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Abstract

The problem of maintaining a desired number of mobile
agents on a network is not trivial, especially if what is re-
quired is a completely decentralized solution. Decentralized
control makes a system more robust and less susceptible to
partial failures. The problem of agent population manage-
ment is exacerbated on wireless ad hoc networks where host
mobility can result in significant changes in the network size
and topology. System stability is also of critical importance.
This paper analyzes the stability of a previously proposed
ecology-inspired approach to agent population management,
and proposes improvements. The stability of the new ecology
based strategy is proved theoretically, and the conclusions are
verified with a set of experiments.

Introduction
The problem of balancing supply and demand on multi-
agent systems (MAS) is not new, and is becoming more pre-
velent as MAS and mobile ad hoc networks (MANET) be-
come more popular. One specific type of supply-demand
relationship is the demand for jobs of a certain kind and
the supply of agents to complete those jobs. Satisfying
this balance is critical to system performance and stabil-
ity, since an insufficient number of agents forces jobs to ac-
cumulate over time, preventing the system from benefiting
from the parallel nature of the networked MAS. On the other
hand an excessive number of agents slow the system down
with unnecessary processing and communications overhead.
This problem is amplified if the agent system is running
over a MANET, since such networks may be composed of
lightweight devices that are restricted in terms of processing
power, memory, available bandwidth and battery power.

Previously, attempts to solve this problem used auction-
ing, voting, cooperative negotiation (Conryet al. 2004)
and distributed constraints satisfaction (Mailler & Lesser
2004). Because dynamics of MANETs make centralized ap-
proaches impossible, we present an analysis of an ecology
based approach that does not require centralization. There
are two major approaches to simulating an ecosystem (Flake
1998). One is a species-based view of the system, where
large classes of individuals interact in the simulation (e.g.,
modeling the dynamics of species interaction rather than the
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interaction of individuals). The second approach is a bot-
tom up construction of an ecological simulator, focusing on
simulating individuals and their interactions. What is often
missing in current research is the correlation between these
two levels. Connecting these levels allows us to:

• Predict the system behavior on the global level;
• Deduce the set of local interactions leading to desired

global behavior; and
• Analyze the stability of global behavior based on the sta-

bility of local interactions.

In this respect, this paper focuses onspecies-basedanalysis
of individual-basedsoftware agent systems.

Related Work
Agent System Stability
Service replication. This approach to improving system
robustness looks at replication of agents and/or services on
the MAS network. It was investigated by several researchers
(Gartner 1999; Marinet al. 2002). Most focus on the
methodology of agent/service replication. This paper pro-
vides the extended analysis of the agent replication tech-
niques based on an ecological model originally proposed by
Peysakhov: (Peysakhov, M.; Cicirello, V.; Regli, W. 2004).

Probabilistic models. This research assumes some uncer-
tainty in agent behavior or the agent’s environment, and sug-
gests techniques for estimating and improving the state of
the agent-based system. One of the first researchers to an-
alyze probabilistic survivability in an MAS was Kraus in
(Kraus, Subrahmanian, & Tacs 2003). Kraus proposed a
probabilistic model of MAS survivability founded on two
assumptions:

1. The global state of the network is always known.
2. The probabilities of host or link failure are known.

Unfortunately, these assumptions rarely hold in real life
(Leland & Porche 2004). An alternative approach enables
agents to reason about the state of the network and security
of their actions (Peysakhovet al. 2004).

Stability theory. The problem of system stability is by no
means unique to agent systems. Agent based systems are a
subset of a much larger class of discrete event systems. Ra-
madge and Wonham (Ramadge & Wonham 1989) summa-
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rized the control theoretic approach to controlling discrete
event system models.

Ecological Model
The classic technique for analysis of natural predator-prey
systems was proposed by Lotka (Lotka 1925) and Voltera,
who presented a system with a single type of predator and
a single type of prey. The system exhibited non-dampened
oscillations, and would stay in neutral equilibrium (i.e., the
cycle would persist, unless disturbed, but small disruptions
could put it on a cycle arbitrarily close to the original).

Synthetic Ecology
An example of an individual-based approach to ecosys-
tems is a simulated habitat populated with synthetic organ-
isms (Olson & Sequeira 1995). These are often used to study
the evolution and co-evolution of different species and to
test their interactions and emergent behavior. Genetic Algo-
rithms (Goldberg 1989) and Genetic Programming (Kozaet
al. 1999) engines can be used in conjunction with synthetic
ecosystems to allow species to evolve over time. Some of
the most well known examples of this are Evolve 1, 2 and
3 (Rizki, M., Conrad, M. 1985) and “Artorg world” (Assad
& Packard 1992). Note that our paper focuses on solving
the technical problem of agent population management, not
simulating an ecosystem.

