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Abstract 
We propose using domain-independent task decomposition 
techniques for situations in which cases are the sole or the 
main source for domain knowledge. Our work is motivated 
by project planning domains, where hierarchical cases are 
readily available, but neither a planning domain theory nor 
case adaptation knowledge is available. We present DInCaD 
(Domain-Independent System for Case-Based Task 
Decomposition), a system that encompasses case retrieval, 
refinement, and reuse, following from the idea of reusing 
generalized cases to solve new problems. DInCaD consists 
of a case refinement procedure that reduces case over-
generalization, and a similarity criterion that takes 
advantage of the refinement to improve case retrieval 
precision. We will analyze the properties of the system, and 
present an empirical evaluation.  

Introduction 
One of the main motivations for case-based reasoning 
(CBR) is that in many domains, cases (i.e., previous 
problem-solving episodes) are readily available. This is 
one of the crucial reasons for successful applications of 
CBR to help-desk, diagnosis and prediction tasks (Watson 
1997). Despite these successes, a stumbling block for using 
CBR in an even wider range of application domains is the 
difficulty to develop adequate case reuse techniques. Most 
CBR applications deal with analysis tasks such as 
classification. An important reason for this situation is that 
relatively simple domain-independent case reuse 
techniques, such as taking a majority vote of the 
classification from similar cases, have been proven to be 
effective for analysis tasks. In contrast, few deployed CBR 
applications exist for synthesis tasks such as planning. For 
synthesis tasks, domain-independent case adaptation 
techniques exist but require complete planning domain 
theories, which are not available in many domains. An 
alternative is to develop domain-specific case adaptation 
techniques. But developing such techniques is also 
frequently unfeasible because of the large knowledge 
acquisition effort involved. 

In this paper we present DInCaD, a system for domain-
independent task decomposition, designed to deal with 
situations in which cases are the sole or the main source for 
planning domain knowledge. DInCaD encompasses case 
retrieval, refinement, and reuse. It reuses generalized cases 
to solve new problems. DInCaD consists of a case 
refinement procedure that reduces case over-generalization, 
and a case similarity criterion that takes advantage of the 

case refinement to improve retrieval precision. We support 
our claim by an experimental validation of DInCaD. We 
also discuss the properties of the system. 

Motivation 
Our work is motivated by domains in which cases are 
readily available but neither a planning domain theory nor 
case adaptation knowledge is available. An example is 
project planning, which is a business process for 
successfully delivering one-of-a kind products and services 
under real-world time and resource constraints (PMI 1999). 
Project planning covers several domains, including 
research proposal development, public events organization, 
and civil construction management. Several software 
systems for project planning are commercially available. 
These systems provide tools for editing work-breakdown 
structures (WBS), which indicate how complex tasks can 
be decomposed into simple work units.  

Authors have found that there is a one-to-one mapping 
between elements in a WBS and a hierarchical plan 
(Mukkamalla and Muñoz-Avila 2002). Based on this 
mapping, an algorithm has been developed that 
automatically captures hierarchical cases from a 
commercial project planning system.  

Related Work 
Table 1 compares several case-based reasoning systems 
against DInCaD. The comparison explores six features. 
The first two features, DT and CB, indicate if the systems 
require a planning domain theory or a case base, 
respectively. The next two features, DI and DS indicate if 
the case adaptation procedure is domain-independent or if 
domain-specific adaptation rules are required. The last two 
features, ST and AT, indicate if the system performs 
planning tasks or analysis tasks, respectively. 

System DT CB DI DS ST AT 
CHEF  √  √ √  
Prodigy/Analogy √ √ √  √  
SiN √ √ √  √  
Ensemble  √ √   √ 
DInCaD  √ √  √  

Table 1: Comparisons between different systems. Conventions: 
DT=Domain theory; CB=Case Base; DI=Domain Independent; 

DS=Domain Specific; ST=Synthesis Tasks; AT=Analysis Tasks. 
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 CHEF is representative of case-based planning systems 
in which no planning domain theory is required (Hammond 
1986). Instead, these systems use cases to represent domain 
knowledge, and require to encode domain-specific case 
adaptation rules. DInCaD also uses cases to represent 
knowledge, but the case adaptation knowledge is domain-
independent. 

Prodigy/Analogy is representative of case-based 
planning systems that use cases as search control 
knowledge (Veloso 1994). These systems assume that a 
complete domain theory is available, and implement 
domain-independent case adaptation procedures. Paris is 
another example of such systems. It uses taxonomical 
relations and the domain theory to generate and reuse 
abstract cases (Bergmann and Wilke 1995).  
 SiN (Muñoz-Avila et al. 2001) is a case-based planning 
system that requires both a planning domain theory and a 
case base. Cases represent domain knowledge that 
enhances the domain theory. SiN implements a domain-
independent case reuse procedure. DInCaD does not 
require a domain theory. 
 Ensemble classifiers combine votes from individual 
classifiers to classify new problems. This kind of 
adaptation method has been used successfully for 
classification tasks (Dietterich 1997). DInCaD performs 
synthesis tasks (i.e., task decompositions). 
 To our knowledge, DInCaD is the first case-based 
reasoning system that can perform task decompositions 
(i.e., synthesis tasks) with a domain-independent case 
adaptation procedure, using cases as its sole or main source 
of domain knowledge. 

