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Abstract

Dynamically-balancing robots have recently been made
available by Segway LLC, in the form of the Segway
RMP (Robot Mobility Platform). We have addressed
the challenge of using these RMP robots to play soc-
cer, building up upon our extensive previous work in
this multi-robot research domain. In this paper, we
make three contributions. First, we present a new do-
main, called Segway Soccer, for investigating the co-
ordination of dynamically formed, mixed human-robot
teams within the realm of a team task that requires real-
time decision making and response. Segway Soccer is
a game of soccer between two teams consisting of both
Segway riding humans and Segway RMPs. We believe
Segway Soccer is the first game involving both humans
and robots in cooperative roles and with similar capabil-
ities. In conjunction with this new domain, we present
our work towards developing a soccer playing robot us-
ing the RMP platform with vision as its primary sensor.
Our third contribution is that of skill acquisition from
a human teacher, where the learned skill is then used
seamlessly during robot execution as part of its con-
trol hierarchy. Skill acquisition and use addresses the
challenge of rapidly developing the low-level actions
that are environment dependent and are not transferable
across robots.

Introduction
There has been considerable research into both human-
robot interaction (Nicolescu & Mataric 2003), and multi-
agent teams (Dias & Stentz 2002; Ferraressoet al. 2001;
Kiat et al. 2001). Additionally, since the inception of
RoboCup robot soccer (Asadaet al. 2003), there has been
considerable research into robot teams operating in adver-
sarial environments. To our knowledge, however, there has
been no work yet that combines these attributes; namely,
to examine human-robot interaction within an adversarial,
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multi-robot setting where humans and robots are team mem-
bers with similar capabilities and no clear role hierarchy.

We are developing a new game, which we call Segway
Soccer, that aims to fill this void. Segway soccer is a game
that requires mixed teams of humans and robots to cooperate
to achieve the maximum reward in an adversarial task. To
ensure interesting cooperation, both humans and robots are
equipped with similar capabilities. We achieve this difficult
task by requiring that both humans and robots use the same
drive platform - the Segway platform developed by Segway
LLC (Figure 1).

Our goal is to create a task that requires advanced robot
intelligence, combined with robust human-robot interaction
skills. We hope to extend the powerful aspects of RoboCup -
competition, an adversarial domain requiring fast decisions,
and a well understood task - to incorporate human-robot in-
teraction. The need for this new domain lies in the lack of
study for human-robot interaction where decisions need to
be made quickly. As robots become more integrated into
society, they will inevitably have to interact with humans
and/or legacy robots in complex tasks. For some of these
tasks, decisions may need to be made quickly and roles of
both humans and robots may not be clearly defined a priori.

Figure 1: The Segway RMP (left and right) and
HT (right) platforms developed by Segway LLC
(http://www.segway.com).

In this paper, we describe our work towards developing
a robot capable of participating in Segway soccer. As this
new domain is set in the outdoors, compensating for vari-
able lighting conditions and less structured environments,
but still retaining the ability to make and act on decisions
quickly is a challenging task. We describe our initial solu-
tions to meet this challenge.
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The format of the paper is as follows. In the following
section we describe the specifics of Segway soccer; its rules,
structure, goals, and challenges. Following this we describe
how to extend a Segway RMP to become a robot capable of
playing soccer with vision as its primary sensor. We then fo-
cus on our third contribution, skill acquisition and use, lead-
ing to our empirical result, conclusions and future work.

Segway Soccer
In this section, we concretely describe the game of Seg-
way soccer. We begin by describing the unique features of
the Segway platform that make the concept of human-robot
teamwork feasible in a complex game such as soccer, before
progressing to the game itself.