Problem Formulation
Motivation
A MANET is a challenging environment for software sys-
tem designers due to its dynamism and unpredictable nature.
Network links can go up and down and nodes can enter and
leave the network depending on a variety of physical factors,
such as movement of hosts, terrain, weather, interference, or
available battery power. Agent based systems, with their
runtime flexibility, can adapt to such an environment better
than centralized systems (Sultaniket al. 2003).

If an MAS can be designed to be decentralized and dis-
tributed, it will be more robust than other, centralized, ap-
proaches when confronted with partial failures. This ben-
efit comes at the cost of control—it is much more diffi-
cult to coordinate and control a decentralized MAS. As out-
lined by the DARPA ANTs project1 without centralized con-
trol, designers need to count on emergent behaviors of the
system, which arise from the combination of local interac-
tions among individual agents. This paper concentrates on
an ecology-inspired approach to the agent population man-
agement initially proposed in (Peysakhov, M.; Cicirello, V.;
Regli, W. 2004).

System stability is a central problem for an MAS software
engineer, just as it is in other complex systems. This is espe-
cially true for systems that must perform in noisy, dynamic
environments. The distributed nature of an agent system in-
creases the difficulty of enforcing system stability. Given
the importance of stability theory in other fields, it is used

1http://www.rl.af.mil/div/IFT/IFTB/ants/
ants.html
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Figure 1: The agent’s life cycle (a) and probability of repro-
duction vs food level (b).

here to analyze the stability of the following ecological ap-
proach and make improvements, which are presented in the
improving for stability section.

Previously Suggested Approach
The model proposed by (Peysakhov, M.; Cicirello, V.; Regli,
W. 2004) can be summarized as follows:

1. Jobs are associated with food producing areas.
2. Agents which successfully complete the job collect all of

the associated food points.
3. Agents consume food regularly to stay alive.
4. Agents that exhaust their food supply die.
5. An abundance of food causes new agents to spawn.

An agent first checks the time since it last consumed food,
and subtracts the appropriate amount of food from its food
bank. If there is food on the local host, the agent completes
the job and collects the associated food. Next, if the agent’s
internal food bank is empty, the agent terminates its thread of
execution. If the internal food reserve of an agent is greater
than the value returned by a fuzzy threshold function, the
agent creates a replica of itself, splitting the food stored be-
tween itself and the new agent. In the last step, the agent
migrates to another host, looking for more food, i.e., jobs
to complete. A diagram depicting the agents’ life cycle is
shown in Figure 1(a). The reproduction is random, with a
probability dependent on the current amount of food accu-
mulated by the agent, as shown in Figure 1(b). An agent’s
probability of reproducing is0 if it has less food thanfmin,
is 1 if it has more food thanfmax, and increases linearly as
the amount of food it has increases fromfmin to fmax.

In some cases there is a sequence of migrations that leads
to extinction. To recover from this state, tasks were allowed
to spawn agents whenever an excess of food accumulated.

Formal Model
H denotes the set of food producers, with the production rate
defined by a functionFh(t) for each individual producerh. A
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defines the set of consumers andfa(t) is the predefined con-
sumption function for each consumera. Previously, these
two functions were set to constant rates,Fh(t) = g,∀h∈ H,
and fa(t) = b,∀a∈ A. The third parameterc represents the
probability that on a network of a given topology a random
agent will find some amount of food. This parameter encap-
sulates properties of the graph, speed of agent migration and
several other characteristics of the system and the only pa-
rameter outside of our control. The behavior of the system
can be approximately described with a system of differential
equations, whereA (t) is the number of agents, andF (t) is
the amount of food in the system as functions of time.

dF (t)
dt

= g−bA (t),
dA (t)

dt
= A (t)× (cF (t)−b)

Dividing the second equation by the first one and integrating
both sides results in the implicit equation for the system:

g× lnA (t)−bA (t) =
cF (t)2

2
−bF (t)+K

All the solutions in the feasible region, i.eA (t) >= 0∧
F (t) >= 0 are periodic orbits with critical points at(b

c , g
b).

Figure 2(a) presents the trajectories in(A ,F ) coordi-
nates for four different values of the integration constant.
Note, that one stable solution has no agentsA (t) = 0 and
linearly growing amounts of foodF (t) = e× t +K.

Model Analysis. The only variable of interest in the sys-
tem is the number of agentsA (t), whose value at the critical
point depends only on the ratio of the production rateg to
the consumption rateb, and is independent of the parameter
c that represents the network topology and communication
delays for solutions with one or more agents.

