
Robust and Self-Repairing Formation Control for Swarms of Mobile Agents

Jimming Cheng
Harvard University

jvcheng@post.harvard.edu

Winston Cheng
Harvard University

cheng2@post.harvard.edu

Radhika Nagpal
Harvard University

 rad@eecs.harvard.edu

Abstract
We describe a decentralized algorithm for coordinating a
swarm of identically-programmed mobile agents to spatially
self-aggregate into arbitrary shapes using only local
interactions. Our approach, called SHAPEBUGS, generates a
consensus coordinate system by agents continually
performing local trilaterations, and achieves shape
formation by simultaneously allowing agents to disperse
within the defined 2D shape using a Contained Gas Model.
This approach has several novel features (1) agents can
easily aggregate into arbitrary user-specified shapes, using a
formation process that is independent of the number of
agents (2) the system automatically adapts to influx and
death of agents, as well as accidental displacement. We
show that the consensus coordinate system is robust and
provides reasonable accuracy in the face of significant
sensor and movement error.

Introduction
Biology has shown that complex global behaviors can arise
from simple interactions between large numbers of
relatively unintelligent agents [1]. Swarm approaches to
robotics, involving large numbers of simple robots rather
than a small number of sophisticated robots, has many
advantages with respect to robustness and efficiency. Such
systems can typically absorb many types of failures and
unplanned behavior at the individual agent level, without
sacrificing task completion. At the same time, one can
exploit parallelism and spatially distributed sensing and
action. Emerging technologies are making it possible to
cheaply manufacture small robots with sensors, actuators
and computation [2,3]. This makes swarm intelligence an
attractive solution for many problem domains.
 In this paper, we focus on the problem of organizing
mobile agents into arbitrary self-sustaining 2D formations.
Keeping strategic formations of mobile agents is important
for many tasks, especially when individual agents have
limited abilities or the task requires collective action. For
example, agents may aggregate for coordinated search and
rescue, collectively moving large objects, exploring and
mapping unknown terrain, or maintaining formations for
defense or herding. However, current work on multi-robot
formations achieves only simple shapes or uses complex
negotiations unsuitable for large groups of robots [4].
 We propose a decentralized approach to multi-agent
formation, that can not only achieve arbitrary shapes but is
also robust to varying numbers of agents, agent influx and
death, and practical hardware limitations like sensor and
movement error. Our approach, SHAPEBUGS, achieves
shape formation by generating a consensus coordinate

system through agents performing local trilaterations,
while simultaneously allowing agents to disperse
themselves within the defined 2D shape. Briefly, the
system works as follows: agents initially start in a
“wandering” state, with no information about their
environment (including their own world coordinates), but
with an internal knowledge of the desired shape to be
formed. A small number of agents are temporarily seeded
with initial positions. Agents are equipped with imperfect
proximity sensors and wireless communication with only
nearby neighbors. As agents move, they continually
perform local trilaterations to learn and maintain a
common coordinate system. At the same time, agents
influence each other’s movements according to a new
Contained Gas Model inspired by pheromone robots and
flocking rules [2,5]; this causes them to disperse within the
shape and fill it efficiently.
 This approach has several salient features. Not only can
agents easily aggregate into arbitrary user-specified
shapes, but also the shape formed is independent of the
number of agents. The Contained Gas Model causes agents
to disperse evenly within the shape, and varying the
number of agents simply changes the equilibrium density.
This model is also capable of automatic self-repair; the
system can quickly recover from most patterns of agent
death and can receive an influx of new agents at any
location without blocking problems. We show, through
simulation experiments, that the consensus coordinate
system is robust and remains accurate in the face of
practical limitations such as sensor and movement error.
 The rest of the paper is as follows: we present related
work, followed by a description of our agent model. We
then describe the SHAPEBUGS algorithm in detail. Finally
we present simulation experiments that investigate time
efficiency, robustness to agent error, and self-repair.

