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Abstract

The proliferation of wireless networks has underscored the
need for systems capable of coping with sporadic network
connectivity. The restriction of communication to neighbor-
ing hosts makes determining the global state especially dif-
ficult, if not impractical. This paper addresses the problem
of coordinating the positions of an arbitrary number of ser-
vices, encapsulated by mobile agents, in a dynamic peer-to-
peer network. The agents’ collective goal is to minimize the
distance between hosts and services, even if the topology is
changing constantly. We propose a distributed algorithm to
efficiently calculate the stationary distribution of the network.
This can be used as a hill climbing heuristic for agents to
find near-optimal locations at which to provide services. Fi-
nally, we show that the agent-based hill climbing approach is
temporally-stable relative to the instantaneous optimum.

Introduction
Dynamic, peer-to-peer networks impose numerous con-
straints that render most centralized algorithms inapplica-
ble. Temporal dynamism implies the need for online ap-
proaches, often requiring heuristics and search techniques
from the field of artificial intelligence. The proliferation of
these networks, due to advances in both peer-to-peer and
wireless technology, has created a rich problem space. This
paper focuses on thek-center problem of dynamic, peer-to-
peer networks.

A dynamic peer-to-peer networkis a group of nodes that
may not always be fully-connected, and whose connectivity
may be in constant flux. Amobile ad hoc network(MANET)
is a specific type of dynamic peer-to-peer network in which
nodes may move; the network topology is determined by
the nodes’ spatial interrelationships. In the context of this
paper, a “mobile agent” refers to any program capable of
halting its execution and migrating to anotherhost, at which
the program will continue execution. A “host,” therefore, is
any node on the network capable of receiving and executing
a program.

Given a fixed network topology, it is relatively straight-
forward to approximate solutions to problems such ask-
center, modulus their complexity. However, distributing
topological information throughout these networks is very
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expensive, since communication is restricted to neighbor-
ing nodes (RoyChoudhury, Bandyopadhyay, & Paul 2000).
Even in optimal conditions, at leastn messages are required
to update a network ofn nodes when a change in the topol-
ogy occurs. In highly dynamic networks, such as MANET,
maintaining global state information is infeasible.

Many see a solution to the lack of global state informa-
tion in the paradigm of agency. Specifically, mobile, multi-
agent collectives have been found viable to supplant cen-
tralized and static-network algorithms for routing (Migas,
Buchanan, & McArtney 2003), itinerary optimization (Qi
& Wang 2001), information retrieval (Das, Shuster, & Wu
2003), distributed constraint satisfaction (Mailler & Lesser
2004), service discovery (Ratsimoret al. 2004), and service-
based computing (Kopenaet al. 2005). In the setting of dy-
namic, peer-to-peer networks, services can be encapsulated
by mobile agents. One advantage to this approach is that
services can migrate to portions of the network to optimize
stability and bandwidth usage. For example, to optimize sta-
bility the service might migrate to nodes of high degree (that
are less likely to become disconnected). In order to optimize
bandwidth usage, the service might migrate to a center of the
network topology.

A problem then arises if multiple homogeneous services
coexist on the network: how can the services coordinate
to collectively optimize bandwidth? This is an asymmet-
ric variant of thek-center problem. Thek-center problem
is NP-Hard (Kariv & Hakimi 1979), and it was recently
shown that the weighted, asymmetric variant can be approx-
imated inO(log∗n) time (Gørtz & Wirth 2003). However,
this approximation relies on knowledge of the entire network
graph. Also, temporal network dynamism is not taken into
account.

It is important to note that services need to migrate to
new optimal centers as a result of every topological change.
Even if services are optimally positioned, the bandwidth re-
quired to migrate to the next instantaneous optimum might
outweigh any advantage attained from having an optimal po-
sitioning. For example, consider the sequence of topologi-
cal changes pictured in Figures 1(a)–(c). These topologies
were generated in simulation over a period of 10 simulation
quanta. Even during this brief period of time, the optimal
3-center cover (depicted by the boxed vertices) varied dras-
tically.
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(a) (b) (c)

Figure 1: Three snapshots of a simulated MANET of 20 hosts with varying radio ranges. Snapshots (a), (b), and (c) occur
chronologically, over a 10 second simulated span. Boxed vertices represent the instantaneous optimal 3-center cover. Filled
vertices represent the 3-center cover calculated using the proposed heuristic.