Another important observation is that the system stays on
a given closed trajectory for indefinite amounts of time, un-
less disturbed. An elliptically shaped trajectory in the neigh-
borhood of(b

c , e
b), is implied by the solution:

A (t) = K1cos
√

act+K2sin
√

act

of the following Jacobian matrix:[
Ḟ (t)

˙A (t)

]
=

[
0 −b
ec
b 0

]
×

[
F (t)
A (t)

]

As the number of random samples along that trajectory
goes to infinity, the average number of agents approachesg

b
for the trajectories that are close to the critical point.

lim
n→∞

∑A (t)
n

=
g
b

If perturbed, the system migrates off a new trajectory with
the same critical point(b

c , g
b), unless the number of agents

becomes zero. As the system transitions from one elliptic
orbit to the next, the average number of agents stays atg

b.
It is necessary to mention that this model only approxi-

mates a real system. The key difference is that real system
is discrete, whereas the differential equations used to de-
scribe it are continuous. Another difference is that the vari-
ablec,which encapsulates the properties of the network, is
stochastic in nature. As shown in the Experimental Results
section these discrepancies lead to some minor differences
in predicted and observed system behavior.
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Figure 2: Phase plane analysis for: original ecology based
system (a), self-stabilizing ecology based system (b), and
self-stabilizing system with stable point at 0 agents (c), (d).

Correlation with the Experiments. The model described
above correlates quite well with the set of experiments pre-
viously presented (Peysakhov, M.; Cicirello, V.; Regli, W.
2004). The experiments strongly suggest that the average
number of agents on the network stays constant over long
periods of time. Moreover, this number is largely indepen-
dent of the network topology and communication delays,
and is defined by the food production to consumption ratio.

Limitations. Although the ecology based approach prov-
ably ensures that the average number of agents on the sys-
tem will stay close to the ratiogb, it has limitations. As
Figure 2(a) shows, the system is in a state of neutral equi-
librium. Since the possibility of disruptive events are very
likely on MANETs, the system experiences constant pres-
sure from random disruptions, forcing the system to move
from one limit cycle to another. Similar to Brownian mo-
tion”, these disruptions result in the system moving to cy-
cles farther away from the critical point.The average num-
ber of agents on the system is near the target valueg

b, but
the actual number of agents at a given moment can fluctuate
wildly. Even this property may not hold as the system shifts
to larger, less elliptical cycles.

Improving for Stability.
The need for a self-stabilizing solution is clear, given the
aforementioned theoretical limitations of system stability in
ecologically inspired agent population control models. In
the previous model, food growth was an exponential func-
tion without a ceiling, similar to the growth rate of bacteria
in the presence of unlimited resources. However, this is un-
sustainable, and it is more realistic to cap the amount of food
that each task can accumulate at some valueφh. The food
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growth on a single host is defined by the equation:

dFh(t)
dt

= g× (1− Fh(t)
φh

)

Solving that differential equation yields the formula for
computing the amount of food grown on the host.

Fh(t) = φh +C1×e
− gt

φh

Summarizing over the set of hosts:

dF (t)
dt

= g× (1−F (t)
Φ

)

WhereΦ = ∑h∈H φ is the maximum amount of food that can
be produced by the system onH hosts. This model and the
equations describing agent populations and food consump-
tion can be combined into a system of differential equations.

dF (t)
dt

= g× (1−F (t)
Φ

)−bA (t)

dA (t)
dt

= A (t)× (cF (t)−b)

The intersections of the isoclines produce two critical points
(Φ,0) and(b

c , g
b− g

cΦ ).

Phase-Plot Description. Figure 2 shows several trajecto-
ries for varying initial conditions and values of the parame-
tersg,b,c andΦ. Some of these parameters, such asΦ = ∞,
will result in neutral stability and cyclic behavior of the sys-
tem as shown in 2(a). Sub-figure 2(b) presents a stable so-
lution at the point(b

c , g
b − g

cΦ ) and an unstable solution at
(Φ,0). This solution implies that system will eventually
converge to the point(b

c , g
b − g

cΦ ) from any other feasible
point with non-zero number of agents. Smaller values ofΦ
correspond to a faster convergence to the solution point, and
a greater dependence on the network properties described
by c, relative to large values ofΦ. Figure 2(c) shows the
phase plane with parameters set such that both critical points
are equal, and 2(d) shows the system with a stable solution
(Φ,0) with zero agents. It shows that if the system cannot
produce enough food to maintain a single agent, the agents
die out and the amount of food stabilizes at the maximum.