Our work is also related to learning planning domain 
theories from episodic knowledge. The CaMeL system 
(Ilgami et al. 2002) uses the Candidate Elimination 
Algorithm to obtain domain theories for hierarchical 
planning from solution traces. CaMeL requires a complete 
set of operators. It also requires the current state to be 
annotated at each planning step in the input solution traces. 
DInCaD does not require these annotations. The DISTILL 
system learns domain-specific planners from an input of 
plans that have certain kinds of annotations (Winner and 
Veloso 2003). The input includes the initial state and the 
effects of each action in a plan. DInCaD does not require 
this information. 

Preliminaries 
To perform hierarchical decompositions, we follow the 
principles of Hierarchical Task Network (HTN) planning 
as in the SHOP system (Nau et al. 1999) and case reuse as 
in the SiN system. HTN planning achieves complex tasks 
by decomposing them into simpler subtasks. Planning 
continues by decomposing the simpler tasks recursively 
until tasks representing concrete actions are generated. 
These actions form a plan achieving the high-level tasks. In 
addition to obtaining these plans, we are also interested in 
the task hierarchy that led to these plans because the task 
hierarchy is a WBS in project planning.  

The main knowledge artifacts that indicate how to 
decompose tasks are called methods. A method, M, is a 3-
tuple: (h,Q,ST), such that: h, called the head of M, is the 
task being decomposed; Q, called the conditions, are the 
preconditions required for using the method; and ST are the 
subtasks achieving h. To achieve a task that can be 
decomposed (called a compound task), an HTN planner 
searches for applicable methods. A method M is applicable 
to a compound task t, relative to a state S (a set of ground 
atoms), iff match(h,t) (i.e., h and t have the same predicate 
and arity, and a consistent set of bindings Θ exists, which 
maps variables to constants so that all terms in h match 
their corresponding ground terms in t) and Q are satisfied 
by S (i.e., there exists a consistent extension Θ' of Θ such 
that ∀q∈Q {qΘ'∈S} and ∀¬q∈Q {qΘ'∉S}). To achieve a 
task that represents an action (called a primitive task), 
HTN planners use operators. An operator O is of the form 
(h,al,dl), such that: h (the operator's head) is a primitive 
task, and al and dl are the so-called add-list and delete-list. 
The two lists define how the operator will transform the 
current state S when applied: every atom in the add-list is 
added to S and every atom in the delete-list is removed 
from S. An operator O is applicable to a primitive task t, 
relative to a state S, iff match(h,t). A planning problem is a 
triple (T,S,D), where T is a set of tasks, S is a state, and D 
is a planning domain theory -- a collection of methods and 
operators. A plan is a collection of primitive tasks. 
Informally, given a planning problem (T,S,D), the 
collection of primitive tasks that recursively decompose all 
compound tasks in T, relative to S and D, is a correct plan 
(Nau et al. 1999).  

A case C has the same form as a method, (h,Q,ST). The 
only difference is that in a case the task h, the tasks in ST 
and the conditions in Q are all ground (i.e, containing no 
variables). The rationale is that cases capture concrete 
episodes (e.g., how a delivery task was accomplished in an 
specific project plan). Cases can also be used to decompose 
tasks. A case C is applicable to a compound task t, relative 
to a state S iff t and h are identical, and the conditions in Q 
are satisfied by S (i.e., ∀q∈Q {q∈S} and ∀¬q∈Q {q∉S}). 
 We assume that a type ontology is available. This 
assumption is also motivated by project planning, where 
cases and type ontologies are frequently available (Xu and 
Muñoz-Avila 2004). We define a type ontology Ω as a 
collection of relations. These relations can be of two types: 
v isa v’ and ?x type: v. The relation v isa v’ indicates that a 
type v is a subtype of another type v’. The relation ?x type: 
v indicates that a variable ?x is of a type v. These relations 
extend the applicability of the cases and methods. For 
example, a condition q in a case can also be satisfied if q is 
of the form v1 type: t1 and there is a condition of the form 
v1 type: t2 in the state such that t2 is a subtype of t1.  

Overview of DInCaD 
The case applicability criterion requires the current task 
being decomposed to be identical to the task of the case. 
This implies that if there are n tasks, each with an average 
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number of arguments, m, and each argument can take an 
average number of instantiations, i, the number of cases 
required to decompose any task will be n*m

i. This is only 
the minimum number of cases as it is desirable to have 
alternative cases for some tasks.  