The remainder of this paper proposes a heuristic for ser-
vice placement in the temporal asymmetric weightedk-
center problem. Additionally, all computation is distributed
using a multi-agent system; global state information is not
required. We empirically validate the heuristic by showing
that it is near-optimal. Furthermore, we show the heuristic
is temporally-stable relative to the instantaneous optimum.

Formalization
Definition 1. (Vertex Eccentricity)
The eccentricityof a vertexv is the maximum length of a
shortest path fromv to any other vertex.

Definition 2. (Graph Center)
Given a graphG = 〈V,E〉, the centerof G is the set of
verticesC ⊆ V with minimum eccentricity.

Definition 3. (Covering Radius)
Given a graph,G = 〈V,E〉 and a setS ⊆ V , thecovering
radiusof 〈G, S〉 is the minimum lengthr such that∀v ∈ V
there exists a path of length less than or equal tor from v to
at least ones ∈ S.

Definition 4. (Asymmetric Weightedk-Center Problem)
GivenG = 〈V,E〉, a directed graph with non-negative edge
weights, and positive integersk andr, does there exist a set
S such thatS ⊆ V , |S| = k, and the covering radius of
〈G, S〉 equalsr?

Definition 5. (Stationary Distribution)
Given the transition probabilitiesP (u, v) for a random walk
on a graph (i.e. the probability that the walk will visitv im-
mediately afteru), thestationary distribution, π(v), satisfies

π(v) = lim
i→∞

fP i(v),

wheref : V → R is any initial distribution such that∑
v

f(v) = 1.

Definition 6. (Agent Location)
Given a set of agents,A, and a set of hosts,H, we define
a function,η, mapping an agent to the host on which it is
physically located in a given state:

η : A → H.

Inversely, the functionη−1 maps a host to the set of agents
located on that host.

Problem Statement
Given:

• an agent,a ∈ A;

• the host on whicha is located:h = η(a);

• the set of neighboring hosts,

N = {h′ : (h, h′) ∈ E} ⊆ H;

• the stationary distribution value ofh: π(h);

• the stationary distribution values of eachh′ ∈ N ,

determine the optimal successor hosth′ ∈ N to which to mi-
grate in order to minimize communication cost throughout
the network. “Communication cost” entails

• the cost of other agents’ communication witha;

• the cost of other agents’ communication with services ho-
mogeneous toa;

• and the cost ofa’s migration.

Observations
A graph’s stationary distributionis directly related to the
edge density of the graph and also the visitation frequency
of a random walk (Chung 1994). The stationary distribution
can also be modeled as a Markov process. Given the graph’s
adjacency matrix,M , the probability transition matrix,R,
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and any real number damping factorε ∈ (0, 1), the station-
ary distribution will be the vectorπ equal to the principle
right eigenvector of

(εR + (1− ε)M)T
.

Knowledge of the current global adjacency matrix,M , is
not available on every host in the network. However, we
can approximate the stationary distribution by deploying a
set of random-walking agents on the network. Having the
agents chose successor hosts uniformly will ensure a prob-
ability transition matrix,R, such that(∀i, j : Ri,j = 1).
A hosth can then simply record agent visitation frequency
to determine its stationary distribution valueπ(h). We have
empirically showed that the center of the graph has the fol-
lowing property (Sultanik & Regli 2004):R

C =
{

v ∈ V : π(v) = max
u∈V

π(u)
}

(1)

However, the authors are not aware of any formal proof of
this property. For all intents and purposes, the host with the
highest visitation frequency will be the optimal solution to
the 1-center problem.

It is important to note that stationary distribution val-
ues arenot guaranteed to increase monotonically along the
shortest path from a vertex to a center. Since each host only
knows its own visitation frequency, the non-monotonicity
of the frequencies means that a hill climbing search for the
center may encounter local maxima. However, as we will
show, local maxima are not necessarily bad. In point of ac-
tuality, the following sections empirically reveal that local
maxima in the stationary distribution provide near-optimal
center cover. Furthermore, we show that using the random-
walking agent visitation frequency as a heuristic provides a
temporally-stable cover, relative to optimal.

Approach
The general approach is as follows:

• deploy a set of random-walking agents on the network;

• each host records random-walking agent visitation fre-
quency; and

• each service uses the visitation frequencies as a hill climb-
ing heuristic, stopping at the first maximum found that is
not currently inhabited by another service.

• in the case that another homogeneous service is already
located at the local maximum, perform a self-avoiding
random walk to find a new gradient.

This process is depicted in Figure 2.
The primary advantage of this approach is that it is com-

pletely decentralized; global state information is not re-
quired.