Segway as a Platform for Robotics Research
The Segway platform, invented by Dean Kamen, is unique
due to its combination of wheel actuators and dynamic bal-
ancing. For the robot version this imbues the robot with the
novel characteristics of a fast platform, able to reach speeds
of 3.5m.s−1 and travel long ranges (on the order of kilo-
meters), able to carry significant payloads, able to navigate
in relatively tight spaces for its size, and provides the op-
portunity to mount sensors at a height comparable to human
eye level. As it is derived from a commercial product, it is
reliable and robust to damage. Finally, dynamic balancing
offers a number of unique properties including low-pass fil-
tering of perturbations by non-flat terrain, as well as a mod-
erate level of compliance with collisions.

From the perspective of human-robot interaction, the Seg-
way is unique in that its human and robot versions have
identical physical capabilities. The only difference resides
in different perception and cognition capabilities of humans
versus robots. For exploring human-robot interaction in co-
operative teams operating in adversarial tasks requiring real-
time responses, this property is essential.

For control, the RMP presents a high-speed serial inter-
face, using the automotive industry standard CAN bus. Al-
though essentially identical to the human-ridable Segway
HT, the robot version has a modified control algorithm en-
abling a connected laptop to send desired forward and rota-
tional velocity commands. The RMP’s onboard algorithms
accelerate or decelerate the robot to achieve these com-
mands. Finally, the robot provides feedback on its current
state including full angular pose and velocity information.
Physically, the robot appears as a table on wheels due to the
addition of a large mass of approximately 50lbs at a height of
about 50cm from the robot wheel base. This mass raises the
robot’s center of gravity thereby enabling the RMP to bal-
ance with a control loop operating at a realizable frequency.

The Game
We have developed the domain of Segway soccer for inves-
tigating human-robot interaction. Segway soccer is a game
between two teams playing on a grass field in an outdoor
environment with an orange, size 5 soccer ball. Teams can
consist of humans, robots, or a mix of humans and robots.
Figure 2 shows the field structure. The field consists of a

grass surface in an outdoor environment, where the size is
scaled as a function of the number of team members so that
with 11 players on each team it is a full-sized soccer field.
Colored tubular markers are placed around the field to indi-
cate the field boundary and goal locations. A human referee
maintains control of the game and transmits signals verbally,
for human consumption, and via wireless communication
for the robots. The latter is achieved via an assistant referee
armed with a laptop and a wireless network, an approach de-
veloped in robot soccer (Asadaet al. 2003). Team members
may be robots, humans, or robots and humans. In all cases,
the Segway platform is used to ensure each team member
has identical physical capabilities. Both humans and robots
wear colored markers to allow easy team identification.

Figure 2: The Segway field. Teams consist of humans,
robots, or robots and humans using the Segway platform,
and an orange size 5 soccer ball.

As both Segway HT’s and RMP’s carry considerable
mass, and are able to reach considerable speed, safety is a
primary concern. To address this problem, the game follows
a flow more familiar to Ultimate Frisbee1. When play be-
gins, ball possession is decided with a coin toss. Thereafter,
players gain possession based on proximity to the ball when
it is ”free”. Once a player obtains possession, opponents
must remain at least3m away to prevent any unnecessary
contact. Players are not allowed to move with the ball (i.e.
dribble), and instead must pass the ball to one another for
the team to maintain possession. A time limit on posses-
sion enforces how long a single player can retain the ball
before passing to a teammate. When the ball is passed, the
first player on any team to come within a specific distance
of the ball when it comes to rest will gain possession. The
same player cannot re-acquire possession of the ball until
after another player has obtained possession. Possession is
also changed if the ball is kicked out of bounds or if a goal is
scored. Although primarily a safety measure, this rule also
ensures that players must pass the ball to advance. As a di-
rect consequence teamwork, rather than purely single robot
skills, becomes essential. The goal of exploring intelligent
teamwork is therefore achieved.

