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Abstract

Typically, Markov decision problems (MDPs) assume a sin-
gle action is executed per decision epoch, but in the real world
one may frequently execute certain actions in parallel. This
paper exploresconcurrent MDPs, MDPs which allow mul-
tiple non-conflicting actions to be executed simultaneously,
and presents two new algorithms. Our first approach exploits
two provably sound pruning rules, and thus guarantees so-
lution optimality. Our second technique is a fast, sampling-
based algorithm, which produces close-to-optimal solutions
extremely quickly. Experiments show that our approaches
outperform the existing algorithms producing up to two or-
ders of magnitude speedup.

1. Introduction
Recent progress achieved by planning researchers has
yielded new algorithms that relax, individually, many of the
classical assumptions. However, in order to apply automated
planning to many real-world domains we must eliminate
larger groups of the assumptions in concert. For example,
(Bresinaet al. 2002) notes that optimal control for a NASA
Mars rover requires reasoning about uncertain, concurrent,
durative actions and a mixture of discrete and metric flu-
ents. While today’s planners can handle large problems with
deterministicconcurrent durative actions, and semi-MDPs
provide a clear framework for durative actions in the face
of uncertainty, few researchers have considered concurrent,
uncertain actions — the focus of this paper.

For example, a Mars rover has the goal of gathering data
from different locations with various instruments (color and
infrared cameras, microscopic imager, Mossbauer spectrom-
etersetc.) and transmitting this data back to Earth. Con-
current actions are essential since instruments can be turned
on, warmed up and calibrated while the rover is moving,
using other instruments or transmitting data. Similarly, un-
certainty must be explicitly confronted as the rover’s move-
ment, arm control and other actions cannot be accurately
predicted.

We adopt the framework ofMarkov decision processes
(MDPs) and extend it to allow multiple actions per decision
epoch. In the traditional case of a single action per deci-
sion epoch, state-space heuristic search and dynamic pro-
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gramming have proven quite effective. However, allowing
multiple concurrent actions at a time point will inflict an ex-
ponential blowup on all of these techniques.

In this paper we investigate techniques to counter this
combinatorial explosion. Specifically, we extend the tech-
nique of real-time dynamic programming(RTDP) (Barto,
Bradtke, & Singh 1995; Bonet & Geffner 2003) to handle
concurrency, making the following contributions:

• We empirically illustrate the exponential blowup suffered
by the existing MDP algorithms.

• We describe two pruning strategies (combo-elimination
andcombo-skipping), prove that they preserve complete-
ness, and evaluate their performance.

• We describe a novel technique,combo-sampling, that pro-
duces a speedup of an order of magnitude. Although this
technique sacrifices solution optimality, we show that for
a wide range of problems, combo-sampling produces so-
lutions that are quite close to optimal.

2. Background
Planning problems under probabilistic uncertainty are often
modeled using Markov Decision Processes (MDPs). Differ-
ent research communities have looked at slightly different
formulations of MDPs. These versions typically differ in ob-
jective functions (maximising rewardvs. minimising cost),
horizons (finite, infinite, indefinite) and action representa-
tions (DBN vs. parametrised action schemata). All these
formulations are very similar in nature, and so are the algo-
rithms to solve them. Though, the methods proposed in the
paper are applicable to all the variants of these models, for
clarity of explanation we assume a particular formulation of
an MDP as follows.

Following (Bonet & Geffner 2003), we define aMarkov
decision processas a tuple〈S,A,Pr, C,G, s0, γ〉 in which

• S is a finite set of discrete states.

• A is a finite set of actions. An applicability function,Ap :
S → P(A), denotes the set of actions that can be applied
in a given state (P represents the power set).