To reduce the number of cases required, there are two 
alternatives. The first alternative is to relax the task 
equality criterion by defining similarity metrics between 
non-identical ground tasks. Similarity metrics that use 
taxonomical representations for cases have been proposed 
(e.g., (Stahl and Bergmann 1998)). This alternative also 
requires to create a case reuse mechanism for transforming 
the ground subtasks of the case into other ground tasks. 
This alternative is typical of case-based planning systems 
such as CHEF (e.g., (Hammond 1986)) that rely on cases 
as the main source of knowledge. The second alternative is 
to generalize cases and use task matching during case 
retrieval and HTN task decomposition for case reuse. 
These two alternatives are related in that an implicit 
generalization is performed when computing similarities 
between non-identical ground tasks. They both have to 
deal with the issue of the correctness of any plan found, 
because cases are generalized (explicitly or implicitly) and 
reusing them may yield incorrect plans. We selected the 
second alternative because HTN task decomposition is 
well defined, which avoids the knowledge engineering 
effort to obtain domain-specific adaptation procedures.  

We define a generalized case as a 4-tuple gC = 
(h,Q,P,ST), where h, Q, and ST are the head, conditions, 
and subtasks as in the definition of a method. A 
generalized case is applicable to a compound task t, 
relative to a state S, iff match(h,t) and the conditions in Q 
are satisfied by S. P is a collection of preferences, which 
are annotations used to rank applicable cases. We 
distinguish between two kinds of preferences: constant and 
type preferences. Constant preferences have the form 
equal ?v c, indicating that a variable ?v takes the value c. 
Constant preferences annotate in the generalized case the 
original bindings from the case used to obtain the 
generalized case. Type preferences have the form not ?v 
type: t. This preference indicates that the variable ?v is not 
of type t.  

Generalized Case Retrieval 
Given a task t and a state S, there might be several 
applicable generalized cases. We define a similarity 
criterion that is biased towards giving a higher similarity 
value to the more specific generalized cases. The following 
is the similarity criterion: 

sim(gC, CB, Prob) = appl*(w1 * fc + w2 * ftp + w3 * fcp) 
where gC = (h,Q,P,ST) is a generalized case, CB is the case 
base containing gC, and Prob = (t,S) is a task-state pair 
(i.e., the current task being decomposed and the current 
state). The formula returns values between 0 and 1. The 
elements in the formula have the following properties: 

• The factor appl can take a value of either 0 or 1. It 
takes a value of 1 if gC is applicable to (t,S), and a 
value of 0 otherwise. 

• The value of fc is obtained by dividing the number 
of satisfied conditions in Q by the maximum 
number of conditions of any case in CB. 

• The value of ftp is obtained by dividing the 
number of satisfied type preferences by the total 
number of type preferences in gC. If gC has no 
type preferences, ftp is assigned a value of 1 (as 
we will explain later, a very specific generalized 
case may not have type preferences). 

• The value of fcp is obtained by dividing the 
number of satisfied constant preferences by the 
total number of constant preferences in gC. 
Generalized cases always contain constant 
preferences. 

• The weights w1, w2 and w3 are constants such that 
0 < wi < 1 ( i = 1,2,3 ) and w1 + w2 + w3 = 1. 

 We assigned the weights w1, w2 and w3 such that for any 
two applicable cases: (1) the one with the higher 
percentage of satisfied preferences will be ranked higher, 
and (2) if they have the same percentage of satisfied 
preferences, the one with more conditions will have a 
higher similarity value.  

Cases are ranked according to their similarity values. If 
the case-based reasoning process is automatic, the highest 
ranked case is selected. If it is interactive, the user selects 
one of these cases. Typically, cases with higher similarity 
values are preferred, because they represent a 
recommendation for more suitable cases from the system 
(Aha and Breslow 1998). 

Generalized Case Reuse 
Once a generalized case gC = (h,Q,P,ST) is retrieved for a 
task-state pair (t,S), it is reused in standard HTN planning 
fashion. If Θ is a substitution fulfilling the applicability 
requirement of gC, the task t is decomposed with the 
subtasks STΘ. The task decomposition process continues 
recursively with the subtasks until primitive tasks are 
obtained. If operators are available, they are applied to 
transform the current state as required in HTN planning. 
However, when no operators are available, DInCaD still 
obtains the decompositions which are viewed as WBSs for 
project planning tasks. For the discussion on the theoretical 
properties and for the empirical evaluation, we will assume 
that the operators are available, so we can state the 
correctness of the obtained plans.  