Although the rules as defined allow for a multi-agent, ad-
versarial game to be played, they do not necessarily enforce
human-robot interaction. If, for example, humans prove
considerably more capable than their robot teammates, or
vice-versa, one class of team members will dominate pos-

1Rules for Ultimate Frisbee can be found at http://www.upa.org
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session leading to little human-robot interaction opportuni-
ties. Either case is undesirable. Our solution to this problem
is to require that both a human and a robot be part of the se-
quence of passes leading to a goal score. How effective this
solution is in the long term under competition conditions,
remains to be seen.

Developing a Segway Soccer Player
We now describe our work to develop a Segway RMP robot
base capable of playing Segway soccer. As with any au-
tonomous robot operating in a dynamic world, one must
develop acompletesystem involving perception, cognition,
and action inter-operating seamlessly with minimal response
latency. In this section, we detail our contributions to achiev-
ing this goal which builds upon our prior work in this area.

Figure 3: The control hierarchy used for the robot. The gray
modules are the perception-cognition-action part of the sys-
tem. The white are development infrastructure aids. Xdriver
is the tele-operation program.

Figure 3 shows the complete control architecture for the
RMP. The gray boxes show the main processing path that
makes up perception, cognition, and action. In an envi-
ronment occupied by other fast moving agents, the ability
to perceive and respond to situational changes in minimum
time is essential. Hence, it is critical to overall robot perfor-
mance that the control loop formed by gray modules operate
at full frame rate with minimum latency. The white boxes
show the supporting development environment, which al-
though not critical during execution play a central role in
the pace of the development cycle and therefore in the ro-
bustness of the result. We now describe each major compo-
nent and its role in the overall hierarchy, namely; perception,
skills and tactics.

Perception: Vision and Tracking
For environments like those the RMP operates in, there are
few sensors that can compete with color vision for low cost,
compact size, high information volume and throughput, and
relatively low latency. Thus, our chosen path is decidedly
vision centric where a color camera provides each robot
with its only external sensor. Given the range of environ-
ments that the robot operates in – outdoors on grass fields,
or indoors when the weather is poor – perception quickly

becomes an overriding challenge. That is, to developfast
vision algorithms that provide the robot with timely, but rel-
atively noise free information that is robust to variations in
lighting intensity. To complicate issues, only a fraction of
the available processing power is dedicated to vision as the
remainder must be used for tracking, modeling, behaviors,
navigation and motion control. Achieving these goals is one
of the key challenges to be addressed for using the RMP. To
our knowledge, there are no vision algorithms that offer all
of these features.

A number of fast, color-based algorithms and freely avail-
able source libraries have been developed for static lighting
conditions (e.g. (Bruce, Balch, & Veloso 2000)). However,
these libraries do not as yet extend to variable, or chang-
ing lighting conditions. Our approach uses region grow-
ing (Adams & Bischof 1994), where seeds are first provided
from any regions that found in the previous frame that were
large enough. The remainder of the seeds are chosen uni-
formly. Each region is grown using a fixed homogeneity
constraint based on the distance of the new color pixel in
YUV space from the average color of the region grown thus
far. That is, if the new pixel has colorcj = (yj , uj , vj)

T , it is
added to the regionRi if it is a neighbor of an existing pixel
in the region,cj ∈ N (ck), ck ∈ Ri, and it is sufficiently
close to the region mean,(yj − ŷi < τy) ∧ (uj − ûi <
τu)∧ (vj − v̂i < τv). The region mean is updated after each
pixel addition and has the valuêci = |Ri|−1

∑
Ri

cj .
Once regions are identified and the summary statistics for

each region are calculated, high level vision processing be-
gins by identifying the regions that are potential objects of
interest: the ball, field markers, teammates or opponents.
Regions that are close to the color of interest, using a Eu-
clidean distance metric and threshold, are labelled accord-
ingly. That is for prototypep: Rp = {Ri| ‖ĉi − cp‖ < τp}.
A region may be labeled as belonging to more than one class
type. For each object of interest, the regions are then based
on objects’ expected geometric properties as in our earlier
work (Lenser, Bruce, & Veloso 2001). Figure 4 shows an
example of the vision processing and its output.