• Pr : S × A × S → [0, 1] is the transition function. We
write Pr(s′|s, a) to denote the probability of arriving at
states′ after executing actiona in states.
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State variables : x1, x2, x3, x4, p12

Action Precondition Effect Probability
toggle-x1 ¬p12 x1 ← ¬x1 1
toggle-x2 p12 x2 ← ¬x2 1
toggle-x3 true x3 ← ¬x3 0.9

no change 0.1
toggle-x4 true x4 ← ¬x4 0.9

no change 0.1
toggle-p12 true p12 ← ¬p12 1
Goal : x1 = 1, x2 = 1, x3 = 1, x4 = 1

Figure 1:Probabilistic STRIPS definition of a simple MDP with
potential parallelism

• C : A → <+ is the cost model1.

• G ⊆ S is a set of absorbing goal states.

• s0 is a start state.

• γ ∈ [0, 1] is the discount factor. Ifγ = 1 our problem is
known as thestochastic shortest path problem.

We assume full observability, and we seek to find an opti-
mal, stationary policy —i.e., a functionπ: S →A that min-
imises the expected discounted cost (over an infinite hori-
zon) incurred to reach a goal state. Note that anyvalue
function, J : S → <, mapping states to the expected cost
of reaching a goal state defines a policy as follows:

πJ(s) = argmin
a∈Ap(s)

{
C(a) + γ

∑
s′∈S

Pr(s′|s, a)J(s′)

}
The optimal policy derives from a value function,J∗,

which satisfies the following pair ofBellman equations.

J∗(s) = 0, if s ∈ G else

J∗(s) = min
a∈Ap(s)

{
C(a) + γ

∑
s′∈S

Pr(s′|s, a)J∗(s′)

}
(1)

For example, Figure 1 defines a simple MDP where four
state variables (x1, . . . , x4) need to be set using toggle ac-
tions. Some of the actions,e.g., toggle-x3 are probabilistic.

Various algorithms have been developed to solve MDPs.
Value iteration is a dynamic programming approach in
which the optimal value function (the solution to equa-
tions 1) is calculated as the limit of a series of approxima-
tions, each considering increasingly long action sequences.
If Jn(s) is the value of states in iterationn, then the value
of states in the next iteration is calculated with a process
called aBellman backupas follows:

Jn+1(s) = min
a∈Ap(s)

{
C(a) + γ

∑
s′∈S

Pr(s′|s, a)Jn(s′)

}
Value iteration terminates when∀s ∈ S, |Jn(s) −

Jn−1(s)| ≤ ε, and this termination is guaranteed forε > 0.
Furthermore, the sequence of{Ji} is guaranteed to converge
to the optimal value function,J∗, regardless of the initial
values. Unfortunately, value iteration tends to be quite slow,
since it explicitly updates every state, and|S| is exponential

1Indeed, all our techniques except Theorem 1 allow costs to be
conditioned on states as well as actions.

in the number of domain features. One optimization restricts
search to the part of state space reachable from the initial
states0. Two algorithms exploiting thisreachability anal-
ysisare LAO* (Hansen & Zilberstein 2001) and our focus:
RTDP (Barto, Bradtke, & Singh 1995).

RTDP, conceptually, is a lazy version of value iteration in
which the states get updated in proportion to the frequency
with which they are visited by the repeated executions of
the greedy policy. Specifically, RTDP is an anytime algo-
rithm that simulates the greedy policy along a single trace
execution, and updates the values of the states it visits using
Bellman backups. An RTDPtrial is a path starting froms0

and ending when a goal is reached or the number of updates
exceeds a threshold. RTDP repeats these trials until con-
vergence. Note that common states are updated frequently,
while RTDP wastes no time on states that are unreachable,
given the current policy. RTDP’s strength is its ability to
quickly produce a relatively good policy; however, complete
convergence (at every state) is slow because less likely (but
potentially important) states get updated infrequently. Fur-
thermore, RTDP is not guaranteed to terminate.Labeled
RTDP fixes these problems with a clever labeling scheme
that focusses attention on states where the value function has
not yet converged (Bonet & Geffner 2003). Labeled RTDP
is guaranteed to terminate, and is guaranteed to converge to
the optimal value function (for states reachable using the op-
timal policy) if the initial value function is admissible.