Empirical Validation
Our approach is validated in MATES (Sultanik, Peysakhov,
& Regli 2005), a discrete event simulator. TheCity Section
Mobility Model(Camp, Boleng, & Davies 2002) is used for
host movement, and link connectivity is determined by the
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Figure 2: Random-walking agents,�, determine the station-
ary distribution of the network, which is used as a hill climb-
ing heuristic for service-providing agents. In this example,
services1 migrates toh1 becauseπ(h1) > π(h2).

NUMBER OF SERVICES
1 3 5 7 9

% OF OPTIMAL 70 70 63 55 50
STABILITY 0.2 0.5 0.4 0.2 0.2

Table 1: Analysis of the hill climbing approach: mean statis-
tics from Figures 3 and 4.

Euclidean distances between hosts. A series of 30 runs of
5000 simulation quanta (i.e. seconds) were conducted on
a network of 20 hosts and 20 random-walking agents. For
unique sequence of topology changes in each run, the pro-
posed heuristic is tested in placing 1, 3, 5, 7, and 9 services.
Aggregate data collected from the simulation are presented
in Table 1.

Optimality
The accuracy of the heuristic is validated by comparison
against the instantaneous optimalk-center cover. In the
worst case, every host in the network will need to commu-
nicate with a service at a given point in time. Therefore, the
optimality of a cover is determined by the sum of the dis-
tances of hosts to their closest service. Figure 3 presents
a running average of the percentage of optimality of the
heuristic over a single simulation run.

It is interesting to note that the optimality of the cover
seems to increase in an inverse linear relationship with the
number of services. The highly correlated nature of the op-
timality curves pictured in Figure 3 suggest that network
topology changes play the major role in determining opti-
mality of the heuristic (no matter the number of services).

Temporal Stability
Thetemporal stabilityof a cover is the communication over-
head due to a topological change. For each simulation run,
we compare the temporal stability of the instantaneous opti-
mum against that of the proposed approach. In other words,
we are given an optimal cover,Sopt, the optimal cover af-
ter a topological change,S′opt, the cover calculated using
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Figure 3: Running average (over 100s) of the percentage of an optimal cover when placing 3, 5, 7, and 9 services in a network
of 20 hosts. The higher the percentage, the higher the optimality of the heuristic.

the approach,Sapp, and the cover calculated after the topo-
logical change,S′app. Given the benefit of the doubt, we
calculate the optimal route for each service to take through
the network in order for the new covers to becomeS′opt and
Sappafter the topological change. Figure 4 presents a run-
ning average of the difference in the communication costs
between the optimal cover and the heuristic’s cover. Pos-
itive values indicate that the optimal cover incurred higher
communication overhead than the proposed approach.

Limitations and Future Work
The communication cost of the heuristic could be drastically
improved by employing an intelligent algorithm for dealing
with conflict. In other words, when the number of servers is
high, the contention for local maxima increases drastically.
If a service’s search encounters a local maxima that is al-
ready inhabited, an efficient way to locate a new, unused
gradient is needed. One approach to this problem might be
using an ant-inspired algorithm in which agents leave a re-
pellant pheromone trail along their chosen gradient.

As mentioned above, to the authors knowledge no formal
proof of Equation 1 exists. Analysis of this graph theoretic
property might provide insight into the probability the local
maxima actually being the global optima. Likewise, analysis
might also shed light into how many random-walking agents
are required to provide a sufficiently up-to-date estimate of
a host’s stationary distribution value.

The number of agents required could then be extended as
a quality of service metric for the system. In other words,
one would ideally have a function mapping a desired visi-
tation frequency and stationary distribution accuracy to the
number of random-walking agents required in the network.

The authors also wish to theoretically formulate tight
bounds on the optimality of the heuristic, possibly deter-
mining if it is an approximation of the distributedk-center
problem.

Conclusions
This paper provides a novel approach to service placement
on dynamic, peer-to-peer networks. We have shown that in
highly dynamic networks, in which the topology changes

constantly, maintaining the instantaneous optimal incurs
high communication overhead. Knowing the instantaneous
optimal in the first place requires knowledge of the global
state (including the topology), which is an unreasonable as-
sumption in these networks. The proposed approach is dis-
tributed and does not rely on global state information. Fur-
thermore, it was validated in simulation and shown to be
near-optimal.

Communication overhead is often not considered in dis-
tributed artificial intelligence. This constraint will become
increasingly influential as dynamic peer-to-peer networks
become more and more prevalent. We hope that our research
will further interest in this area, motivating the confluence of
active networking and artificial intelligence.
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