Related Work
Algorithms for spatial organization of agents/robots via
local interactions have steadily increased in sophistication.
Several approaches have been proposed that only work for
a small set of simple shapes. Unsal and Bay [4] developed
a model where some agents become beacons, instructing
others to remain at or within a certain distance, enabling
the construction of rings and circles. Mamei et al. [6] have
a similar approach, but use message hop count instead of a
proximity sensor and can form crude polygons.
 Multi-agent algorithms for forming arbitrary shapes
have been designed for other agent models. For example,

AAAI-05 / 59

Kondacs [7] presents an approach to shape formation on
biologically-inspired agents that grow (self-replicate) and
die. They use global-to-local compilation to automatically
generate an agent program for a given shape; this system
can be programmed for a large class of shapes and can
self-repair. Stoy and Nagpal [8] present a related approach
to 3D self-assembly on a simulated self-reconfigurable
modular robot, where individual modules are mobile but
must remain connected. While this system generates a
wide variety of shapes, it cannot create solid shapes
because agents may block each other and create internal
holes that no wandering agents can reach. To avoid this,
the system focuses on scaffolds and porous shapes only.
Solid structures also make self-repair difficult because
agent death deep within the shape is hard to get to.
 Gordan et al. [9] address arbitrary shape formation with
mobile agents by setting up a shared coordinate system and
then distributing agents. However, their procedure moves
in stages and involves significant centralization, so it is
hard to adapt to failures during the formation process.
 Our system also achieves arbitrary shapes by forming a
decentralized coordinate system. However, instead of
agents taking fixed positions in the shape, we use an
adapted form of a dispersion algorithm proposed by
Payton et al. [2]. We show that local dispersion rules can
be effectively combined with shape formation, allowing
the system to self-adjust to agent density, avoid blocking,
and self-repair by automatically collapsing internal holes.
Spears et al [10] use similar dispersion rules based on
natural physics to achieve surveillance and perimeter
defense, but they do not attempt organized shapes.

Mobile Agent Model
We assume a particular agent model that is motivated by
capabilities of real autonomous robots (Fig. 1). We assume
that agents move in 2D continuous space, all agents
execute the same program, and agents interact only with
other nearby agents by measuring distance and exchanging
messages. We also assume that agents have a perfect
compass, but that both distance measurements and
movement have error. Currently, we simplify the handling
of agent trajectories in simulations, by assuming that the
world is finite and an agent that wanders off one side will
reappear on the other side (wrap around space). For future
work, agents may infer orientation using multiple
trilaterations instead of depending on a compass.

SHAPEBUGS Algorithm
In the SHAPEBUGS algorithm, each agent has a map of
the shape to be constructed that is later overlaid on the
agent’s learned coordinate system. Initially, agents are
scattered randomly in the world in a lost state, oblivious of
their own positions. When turned on, each agent begins to

Proximity
Sensor

Gives estimated real distance of each neighbor
within range with uniformly distributed
measurement error.

Compass Gives perfect directional orientation
Wireless
Connection

Allows agent to query the perceived coordinates of
neighbors within range.

Locomotion Moves agent in discrete predetermined step sizes on
the real world. Movement has error, so actual
distance traveled may vary.

Shape Map Map of the destination shape to overlay on
perceived coordinate system.

Program Trilateration and movement processes.
Figure 1: Agent Model

execute its program using only data from its proximity
sensor and its wireless link with nearby neighbors.
 The agent program can be broken down into two
processes that run continuously and concurrently. In the
first process, an agent adjusts its perceived coordinate
system so that it coincides with other agents’ perceived
coordinate systems. This is achieved by trilateration using
proximity sensor data. The second process controls agent
movement. If an agent believes it is inside the shape, then
it behaves like a gas particle with the shape as an closed
container. Otherwise, the agent wanders randomly.

Process 1: Local Trilateration Process
The trilateration process allows an agent to find its
perceived position (xp, yp) on the consensus coordinate
system for the first time and subsequently adjust it.
Trilateration can only occur if there are at least three
neighbors that are not themselves lost. An agent uses its
proximity sensor to estimate distance dPS

i to each neighbor
NBi, and also queries NBi’s own perceived coordinates (xi,
yi) with its wireless connection. The best fit for (xp, yp)
minimizes over all neighbors the difference between dPS

i
and the calculated distance from (xp, yp) to neighbor’s
reported coordinates (xi, yi):

 ∑ −−+−
ipp NB

i
PS

pipi
yx

dyyxx 22

),(
)()(minarg

With this information, the agent can calculate its own
position using a standard gradient descent algorithm:

1. Start with some initial position (x(i), y(i)), i = 0.
2. Find gradient ∇ at current position (x(i), y(i)).
3. Move away from the gradient with a step size β

),(),(),()()()()()1()1(iiiiii yxyxyx ∇−=++ β
4. Repeat 2 and 3 until a local minimum is reached.