3. Concurrent Markov Decision Processes
Extending traditional MDPs toconcurrent MDPs, i.e.allow-
ing multiple parallel actions, each of unit duration, requires
several changes. Clearly, certain actions can’t be executed in
parallel; so we adopt the classical planning notion of mutual
exclusion (Blum & Furst 1997) and apply it to afactoredac-
tion representation:probabilistic STRIPS(Boutilier, Dean,
& Hanks 1999). Two actions aremutex(may not be exe-
cuted concurrently) if in any state 1) they have inconsistent
preconditions, 2) they have conflicting effects, or 3) the pre-
condition of one conflicts with the (possibly probabilistic)
effect of the other. Thus, non-mutex actions don’t interact
— the effects of executing the sequencea1; a2 equals those
for a2; a1.

Example: Continuing with Figure 1, toggle-x1, toggle-
x3 and toggle-x4 can execute in parallel but toggle-x1 and
toggle-x2 are mutex as they have conflicting preconditions.
Similarly, toggle-x1 and toggle-p12 are mutex as the effect
of toggle-p12 interferes with the precondition of toggle-x1.

Cost model: An action combination, A, is a set of one or
more actions to be executed in parallel. The cost modelC
is now a function,C : P(A) → <+, i.e. the domain is the
power-setof actions. Note that unless there exists a com-
binationA, such thatC(A) <

∑
a∈A C({a}), the optimal

policy from the single-action MDP would be optimal for the
concurrent case as well. However, we believe that in many
domains most combinations do obey the inequality. Indeed,
the inequality always holds when the cost of a combination
includes bothresourceandtimecomponents. Here, one can
define the cost model to be comprised of two parts:
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• t : Time taken to complete the action.

• r : Amount of resources used for the action.

Assuming additivity, we can think of cost of an action
C(a) = t(a) + r(a), to be sum of its time and resource
usage. Hence, the cost model for a combination of actions
in terms of these components would be defined as:

C({a1, a2, ..., ak}) =
k∑

i=1

r(ai) + max
i=1..k

{t(ai)}

For example, a Mars rover might incur lower cost when it
preheats an instrument while changing locations than if it
executes the actions sequentially, because the makespan is
reduced while the energy consumed does not change.

Applicability Function: The applicability function,
Ap(s), for concurrent MDPs now has rangeP(P(A));
it is redefined in terms of our original definition, now
denotedAp1. Ap(s) = {A ⊆ A|∀a, a′ ∈ A, a, a′ ∈
Ap1(s) ∧ ¬mutex(a, a′)}

Transition Function: Let A = {a1, a2, . . . , ak} be an ac-
tion combination applicable ins. Since the actions don’t in-
teract, the transition function may be calculated as follows:

Pr(s′|s,A) =
∑

. . .
∑

s1,s2,...sk∈S

Pr(s1|s, a1)Pr(s2|s1, a2) . . .Pr(s′|sk, ak)

Bellman equations: Finally, instead of equations (1), the
following set of equations represents the solution to a con-
current MDP:

J∗(s) = 0, if s ∈ G else

J∗(s) = min
A∈Ap(s)

{
C(A) + γ

∑
s′∈S

Pr(s′|s,A)J∗(s′)

}
(2)

These equations are the same as in a traditional MDP, ex-
cept that instead of considering single actions for backup
in a state, we need to consider all applicable action com-
binations. Thus, only this small change must be made to
traditional algorithms (e.g., value iteration, LAO*, Labeled
RTDP). However since the number of action combinations
is exponential in|A|, efficiently solving a concurrent MDP
requires new techniques. Unfortunately, there is no easy
structure to exploit, since an optimal action for a state from
a classical MDP solution may not even appear in the op-
timal action combination for a concurrent MDP. In the
next section, we describe two provably-sound pruning tech-
niques that speed policy construction; then in Section 5, we
present fast sampling methods which generate near-optimal
policies.