The goal of vision is to provide as many valid estimates of
objects as possible (i.e. a low false-positive rate). Estimates
of the global positions of the obstacles is derived using a
lens distortion model, a pin-hole projective model for the
camera, and knowledge of the robot’s respective tilt angles.
Tracking then fuses this information to track the most inter-
esting objects of relevance to the robot. At the time of writ-
ing our current multi-hypothesis tracker is still under active
development. Ongoing work is focused on developing a true
probabilistic multi-hypothesis tracker (Bar-Shalom 1990).

Robot Control Hierarchy

In our previous work we developed and thoroughly validated
a hierarchical, behavior based control system called Skills-
Tactics-Plays (STP) (Bruceet al. 2003 to appear) for adap-
tive multi-robot control in adversarial, highly dynamic envi-
ronments. The architecture consists of Skills for low-level
control policies, Tactics to encapsulate a complete single
robot behavior, and Plays for team coordination. We have
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Figure 4: The left image shows a raw image in an indoor
scene, the right the resulting regions, with the identified ball
region and yellow marker outlined with a bounding box.

applied the STP control hierarchy to the Segway problem.
Here we focus on skills and tactics that encapsulate single
robot behavior.

Robot Control At the lowest level of the hierarchy are mo-
tion control and obstacle free navigation, key components
to any mobile robot. These modules are adapted ver-
sions of our prior work, (Bruceet al. 2003 to appear)
and (Bruce & Veloso 2002), respectively, and will not be
discussed in detail here. Above motion control are the
skills, the building blocks of individual behavior.

Skills Each skill is a focused control policy for carrying out
complex actions over some limited set of world states. For
Segway soccer an example skill is the action to actually
kick the ball, or to position behind a ball in order to kick
it towards a target.

Tactics A tactic encapsulates a complete single robot be-
havior. An example tactic includes shooting the ball on
goal, receiving the ball from a teammate, or defending
the goal.

Plays A play encapsulates team behavior by encoding a se-
quence of tactics to be carried out by each team mem-
ber (Bowling, Browning, & Veloso 2004 in press). Plays
are beyond the scope of this paper.

Skills are the action primitives for tactics, thus a tac-
tic consists of instantiating a sequence of skills to execute,
in other words a finite state machine, where the sequence
of execution depends upon how the perceived world state
changes. Tactics affect the world by instantiating skills in
sequence to execute and by passing each executing skill pa-
rameters derived from the world state to affect its operation
as it executes. For example to shoot the ball at the goal,
the shoot tactic executes a sequence of skills such as go-
toBall, positionForKick, and when aimed at the target the
final kick skill. Finally, following the usual behavior based
approach (Arkin 1998), tactics and skills execute in parallel
at frame rate (30Hz).

With only minor variations all of the tactics employed on
the RMP were developed previously in (Bruceet al. 2003 to
appear). At this high-level of behavior, the tactics evaluate
the world and determine target points for kicking or mov-
ing. As most of the details of each action are contained in
the underlying skills, we have found that the tactics transfer
effectively from one platform to another completely differ-

ent platform but for a very similar task. In contrast, the un-
derlying skills are highly dependent up on the hardware and
do not transition effectively. To avoid the necessity of re-
developing a new skill set, we followed the novel approach
of developing skill acquisition systems for rapidly acquiring
new skills through training by a human operator.

Skill Acquisition and Use
Within the STP framework, skills form the closest inter-
face to the physical robot hardware. Each skill, therefore, is
highly dependent upon the physical properties of the robot
and its environment and plays a major role in determining
overall robot performance. The dependency of skills on
the physical properties of robot and environment mean that
skills rarely transfer well from one environment to the next,
or from one robot platform to another, where deviations are
the norm. When one considers that in practice, developing a
skill requires considerable hand tweaking of control param-
eters, a notoriously error prone and time intensive operation,
it seems apparent that some form of automated skill acqui-
sition is needed.