The success of the gradient descent algorithm depends
largely on the initial starting position. If an agent has
calculated its position recently, (xp, yp) is used as the
starting point. If the agent is lost, then (xp, yp) is undefined
and a good starting candidate can be found using the
following procedure. First, pick three random neighbors
NBp, NBq and NBr, and draw circles P, Q and R of radius
dp, dq and dr around their centers. Each pair of circles will
most likely intersect at two points—one close to the correct
position and the other extraneous. The approximately

AAAI-05 / 60

correct circle intersection points among all neighbors are
clustered tightly while extraneous points are scattered. Any
of the clustered points would be a good starting candidate.
Let PQA and PQB be the two intersection points between
circles P and Q. To decide which one is in the cluster (non-
extraneous), we draw line L1 through PQA and PQB and L2
through PRA and PRB. Because one of the points on L1 is
clustered with one of the points on L2, the intersection of
L1 and L2 will be closer to either PQA or PQB, whichever is
the better approximation. This serves as the starting point.
Sources of Error: Positioning is approximate and may
have error for several reasons. First, even with perfect
sensors, the gradient descent algorithm may settle at local
minima. Second, distances measured by proximity sensors
may have error. Third, coordinates reported by neighbors
may be inaccurate. Thus, it is important to take the mean of
several trilaterations instead of relying on a single
trilateration for each coordinate adjustment decision. In
addition, imperfect control can limit an agent’s ability to
track its actual movement; an agent that thinks it moved
distance d in some direction may actually move d±∆. As a
result, perceived coordinates accumulate error over time
even if no further trilaterations are performed. Thus, it is
important to readjust coordinates at regular intervals.
Sensor and movement tracking error are common in real
hardware, so it is important to account for their effects.
 We address these issues by implementing averaged and
repeated trilateration as follows. Each agent calculates new
trilaterated coordinates at every time step. A window of the
last w trilaterations is always kept in memory. Every r
steps, the agent updates its perceived coordinates by
averaging over the last w trilaterations. The effects of
averaged and repeated trilaterations can be studied by
varying w (number of previous trilaterations considered)
and r (interval between coordinate adjustments).

Process 2: Movement Rules
Agents follow different movement patterns depending on
whether they think they are inside or outside the shape. If
an agent is lost, it assumes it is outside the shape. Agents
that think they are outside the shape hope to find their way
into the shape. Our agents simply walk continuously in a
random semi-straight path. In our finite, wrapping world,
this allows agents to find the shape with high probability1.
 Agents who think they are inside the shape have a more
complex objective, since they are part of the intelligent
swarm that comprises it. First, these agents should not take
any steps that will put them outside of the shape. This
helps keep the shape intact once formed. Second, the
swarm should be capable of executing desired tasks such
as self-repair and graceful absorption of new agents.
 The SHAPEBUGS algorithm achieves these goals by
modeling agents in the shape as gas particles in a closed
container. Agents react to different densities of neighbors
around them, moving away from areas of high density

1 In the future, a new class of recruiting agents can scout for lost agents,
and non-lost agents can be programmed to navigate towards the shape.

Figure 2: Pheromone

robot’s influence zones

Figure 3: SHAPEBUG’s
influence zones

towards low density. Over time, they settle into an
equilibrium of constant pressure throughout the shape.
 When agents die, surrounding agents quickly flood the
resulting area of low pressure until equilibrium is restored.
Thus, the swarm can respond to any loss as long as there
are enough agents left to generate a sensible equilibrium
pressure. If new agents are injected into the swarm at any
point, the resulting area of high pressure will quickly
dissipate. Therefore, many agents entering the swarm at a
single location will not be a barrier to subsequent agents.
 This behavior is inspired by Payton et al.’s Gas
Expansion Model [2], but is also similar in nature to the
flocking rules proposed by Reynolds [5]. While the Payton
model (Fig. 2) strives for maximal dispersal to an optimum
agent density, our movement model has two goals: 1)
Equalize pressure at any agent density. 2) Superimpose the
notion of a container.
 The first goal is achieved by giving each agent a varying
repulsive force that has a maximum value adjacent to the
agent and decays at a constant rate until it reaches a neutral
zone (Fig. 3).. The agent’s movement vector, calculated at
every time step, is the sum of the vectors away from
repulsing neighbors, weighted inversely by distance. This
allows agents to disperse evenly at any density. Let R be
the repulsive radius and dPS

i be the distance measured by
the proximity sensor. Given the agent’s own perceived
position vr = (xp, yp), and the perceived position ivr of each
neighbor i, the movement vector mr is given by:

∑ −
−

=
i

PS
iPS

i

i dR
d

vvm)(
rr

r

 The second goal is achieved by superimposing a
container on the agents’ coordinate systems. Agent
movement is restricted to only steps that keep them inside
the container. If the calculated movement vector would
take an agent outside the shape, it is discarded in exchange
for a either staying still or making a random movement
within the shape with some small probability. This keeps
agents on borders from getting stuck.

Evaluation and Results
We show through simulation that SHAPEBUGS can form
arbitrary shapes while automatically compensating for
various sources of error and agent influx and death. We
implemented SHAPEBUGS in Java, using the Swarm
Development Group’s multi-agent simulator to run tests
[11]. Shape Maps are represented as 1-bit bitmap images.
When a Shape Map is overlaid on the 2D continuous

repulsive

neutral neutral

repulsive

attractive

AAAI-05 / 61

a) “X”, 300 agents b) Barbell, 180 agents c) Barbell, 450 agents

Figure 4: a) Formation of the letter X by 300 agents. b) and c)
demonstrate shape formation under varying agent densities.

0%

25%

50%

75%

100%

0 100 200 300 400
time steps

%
 a

ge
nt

s i
n

sh
ap

e

100 agents 150 200 250 300

Figure 5: Rate of shape formation for different agent densities.

agent world, each pixel corresponds to a unit square area.
In all cases, exactly 12 agents clustered in a common 5x5
area are seeded with compatible initial positions to trigger
the initial round of trilaterations. Proximity sensors have a
range of 5.0 units. Agents move in discrete steps of 2.0
units, but error can cause actual step size to vary.
 Figure 4 shows several examples of formations by
mobile agents, and also shows that the same shape can be
maintained at different densities with no modification of
agent behavior. The Contained Gas rules cause agents to
always disperse evenly at any density.
 The stabilized shapes took about 300 time steps to
complete, depending on agent density. Figure 5 shows the
percentage over time of agents who have coordinates and
are in the shape while forming a 50x50 square in a 80x80
world. Rate of shape formation increases as the number of
agents increases from 100-300. With higher agent density,
there are more interactions, so coordinate systems
propagate faster and time to stabilization is reduced.

Coordinate System Accuracy and Robustness
We measure quantitatively the overall level of agreement
among all agents on a similar coordinate system. To do
this, we calculate the variance of the consensus coordinate
system, by first computing the mean global coordinate
system over all agents (i.e. average location of the origin)
and then computing the variance of the distance between
each agent’s local coordinate system and the mean
coordinate system. Lower variance signals more agreement
between different agents’ coordinate systems.
 In addition, we test how the distributed model is affected
by practical hardware limitations, in particular proximity
sensor errors and movement error. Proximity

0.1

1

10

0 200 400 600 800
time steps

va
ria

nc
e

No error +/-40% +/-80% +/-120%

Figure 6: Coordinate variances degrade gracefully with
increasing proximity sensor errors (note: log y axis).

0.1

1

10

0 200 400 600 800
time steps

va
ria

nc
e

No error +/-10% +/-20% +/-30%

Figure 7: Effect of increasing movement error (log y axis).