Stability Analysis Point(Φ,0) represents the equilibrium
of the system without agents present. To analyze this solu-
tion for stability, we compute the Jacobian matrix and find
Eigenvalues at the solution points. The solution is stable if
and only if the real parts of all Eigenvalues are negative. By
performing algebraic analysis one can see that the solution
(Φ,0) is stable whenΦ≤ b

c (as shown in Figure 2(c)) and is
unstable otherwise (Figure 2(b))Performing the same anal-
ysis at the second point, it is easy to show that the solution
(b

c , g
b− g

cΦ ) is stable ifΦ > b
c as shown in the Figure 2(b).

Experimental Results
A series of experiments using a discrete event simulator con-
firmed the above conclusions.The agents behaved as dis-
cussed in the previously suggested approach section and as
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Figure 3: Transition process as given by average (a) and ac-
tual (b) number of agents for networks of 35, 25 and 10 hosts

depicted in Figure 1(a). They reproduced with the fuzzy
threshold given in Figure 1(b). The experiments were lim-
ited to the set of homogeneous agents, but the theoretical
part of this work does not require this limitation. Hosts used
this same fuzzy threshold to spawn new agents.

All of the experiments were performed on a completely
connected network of statically placed hosts. The hosts grew
food at the rate 1 unit per iteration. Each experiment started
with a single agent with an initial food bank of500 units.
The reproduction threshold was set to700±50for hosts and
agents. These values allow for less randomness in the sys-
tem than the ones previously described (Peysakhov, M.; Ci-
cirello, V.; Regli, W. 2004), resulting in more hosts reaching
similar states simultaneously, thus increasing the chances of
oscillatory behaviors. Hosts were not allowed to accumulate
more than 900 food units.

System Behavior Over Time
This section investigates the changes in the number of agents
over time. The consumption rate was set to 5 food units
per iteration for all agents. Each experiment consisted of 15
trials, which consisted of initializing a system and running
90,000 iterations. The number of agents was noted every
10 iterations and averaged across all trials. All experiments
started with a single agent and gradually transitioned to the
target number of agents. This process is shown in Figure 3.
The average, 3(a), as well as actual, 3(b), number of agents
increased rapidly, surpassed the target value, and then started
to decrease, usually converging to the target value after a
single cycle. The number of hosts and agents are shown on
the left and right sides of the chart, respectively. The target
relation is 5 hosts per agent. The horizontal lines show the
target number of agents at any given moment in time.

Steady state description Given some final size perfor-
mance band around the target value, the performance index
describes the percentage of time the system spent inside the
band. Given the target value of 1 agent per 5 hosts and 2 per-
formance bands around it, Table 1 shows the performance
indexes for fully connected networks of different sizes. The
performance index of 94% for±1 band is usually acceptable
for most practical applications.

Dynamic Environments The system was capable of re-
sponding to dynamic changes in the number of hosts. An
experiment was set up similar to the one described above,
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Perf. size
index 10 15 25 35
target 2 3 5 7

target±0 92.3% 69.8% 57.5% 49.2%
target±1 99.4% 99.5% 97.4% 94.4%

Table 1: The performance indexes for networks of different
sizes for±0(i.e., right on target) and±1 performance bands.
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Figure 4: The average (a) and actual (b) number of agents
for networks of changing size

with one exception: the number of hosts was changed from
25 to 15 to 10 and then back to 35 without restarting the
system. Such drastic changes in the number of hosts ap-
proximate the process of islanding and merging in wireless
mobile networks of lightweight devices carried on foot by
police or military units. When the hosts were shut down,
all of the agents on these hosts and traveling to these hosts
were also terminated. When brought back on-line, the hosts
initially lacked food and agents. This change introduced a
high level of disturbance into the system. With respect to
the number of agents, Figure 4 shows the average across 15
runs and the actual number for a single run. The target num-
ber of agents at all times is presented by the bold step line.

The Effect of Demand on Equilibrium
As expected, the linear increase in task demand caused a
linear increase in the number of agents. And, as the system
model predicted, the actual equilibrium point was slightly
lower than the target agents to servers ratio (e.g., with 35
hosts the average number of agents on the system was 6.8
rather than the target of 7). By increasing the maximum
amount of food the host may accumulate, the equilibrium
point could be brought closer to the target value, but at a
price of decreased stability of the system. Figure 5 shows
the linear growth of the average size of the agent population,
the growth of the network, and the standard deviation.