One interesting approach to skill acquisition is reinforce-
ment learning (e.g. (Bagnellet al. 2003)). Although there
have been significant advancements in reinforcement learn-
ing, there are still a number of issues that must be address in
order to learn effective robot control whereit could be used
as a sub-component of an existing control hierarchy. The
primary limitation is that of long training time. Even the
most advanced algorithms still take a considerable amount
of time to achieve even moderate levels of performance.

Approach
We have taken a different approach to skill acquisition,
where skills commands are generated by generalizing from
example trajectories provided by a human operator using
tele-operation. There have been a number of examples
in the literature (e.g. (Schaal & Atkeson 1998; Billard &
Mataric 2001) and (Nicolescu & Mataric 2003)) where tele-
operation or learning from observation has been effectively
used to learn to execute a task thus motivating our approach.
Our particular approach is inspired by two observations.
First, it is usually relatively easy to tele-operate a wheeled
robot, even a dynamically balancing one, through the ap-
proximate sequence of motions required to execute a skill.
Second, skills developed by hand are often a direct, if com-
plex, function mapping from sensory state to output com-
mands. Our key assumption is that the commands given by
the human operator are noisy samples from some fixed, but
unknown function of the world state. The goal of skill ac-
quisition is therefore to provide estimates of this function for
world states experienced by the robot based on the provided
samples.

There are numerous function approximation techniques
that are available. However, we have focused our investi-
gations on locally weighted regression (LWR) (Cleveland &
Loader 1995). LWR provides robust function estimation us-
ing a minimal amount of training data, is able to general-
ize by interpolation across unseen inputs, and is amenable
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to fast, efficient implementations. All of these criteria are
of importance to skill acquisition in the given setting. Ad-
ditionally, LWR has a long, successful history of use in
robot control problems (Atkeson, Moore, & Schaal 1997;
Schaal & Atkeson 1998).

Our approach works in two phases; recording and play-
back. During the recording phase, a human operator guides
the robot through a sequence motions by providing a se-

quence of commanded actionsai =
(
a1

i , a
2
i , ..., a

k
i

)T
. A

special purpose recording tactic stores the sent command
ai, as well as the corresponding relevant world statexi =(
x1

i , ..., x
d
i

)T
for later recall. During playback, the skill uses

these data-points to approximate the actions of the recording
phase. The key assumption is that the recorded actions are
sampled from some unknown function so thatai = f(xi).
During playback the skill approximates this function, using
its samples, using LWR, such that i.e.a(t) = f̂(x(t)) as the
robot moves in the world. Concretely, we have:

a(t) = f̂ (x(t)) =
∑

i K (x(t), xi) · ai∑
i K (x(t), xi)

(1)

whereK(·, ·) is a kernel function, which in practice is a
Gaussian given by:

K (x(t), xi) = e
−(x(t)−xi)

2

2·h2 (2)

Implementation
There are three issues to implementing the LWR function
approximation. The first is to provide for fast function ap-
proximation. Following the usual approach, we store the
xi’s in a Kd-tree for fast nearest neighbor search (Atkeson,
Moore, & Schaal 1997). Additionally, we limit the hori-
zon of the search toHmax = sqrt 2h2

lnKmin
, for some pre-

definedKmin, thereby limiting the extent of the evaluations
of 1. Secondly, one must choose the so-called bandwidth
parameter,h. We chose a global value ofh by hand. An
alternative approach would be to use cross-validation, or a
locally varying bandwidth parameter (Cleveland & Loader
1995). Although there are some arguments for the useful-
ness of the latter, in our current work it proved unnecessary.
Finally, while LWR works well for interpolation, it is well
recognized that it becomes unpredictable for extrapolation
beyond the underlying data set, i.e. outside of the convex
hull formed by thexi’s. For robot control this can cause se-
rious limitations. However, given that skills are by definition
only defined over a sub-set of the state space, saySskill, pro-
vided this set of states is a sub-set of the convex hull formed
by thexi’s no difficulties should occur. This is achieved by
ensuring the skill training data coversSskill. As a secondary
safety measure, should the normalization factor in 1 be too
small the output is set to the null vector and warning notifi-
cations are given.