sensors are inherently imperfect, and external effects such
as atmospheric disturbances further impair their accuracy.
We simulate sensor error by adding to each sensed
distance dPS a uniformly distributed random error ePS. With
movement error, each step an agent takes may put it
slightly farther or nearer than it thinks. Thus, an agent may
drift from its perceived coordinates over time. We simulate
movement error by adding a uniform random error eMV to
the true distance moved dMV.
 Figures 6 and 7 show coordinate system variances for
different levels of sensor and movement errors. In these
experiments, agents formed a 50x50 square centered in a
80x80 world. For each agent, r = w = 10. In general,
setting r = w was a sensible choice. Trials showed that
setting r > w performed worse. If the window size does not
at least span the entire interval between readjustments,
then updates will not be utilizing all available information.
In particular, r – w out of every r trilaterations will be
wasted. Setting r < w gave empirically similar results to r =
w. Proximity sensor error is expressed as a percentage of
the sensor range. Since the sensor range is 5 units, a sensor
error of ±40% implies that ePS is a random variable on the
interval [-2,2]. Similarly, movement error is a percentage
of the step size.
 For sensor and movement error, coordinate system
variance settles to a stable value after about 400 time steps.
Agents achieved variances under 0.39 units2 for

AAAI-05 / 62

0

0.5

1

1.5

2 7 12 17 22 27
window size = update interval

va
ria

nc
e

Sens error: +/-40% Move error: +/-10%

Figure 8: Variance after the swarm has stabilized. Isolated
sensor error of ±40% vs. isolated movement error of ±10%.

0

1

2

3

15 20 25 30 35
update interval

va
ria

nc
e

Sens error: +/-40% Move error: +/-10%

Figure 9: Large update intervals degrade performance on trials
with movement error but do not affect trials with sensor error.

proximity errors up to ±20%, and under 0.57 units2 for
movement errors of ±10%. Performance degrades
gracefully as the magnitude of error increases for both
sensor and movement error. However, it is also clear that
SHAPEBUGS is more tolerant of sensor error than
movement error. For example, experiments with a sensor
error of ±80% can still reach a variance of less than 0.65
units2, but a movement error of only ±20% results in a
variance of 1.30 units2.
 This suggests a fundamental difference between the way
sensor error and movement error affect coordinate system
agreement. Indeed, figure 8 shows that increasing w and r
causes the stabilized variance to continually decrease when
there is only sensor error. However, with movement error,
stabilized variance reaches a minimum at w = r = 15 and
then increases again. To understand why this pattern
occurs, we note the following: First, both sensor and
movement error are sources of random noise with expected
values of zero at each time step. Thus, increasing w and
averaging across more time steps has the effect of filtering
out this noise. This explains the downward trend for sensor
error and the initial downward trend for movement error.
However, movement error has the added characteristic that
it is cumulative. While sensor error is independent across
time steps, movement error can add up and cause
coordinate drift over time. Thus, as the interval r between
updates increases, the drift worsens, as there are more

steps for it to accumulate. Figure 9 demonstrates this by
holding constant w = 5 and varying r. Movement error
worsens with increasing r while sensor error is unaffected.
This may explain the delayed upward trend in variance for
the movement error experiments. With movement error,
the goal is to set w and r to strike a balance between
minimizing noise and minimizing drift.

Adaptation and Self-Repair
We have shown that SHAPEBUGS can form various
shapes and adapt to sensor/movement error. Here we
describe experiments aimed at testing the ability to recover
from large scale errors such as 1) accidental misplacement
of large numbers of agents and 2) regional death or influx
of agents. We show that the coordinate system can
restabilize and that agents adjust to influx and death
without any explicit detection or monitoring for failures.
 A challenge at the macro level is for an entire group of
misinformed agents to stabilize in relation to the aggregate
entity. For example, if the terrain under an entire group of
agents shifts, those agents will be fragmented from the
aggregate entity but will agree on a common faulty
coordinate system. The aggregate entity should be able to
overcome these regional failures.
 To test this case, we first allowed agents to stabilize into
the aggregate shape. Then, we selected a large region of
agents and uniformly displaced their coordinate systems.
Figure 10 shows experiments on a swarm that has formed
into a grid pattern. Agents in the lower right corner had
their perceived coordinates shifted 15 units down and to
the right, and the swarm was allowed to reconverge. In
figure 10b the displaced agents start to form another grid at
the shifted coordinates, but as they interact with their
neighbors from the original grid, they correct the error, and
revert to the original shape (Fig. 10c).
 Figure 11 illustrates a more extreme example where the
shifted agents become completely detached from the
original shape. Here, agents in the right half of a 90x15
rectangular bar experience a 50 unit downward (y-axis)
shift in their perceived coordinates. This causes the
variance of the agents’ perceptions of their coordinate
system to rise sharply as the displaced agents start forming
a new complete shape above the original (t=530).
However, as agents randomly break free from one shape
and run across to mingle with the other, the two distinct
coordinate systems slowly drift towards each other.
Variance decreases slowly at first, but drops quickly
around step 1750 when the two shapes finally meet. Here,
the agents are able to interact much more freely, so
reconvergence accelerates during these final steps.
 Figure 12 demonstrates the repair feature. Spaces
opened up by agent death are quickly filled by neighboring
agents. We removed the agents outlined in the square in
figure 12a, and the gap was quickly repaired. The
efficiency of repair varies with the type of shape. For
instance, repair is slow if the shape has a bottleneck. When
the right half of the barbell in Figure 12 dies, repair

