch-and-bound algorithm for
the resource-constrained project duration problem subject
to temporal constraints. Technical Report WIOR-544, Uni-
versitat Karlsruhe, Germany.

PLANNING & SCHEDULING 549