Experimental Results
All of the work described here has been fully implemented
on the RMP platform. Moreover, all components of the
system are fully integrated allowing execution at the full

frame rate of 30Hz. Video demonstrations of the system in
execution are available athttp://www.cs.cmu.edu/ robosoc-
cer/segway. While many sub-components have been built
upon our previous extensive experiences with robot teams
operating in dynamic environments, it was not possible to
build upon our existing skill libraries developed for other
platforms. The RMP’s unique dynamic balancing means
that short-term motions are distinctly different from a com-
parable differential drive robot. Thus, we have a practical
need for effective skill acquisition and use.

All of the low-level skills operating on the RMP, except
for the most trivial, utilize skill acquisition. However, to
properly evaluate the performance of skill acquisition as de-
scribed here, we made use of our small-size robots (Bruce
et al. 2003 to appear) and high-fidelity simulator Uber-
Sim (Browning & Tryzelaar 2003), where accurate ground
truth information is easily available. The robots were differ-
ential drive robots, but are statically balanced. We trained a
skill using a hand-coded policyπ (x(t)) that drives the robot
towards the ball. A hand coded policy was used instead of
tele-operation in order to get a qualitative evaluation in exe-
cution performance. The skill was acquired using the train-
ing gathered training data and then evaluated on a previously
unseen evaluation point that was inside the convex hull of the
previously training trajectories. We then compared the per-
formance of the acquired skill against the hand coded policy
evaluated from the same location (see table 1).

Training
1. for each training pointxtrain

j

3. Executea(t) = πhc(x(t)) until goal reached
4. Record(x(t), a(t)) for learning

Testing
1. Load data pointsxi, ai

2. for each testing pointxtest
j

3. Executea(t) = f̂(x(t)) until goal reached
4. Recordxacq(t) for evaluation

Evaluation
1. for each testing pointxtest

j

2. Executea(t) = π(x(t)) until goal reached
3. Recordxhc(t) for evaluation

Table 1: The evaluation procedure.

For learning, the state was encoded as the relative lo-
cation of the ball asx(t) = (bx(t), by(t))T . The com-
mands were encoded as the forward and rotational speed,
a(t) = (v, ω)T . The hand coded policy was used from exist-
ing, publicly available algorithms (Bruceet al. 2003 to ap-
pear). Figure 5 shows the comparison between the robot tra-
jectories for the acquired skill (xacq(t)) and the hand coded
policy (xhc(t)) for different starting conditions, with the ball
located at(0, 0). Twelve trajectories distributed over 4 grid
points points with starting angles of 0, -90, and 90 degrees,
were used to train the skill. Even with only a few examples,
the acquired skill is able to show the appropriate operation
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Evaluation Run 1 Run 2 Run 3 Run 4 Run 5

Hand coded 0.63 0.87 0.63 0.87 0.97
Acquired 0.70 0.77 0.60 0.97 1.03

Table 2: Comparison of the run time (in seconds).

with only minor amounts of error. Table 2 shows the differ-
ence in time to reach the goal for 5 of these runs.

Figure 5: A comparison between trajectories from the ac-
quired skill vs. the hand coded policy in simulation.

Summary and Future Work
The Segway RMP and HT present a new and exciting
robotics research platform. Based on this platform we have
devised a new domain called Segway soccer for investigat-
ing human-robot interaction in real-time, adversarial tasks.
We have developed the single robot capabilities to control an
RMP in an outdoor environment. Specifically, we have de-
veloped robust outdoor vision, and extended our prior work
with a skill-tactic-play control hierarchy. Our final contribu-
tion is a skill acquisition system for rapidly developing new
skills through tele-operation.
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