4. Pruned RTDP
Recall that during a trial, labeled RTDP performs Bellman
backups in order to calculate the values of applicable ac-
tions (or in our case, action combinations) and then chooses
the best action (combination); we now describe two pruning
techniques that reduce the number of backups to be com-
puted. Also, letQ(s,A) be the expected cost incurred by

executing action combinationA in states and then following
the greedy policy,i.e.

Qn(s,A) = C(A) + γ
∑
s′∈S

Pr(s′|s,A)Jn−1(s′)

A Bellman update can thus be rewritten as:
Jn(s) = min

A∈Ap(s)
Qn(s,A)

Combo Skipping: Since the number of applicable action
combinations can be exponential, we’d like to prune sub-
optimal combinations. The following theorem (proved in
(Mausam & Weld 2004)) imposes a lower bound onQ(s,A)
in terms of the costs and theQ-values of single actions.
Theorem 1 Let A = {a1, a2, . . . , ak} be an action combi-
nation which is applicable in states.
Q(s,A) ≥ γ1−kQ(s, {a1}) + C(A)−

(
k∑

i=1

γi−kC({ai})

)
Corollary 2 Let dJn(s)e be an upper bound ofJn(s). If

dJn(s)e < γ1−kQn(s, {a1})+C(A)−

(
k∑

i=1

γi−kC({ai})

)
then,A cannot be optimal for states in this iteration.

Corollary 2 justifies a pruning rule,combo-skipping, that
preserves optimality in any iteration algorithm that main-
tains value function monotonicity. This is powerful because
all Bellman-backup based algorithms preserve monotonic-
ity when started with an admissible value function. To ap-
ply combo-skipping, one must compute all theQ(s, {a})
values for single actionsa that are applicable ins; it is
useful to precompute the summation of discounted costs,

i.e.
(∑k

i=1 γi−kC({ai})
)

, for all possible combinations. In

the undiscounted case, this computation reduces to the sim-
ple sum of costs. To calculatedJn(s)e one may use the op-
timal combination for states in the previous iteration (Aopt)
and computeQn(s,Aopt). This value gives an upper bound
on the valueJn(s).

Theorem 1 and Corollary 2 are valid for any ordering
of ai’s. But in order to skip the most combinations, we
must maximise the right-hand side. In practice, the follow-
ing heuristic suffices: choosea1 to be theai with maximal
Q(s, ai) and order other actions in order of increasing cost.

Example: In Figure 1, letγ=1. Let a single action incur
unit cost, and let the cost of an action combination be:C(A)
= 0.5+ 0.5|A|. Let states = (1,1,0,0,1) represent the ordered
valuesx1 = 1,x2 = 1,x3 = 0,x4 = 0, andp12 = 1. Suppose,
after thenth iteration, the value function assigns the val-
ues:Jn(s) = 1, Jn(s1=(1,0,0,0,1)) = 2, Jn(s2=(1,1,1,0,1))
= 1,Jn(s3=(1,1,0,1,1)) = 1. LetAopt for states be {toggle-
x3, toggle-x4}. Now, Qn+1(s, {toggle-x2}) = C(toggle-x2)
+ Jn(s1) = 3 andQn+1(s,Aopt) = C(Aopt) + 0.81×0 +
0.09×Jn(s2) + 0.09×Jn(s3) + 0.01×Jn(s) = 1.69. So now
we can apply Corollary 2 to skip combination {toggle-x2,
toggle-x3} in this iteration, since using toggle-x2 asa1, we
havedJn+1(s)e = Qn+1(s,Aopt) = 1.69≤ 3 + 1.5 - 2 = 2.5.

Experiments in Section 6 show that combo-skipping
yields considerable savings. Unfortunately, combo-skipping
has a weakness — it prunes a combination for only asingle
iteration. In contrast, our second rule,combo-elimination,
prunes irrelevant combinations altogether.
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Combo Elimination: We adapt the action elimination the-
orem from traditional MDPs (Bertsekas 1995) to prove a
similar theorem for concurrent MDPs.