The Effect of Delays on Equilibrium
Out of all the factorsnot explicitly included in the model,
the communication delays had the greatest significance. In-
troducing delays caused the average number of agents to di-
verge from the target, and the actual number of agents to
oscillate within a wider range, reducing the system’s stabil-
ity. Table 2 shows how the performance index was affected
by slower network speeds. All of the connections in the sim-
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Figure 5: The average number of agents (a) and the standard
deviation (b), for networks with link delays of 0%, 50% and
100% of the maximum possible delay (top to bottom)
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Figure 6: The average num. of agents (a) standard deviation
(b), for networks of 35 25 and 10 hosts (top to bottom)

ulator had a delay ranging fromtmin to tmax. A link speed of
p% means that the link delay istmin·p+tmax·(100−p)

100 .
This dependency between performance index and slower

network speeds can also be shown with plots of the average
number of agents and the standard deviation, with regards to
link speed. Figure 6 shows such plots for networks of 35, 25
and 10 nodes. As the links became slower, the average pop-
ulation size declined by as much as 33% from the predicted
equilibrium point. For larger networks, the decline was not
as significant and ranged from 5% to 15%. Standard devia-
tion was also higher, implying higher oscillations in the size
of the agent population.

A Topology’s Effect on Equilibrium
An idealized spectrum of network topologies, from linear
to completely connected, corresponding to people moving
in single-file formation, was used as the underlying topol-
ogy for the experiments. In each subsequent experiment, the
connectivity of the graph increased by one, i.e a connected
linear graph is turned to 2-connected, 3-connected, . . . ,
(n−1)-connected and fully connected graph, Figure 7(a).

As one can see from the resulting plots in Figure 7(b), 7(c)
the average number of agents was largely independent from
the network topology. Other than in linear or almost linear
topologies, there was less than a 2% decrease in the aver-
age number of agents. This trend is insignificant and can
be safely ignored for most practical purposes. Standard de-
viation is also higher for linear and almost linear graphs,
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Net. Perf. Connection Speed
Size Band 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
35 7±0 20.4% 18.3% 21.9% 23.1% 28.2% 29.0% 28.2% 37.7% 35.9% 47.7% 48.4%
35 7±1 55.1% 51.2% 62.2% 62.5% 74.9% 74.9% 74.4% 85.7% 83.7% 93.2% 94.0%
25 5±0 22.3% 23.3% 28.6% 30.2% 37.9% 36.8% 38.1% 46.7% 46.1% 56.5% 56.0%
25 5±1 54.2% 60.8% 73.8% 75.0% 85.0% 84.5% 83.15% 91.0% 92.6% 97.1% 98.1%
10 2±0 3.6% 2.4% 12.5% 7.0% 19.2% 23.2% 18.9% 20.7% 56.0% 94.3% 90.3%
10 2±1 11.0% 10.3% 25.9% 16.8% 39.6% 38.4% 38.1% 30.3% 77.1% 100% 100%

Table 2: Change in performance indexes for networks of different sizes with communication delays.

Linear:

2-connected:

3-connected:

Completely
connected:

...

(a)

0

1

2

3

4

5

6

7

Linear Connected

Av
g.

 A
ge

nt
s

(b)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Linear Connected

St
. D

ev
.

(c)

Figure 7: Graph topologies (a), average num. of agents (b),
standard deviation (c), for networks of 35, 25 and 10 hosts

implying bigger oscillations of the number of agents.

Future Work and Conclusions
We are currently extending this work in several directions: 1.
Create on-line methods for tuning parameters (such as con-
sumption and production rates, and reproduction thresholds)
using machine learning, swarm techniques or genetic algo-
rithms; 2. Expand the model from a plant-herbivore system
to a plant-herbivore-carnivore system. This would allow for
more complicated food chains and more elaborate control
over populations of different types of agents. For example, a
system with information sources, information gatherers, and
information evaluating agents will fit well into this model; 3.
A closer analysis of the stochastic nature of the probability
that an agent will find some amount of food. This investi-
gation would allow for more descriptive model based on a
system of stochastic differential equations.

This paper significantly improves the fidelity of an
ecology-based model for managing agent populations on
MANETs such as the Philadelphia Area Urban Wireless
Network Testbed (PA-UWNT) (Cicirelloet al. 2004), where
ecology-based agents are being developed for a real-world-
environment. The self stabilizing ecological agent popula-
tion will be used used to disseminate information through-
out the PA-UWNT network. The efficient use of the ap-
proach described above is possible because the demand for
such tasks are highly dependent on the current size of the
network. It has been determined through prototyping and
testing that the proposed food growing strategy can lead to
increased stability of the agent population and improve over-
all robustness of the system.

More importantly this paper showed the benefit of apply-
ing techniques from stability theory to the design of MAS.
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