AAAI-05 / 63

a) t=600 b) t=620 c) t=750

Figure 10: Recovery from distorting a region of the shape.

t=500, v=1150 t=530, v=594 t=750, v=437

t=1550, v=229 t=1750, v=75 t=2100, v=0.97

Figure 11: Reconvergence of a horizontal bar (v = variance)

a) t=400 b) t=410 c) t=440

Figure 12: Repairing a region after agent deaths

neighborhood=5 neighborhood=8

Figure 13: Lattice formation for different neighborhood sizes

takes about 250 steps. By contrast, repair only takes 80
steps for similar death in a square shape with the same
area. Also, formation and repair will not finish if agent
density is so low that agents can space themselves evenly
to the limit of their communication range. In this range, the
Contained Gas laws no longer push the agents. The agents
settle into a static, lattice-like formation (Fig. 13).

Conclusion
This work shows an effective strategy for construction and
preservation of a complex aggregate entity using large
numbers of simple decentralized agents. By composing
two processes, 1) trilateration and 2) Contained Gas
movement, agents can self-organize into arbitrary user-

specified shapes. The resulting structure can self-repair
and restabilize in cases of agent death and displacement,
and can overcome large degrees of sensor and movement
error. In addition, the ability to operate in spite of common
hardware limitations make SHAPEBUGS a model that
could be feasibly implemented with real robots.
 SHAPEBUGS can be further improved by addressing
certain aspects such as imperfect orientation control and
active recruiting of agents instead of random wandering. In
addition, our goal is to extend SHAPEBUGS to allow the
swarm to move in formation. We believe that the
Contained Gas Model will allow us to achieve goal-
directed movement in a way that allows the system to
move around obstacles yet retain (repair) swarm shape.

References
[1] S. Camazine, J. Deneubourg, N. Franks, J. Sneyd, G.

Theraulaz, E. Bonabeau. Self-organization in
Biological Systems, Princeton University Press, 2002.

[2] D. Payton, M. Daily, R. Estkowski, M. Howard, C.
Lee. Pheromone Robots. Autonomous Robots, 11, 3:
319-324, 2001.

[3] F. Mondada, A. Guignard, M. Bonani, D. Floreano,
M. Lauria, SWARM-BOT: From Concept to
Implementation, IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2003.

[4] C. Unsal, J. Bay. Spatial Self-organization in Large
Populations of Mobile Robots. International
Symposium on Intelligent Control, August, 1994.

[5] C. Reynolds. Flocks, Herds, and Schools: A
Distributed Behavioral Model, SIGGRAPH, 1987.

[6] M. Mamei, M. Vasirani, F. Zambonelli. Experiments
in Morphogenesis in Swarms of Simple Mobile
Robots. Applied Artificial Intelligence, 18, 9-10: 903-
919, 2004.

[7] A. Kondacs. Biologically-inspired Self-assembly of
2D Shapes, Using Global-to-local Compilation.
International Joint Conference on Artificial
Intelligence, 2003.

[8] K. Stoy, R. Nagpal. Self-reconfiguration Using
Directed Growth. International Symposium on
Distributed Autonomous Robot Systems, June, 2004.

[9] N. Gordon, I. Wagner, A. Brucks. Discrete Bee Dance
Algorithms for Pattern Formation on a Grid.
International Conference on Intelligent Agent
Technology, 545, 2003.

[10] W. Spears, D. Spears, J. Hamann, R. Heil. Distributed,
Physics-Based Control of Swarms of Vehicles.
Autonomous Robots 17, 137-162, 2004

[11] Swarm Development Group: http://www.swarm.org

AAAI-05 / 64