Theorem 3 Let A be an action combination which is ap-
plicable in states. Let bQ∗(s,A)c denote a lower bound
of Q∗(s,A). If bQ∗(s,A)c > dJ∗(s)e thenA is never the
optimal combination for states.

In order to apply the theorem for pruning, one must be
able to evaluate the upper and lower bounds. By using an
admissible value function when starting RTDP search (or
in value iteration, LAO*etc.), the current valueJn(s) is
guaranteed to be a lower bound of the optimal cost; thus,
Qn(s,A) will also be a lower bound ofQ∗(s,A). To calcu-
late an upper bound of the optimalJ∗(s), one may solve the
MDP (e.g., using labeled RTDP) while forbidding concur-
rency. This is much faster than solving the concurrent MDP,
and yields an upper bound on cost, because forbidding con-
currency restricts the policy to use a strict subset of legal
action combinations.

Example: Continuing with the previous example, let
A={toggle-x2} then Qn+1(s,A) = C(A) + Jn(s1) = 3 and
dJ∗(s)e = 2.222 (from solving MDP forbidding concur-
rency). As 3 > 2.222,A can be eliminated for states in
all remaining iterations.

Used in this fashion, combo-elimination requires the addi-
tional overhead of optimally solving the single-action MDP.
Since algorithms like RTDP exploit state-space reachability
to limit computation to relevant states, we do this compu-
tation incrementally, as new states are visited by our algo-
rithm.

Combo-elimination also requires computing the current
value ofQ(s,A) (for the lower bound ofQ∗(s,A)); this dif-
fers from combo-skipping which avoids this computation.
However, once combo-elimination prunes a combination,
it never needs to be reconsidered. Thus, there is a trade-
off: should one perform an expensive computation, hoping
for long-term pruning, or try a cheaper pruning rule with
fewer benefits? SinceQ-value computation is the costly
step, we adopt the following heuristic: “First, try combo-
skipping; if it fails to prune the combination, attempt combo-
elimination”. We also tried some other heuristics, such as:
1) If some combination is being skipped repeatedly, then try
to prune it altogether with combo-elimination. 2) In every
state, try combo-elimination with probabilityp. Space pre-
cludes presenting our experimental results, but neither alter-
native performed significantly better, so we kept our original
(lower overhead) heuristic.

Since combo-skipping does not change any step of la-
beled RTDP and combo-elimination removes provably sub-
optimal combinations,prunedlabeled RTDP maintains con-
vergence, termination, optimality and efficiency, when used
with an admissible heuristic.

5. Sampled RTDP
Since the fundamental challenge posed by concurrent MDPs
is the explosion of action combinations, sampling is a
promising method to reduce the number of Bellman backups
required per state. We describe a variant of RTDP, called

sampled RTDP, which performs backups on a random set
of action combinations2, choosing from a distribution that
favors “likely combinations.” We generate our distribution
by: 1) using combinations that were previously discovered
to have lowQ-values (recorded bymemoizingthe best com-
binations per state, after each iteration); 2) calculating the
Q-values of all applicable single actions (using current value
function) and then biasing the sampling of combinations to
choose the ones that contain actions with lowQ-values. This
approach effectively manages the exploration / exploitation
tradeoff.

Termination and Optimality: Since the system doesn’t
consider every possible action combination, sampled RTDP
is not guaranteed to choose the best combination to execute
at each state. As a result, even when started with an admis-
sible heuristic, the algorithm may assignJn(s) a cost that is
greater than the optimalJ∗(s) — i.e., theJn(s) values are
no longer admissible. If a better combination is chosen in
a subsequent iteration,Jn+1(s) might be set a lower value
thanJn(s), thus sampled RTDP is notmonotonic. This is
unfortunate, since admissibility and monotonicity are impor-
tant properties required for termination3 and optimality in
labeled RTDP; indeed, sampled RTDP loses these important
theoretical properties. The good news is that it is extremely
useful in practice. In our experiments, sampled RTDP usu-
ally terminates quickly, and returns values that are extremely
close to the optimal.

Improving Solution Quality: We have investigated sev-
eral heuristics in order to improve the quality of the solutions
found by sampled RTDP.

• Heuristic 1: Whenever sampled RTDP asserts conver-
gence of a state, do not immediately label it as con-
verged (which would preclude further exploration (Bonet
& Geffner 2003)); instead first run a complete backup
phase, using all the admissible combinations, to rule out
any easy-to-detect inconsistencies.

• Heuristic 2: Run sampled RTDP to completion, and use
the value function it produces,Js(), as the initial heuristic
estimate,J0(), for a subsequent run of pruned RTDP. Usu-
ally, such a heuristic, though inadmissible, is highly infor-
mative. Hence, pruned RTDP terminates quite quickly.

• Heuristic 3: Run sampled RTDP before pruned RTDP, as
in Heuristic 2, except instead of using theJs() value func-
tion directly as an initial estimate, scale linearly down-
ward — i.e., useJ0() := cJs() for some constantc ∈
(0, 1). Hopefully, the estimate will be admissible (though
there is no guarantee). In our experience,c = 0.9 suffices,
and the run of pruned RTDP yields the optimal policy very
quickly.

2A similar action sampling approach was also used in (Zhang
& Dietterich 1995) in the context of space shuttle scheduling to
reduce the number of actions for value function computation.

3To ensure termination we implemented the policy:if number
of trials exceeds a threshold, force monotonicity on value function.
This will achieve termination but will reduce quality of solution.
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Figure 3:(a,b,c): Sampled vs Pruned RTDP for Rover, Factory and Artificial domains respectively. Random sampling of action combinations
yields dramatic improvements in running times.

Experiments showed that Heuristic 1 returns a value func-
tion that is close to optimal. Adding Heuristic 2 improves
this value moderately, and Heuristic 3 invariably returns the
optimal solution.

6. Experiments
We tested our algorithms on problems in three domains. The
first domain was a probabilistic variant of NASA Rover do-
main from the 2002 AIPS Planning Competition, in which
there are multiple objects to be photographed and various
rocks to be tested with resulting data communicated back
to the base station. Cameras need to be focussed, and arms
need to be positioned before usage. Since the rover has mul-
tiple arms and multiple cameras, the domain is highly paral-
lel. The cost function includes both resource and time com-
ponents, so executing multiple actions in parallel is cheaper
than executing them sequentially4. We generated problems
with 20-30 state variables having up to 81,000 reachable
states and average number of applicable combinations per
state (Avg(Ap(s))) up to 2735.

We also tested on a probabilistic version of a factory do-
main with multiple subtasks (e.g., roll, shape, paint, polish
etc.), which need to be performed on different objects us-
ing different machines. Machines can perform in parallel,
but not all are capable of every task. We tested on prob-
lems with 26-28 state variables and around 32000 reachable
states.Avg(Ap(s)) ranged between 170 and 2640.

Finally, we tested on an artificial domain similar to Figure

4For details on the domain, refer tohttp://www.cs.
washington.edu/ai/concurrent/NasaRover.pddl

1 but much more complex. In this domain, some Boolean
variables need to be toggled; however, toggling is proba-
bilistic in nature. Moreover, certain pairs of actions have
conflicting preconditions and thus, by varying the number of
mutex actions we may control the domain’s degree of par-
allelism. All the problems in this domain had 19 state vari-
ables and about 32000 reachable states, withAvg(Ap(s))
between 1024 and 12287.

We used Labeled RTDP, as implemented in GPT, as the
base MDP solver. We implemented various algorithms, un-
pruned RTDP (U -RTDP), pruned RTDP using only combo
skipping (Ps-RTDP), pruned RTDP using both combo skip-
ping and combo elimination (Pse-RTDP), sampled RTDP
using Heuristic 1 (S-RTDP) and sampled RTDP using both
Heuristics 1 and 3, with value functions scaled with 0.9. (S3-
RTDP). We tested all of these algorithms on a number of
problem instantiations from our three domains, generated by
varying the number of objects, degrees of parallelism, and
distances to goal.

We observe (Figure 2(a,b)) that pruning significantly
speeds the algorithm. But the comparison ofPse-RTDP
with S-RTDP andS3-RTDP (Figure 3(a,b,c)) shows that
sampling has a dramatic speedup with respect to the pruned
versions. In fact, pure sampling,S-RTDP, converges ex-
tremely quickly, andS3-RTDP is slightly slower. However,
S3-RTDP is still much faster thanPse-RTDP. The compar-
ison of qualities of solutions produced byS-RTDP andS3-
RTDP w.r.t. optimal is shown in Table 1. We observe that
solutions produced byS-RTDP are always nearly optimal.
Since the error ofS-RTDP is small, scaling it by 0.9 makes
it an admissible initial value function for the pruned RTDP;
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Problem J(s0) (S-RTDP) J∗(s0) (Optimal) Error
Rover1 10.7538 10.7535 <0.01%
Rover2 10.7535 10.7535 0
Rover3 11.0016 11.0016 0
Rover4 12.7490 12.7461 0.02%
Rover5 7.3163 7.3163 0
Rover6 10.5063 10.5063 0
Rover7 12.9343 12.9246 0.08%
Art1 4.5137 4.5137 0
Art2 6.3847 6.3847 0
Art3 6.5583 6.5583 0
Fact1 15.0859 15.0338 0.35%
Fact2 14.1414 14.0329 0.77%
Fact3 16.3771 16.3412 0.22%
Fact4 15.8588 15.8588 0
Fact5 9.0314 8.9844 0.56%

Table 1:Quality of solutions produced by Sampled RTDP

indeed, in all experiments,S3-RTDP produced the optimal
solution.

Figure 4(a,b) demonstrates how running times vary with
problem size. We use the product of the number of reachable
states and the average number of applicable action combi-
nations per state as an estimate of the size of the problem
(the number of reachable states in all artificial domains is
the same, hence the x-axis for Figure 4(b) isAvg(Ap(s))).
From these figures, we verify that the number of applicable
combinations plays a major role in the running times of the
concurrent MDP algorithms. In Figure 4(c), we fix all fac-
tors and vary the degree of parallelism. We observe that the
speedups obtained byS-RTDP increase as concurrency in-
creases. This is a very encouraging result, and we can expect
S-RTDP to perform well on large problems involving high
concurrency, even if the other approaches fail.

In Figure 2(c), we present another experiment in which
we vary the number of action combinations sampled in each
backup. While solution quality is inferior when sampling
only a few combinations, it quickly approaches the optimal
on increasing the number of samples. In all other experi-
ments we sample 40 combinations per state.

7. Related Work
(Meuleauet al. 1998) and (Singh & Cohn 1998) deal with
a special type of MDP (called a factorial MDP)5 that can
be represented as a set of smaller weakly coupled MDPs
— the separate MDPs are completely independent except
for some common resource constraints, and the reward and
cost models are purely additive. They describe solutions
in which these sub-MDPs are independently solved and the
sub-policies are merged to create a global policy. Thus, con-
currency of actions of different sub-MDPs is a by-product
of their work. Singh & Cohn present an optimal algo-
rithm (similar to our combo-elimination), whereas Meuleau
et al.’s domain specific heuristics have no such guarantees.

All of the work in Factorial MDPs assumes that a weak
coupling exists and has been identified, but factoring an

5Guestrin, Koller and Parr (2001) have investigated similar rep-
resentations in the context of multiagent planning.

MDP is a hard problem in itself. In contrast, our algorithm
can handle strongly coupled MDPs and does not require any
sub-task decomposition as input.

(Rohanimanesh & Mahadevan 2001) investigate a spe-
cial class of semi-MDPs in which the action space can be
partitioned by (possibly concurrent)Markov options. They
propose an algorithm based on value-iteration, but their fo-
cus is calculating joint termination conditions and rewards
received, rather than speeding policy construction. Hence,
they considerall possible Markov option combinations in a
backup. Although their model supports options with vary-
ing durations, it is restricted in several ways. First, they re-
quire the user to specify all possible options (as well as to
define the effects of actions). Second, they assume differ-
ent constraints on concurrency: i) they omit condition 3 of
our mutex definition (Section 3), hence they are subject to
race conditions, and ii) their definition restricts some well-
defined types of concurrency6 which may preclude finding
optimal solutions, which our methodswould find. Finally,
they only experiment on a single, small problem with 400
states.

NASA researchers have developed techniques for solv-
ing a harder version of the Rover domain (e.g., with un-
certain continuous effects). They propose ajust-in-case
scheduling algorithm, which incrementally adds branches to
a straight-line plan. While their work is more general than
ours, their solution is heuristic and it is unclear how closely
their policies approximate optimality (Bresinaet al. 2002;
Deardenet al. 2003). It would be exciting to combine their
methods with ours, perhaps by using their heuristic to guide
S-RTDP.

Recently, Younes and Simmons (2004) have developed a
generic test and debug approach which converts a continu-
ous time MDP into a deterministic planning problem. The
optimal plan of the deterministic problem is converted back
into a policy which can then be repaired if any failure points
are identified.

Fast generation of parallel plans has also been investi-
gated in (deterministic) classical state space based plan-
ning scenarios. (Edelkamp 2003) presents an anytime algo-
rithm that repeatedly creates sequential plans of increasing
lengths, and schedules the actions in the plan concurrently
using “critical path analysis”. This approach is based on the
observation that any parallel plan to a goal can be serialised
into a valid serial plan to the goal and vice versa. However,
this observation is not true in the probabilistic version of the
problem as a parallel policy may not be serialisable to a se-
rial policy.

AltAlt p builds greedy parallelisations within the state
space heuristic regression search coupled withpushing up
the current actions if they can be parallelised with some
earlier nodes of the search tree (Nigenda & Kambhampati
2003). Unfortunately, its heuristics draw heavily from plan-
ning graph constructions that have not been as effective

6In their model, two options,oa andob, may not be executed
concurrently if there exist actions,a ∈ oa and b ∈ ob, which
have 1) inconsistent preconditions or 2) conflicting effects. This is
overly conservative because the option’spoliciesmight guarantee
thata andb are never executed concurrently.
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Figure 4: (a,b): Comparison of different algorithms with size of the problems for Rover and Artificial domains. As the problem size
increases, the gap between sampled and pruned approaches widens considerably. (c): Relative Speed vs. Concurrency for Artificial domain.

in probabilistic problems. Secondly, as AltAltp performs
greedy action selection, it is not guaranteed to find an op-
timal plan.

8. Conclusions and Future Work
This paper formally defines the concurrent MDP problem
and describes two algorithms to solve them.Pruned RTDP
relies on combo-skipping and combo-elimination; with an
admissible initial value function, it is guaranteed to converge
to an optimal policy and is faster than plain, labeled RTDP
on concurrent MDPs.Sampled RTDPperforms backups
on a random subset of possible action combinations; when
guided by our heuristics, it converges orders of magnitude
faster than other methods and produces optimal or close-to-
optimal solutions. We believe that our sampling techniques
will be extremely effective on very large, concurrent MDP
problems. Moreover, our sampling and pruning techniques
are extremely general and can be applied to other base algo-
rithms like value iteration, LAO*etc.Thus, we believe our
methods will extend easily to solve concurrent MDPs with
rewards, non-absorbing goals, and other formulations.

In the future, we wish to prove error bounds onS-RTDP
and to modify it so that its convergence is formally guar-
anteed. Concurrent reinforcement learning may also benefit
from our sampling techniques. We also hope to extend our
methods to include durative actions, and continuous param-
eters.
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