Eliciting and Refining Generalized Cases 
We now discuss how generalized cases are elicited and 
refined. This process is done in three phases: the simple 
case generalization phase, the constant preference phase, 
and the type preference phase. 
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Simple Case Generalization Phase 
 The simple case generalization phase obtains a generalized 
case gC = (h’,Q’,P,ST’) from case C = (h,Q,ST) by 
replacing each constant ψ in C with a unique variable ?ψ, 
if the type, v, of ψ is known. In this situation, the 
condition ?ψ type: v is added to Q’. If the type of ψ is 
unknown, ψ is kept as a constant in gC. In addition, the 
condition: different ?x ?y is added to Q’, for each two 
different variables ?x and ?y of the same type.  

Table 2 shows a case and its corresponding case 
generalization. The case, C, accomplishes a task of 
delivering a piece of equipment, e3, between two offices, o7 
and o9. The task is accomplished by contracting a delivery 
company, dc2. The generalization, gC, replaces constants 
with variables and adds condition 5. 

C gC 
Task:  
deliver e3 o7 o9 
Condition: 
1. e3 type: Equipment 
2. o7 type: Office 
3. o9 type: Office 
4. dc2 type: 

Delivery_Company        
Subtask: 
     contract dc2 e3 o7 o9 

Task:  
deliver ?e3 ?o7 ?o9 
Condition: 
1. ?e3 type: Equipment 
2. ?o7 type: Office 
3. ?o9 type: Office 
4. ?dc2 type: 

Delivery_Company 
5. different ?o7 ?o9   
Preferences: <none>          
Subtask: 
     contract ?dc2 ?e3 ?o7 ?o9 

Table 2: A case and its simple case generalization 

Constant Preference Phase 
Reusing generalized cases will result in a larger coverage 
compared to reusing ground cases. Coverage is defined as 
the set of problems that can be solved by using a case base. 
The reason for this larger coverage is that each binding of 
the variables in a generalized case will result in a new plan. 
However, the major drawback is that incorrect plans can be 
generated. Suppose a case C solves a problem P, and a 
generalized gC is obtained from C. Without the original 
bindings from C, there is no guarantee that gC will be 
retrieved if P is given again. It is easy to construct a 
situation where retrieving other generalized cases would 
yield an incorrect plan.  

To address this limitation, DInCaD adds constant 
preferences to gC based on the original constants in C. A 
new constant preference of the form equal ?con con is 
added for each constant con in C and its corresponding 
variable ?con in gC. In the generalized case shown in 
Table 2, the following preferences are added: equal ?e3 e3, 
equal ?o7 o7, equal ?o9 o9 and equal ?dc2 dc2. If P is given 
again, gC will have all of its constant preferences satisfied 
whereas other cases will have some constant preferences 
not satisfied. Based on the similarity criterion, gC will be 
preferred. As we are going to explain later, the constant 
preferences will ensure a restricted form of soundness.  

Type Preference Phase 
There are situations in which more than one generalized 
case can be applicable to the same problem. Depending on 
the case retrieved, an incorrect plan may be obtained. 
These situations are referred as case over-generalization. 
To reduce case over-generalization, our bias is to select the 
case that are more specific relative to type ontology Ω. To 
implement this bias, DInCaD adds type preferences to the 
cases. As a result, the more specific cases will have higher 
similarity values according to the similarity criterion. Our 
experiments show the adequacy of this bias.  

As an example, consider the two generalized cases in 
Table 3. The case gC1 achieves a task to deliver a 
liquid, ?e1, between two locations, ?d1 and ?d3, using a 
tanker truck, ?t5. The case gC2 achieves a task to deliver a 
perishable liquid, ?e4, between two locations, ?d6 and ?d7, 
using a refrigerated tanker truck, ?t1. Consider a type 
ontology Ω defining the following relations: RefrigTanker 
isa Tanker, RegularTanker isa Tanker, and 
PerishableLiquid isa Liquid. Suppose that a new problem 
is given where a perishable liquid has to be delivered 
between two locations, and that two trucks are available, 
one is a refrigerated tanker truck and another one is a 
regular tanker truck. Both cases are applicable. Reusing 
gC2 will result in a correct plan since it will pick the 
refrigerated tanker. However, reusing gC1 may not yield a 
correct plan if it picks the regular tanker. Because 
RefrigTanker and RegularTanker are siblings in Ω, there is 
no criterion to select one over the other one. 

gC1 gC2 

Task:  
deliver ?e1 ?d1 ?d3 
Condition: 
1. ?t5 type: Tanker  
2. ?e1 type: Liquid  
3. ?d1 type: Depot  
4. ?d3 type: Depot  
5. different ?d1 ?d3  
Subtask: 
drive ?t5 ?e1 ?d1 ?d3 

Task:  
deliver ?e4 ?d6 ?d7 
Condition: 
1. ?t1 type: RefrigTanker  
2. ?e4 type: PerishableLiquid  
3. ?d6 type: Depot  
4. ?d7 type: Depot  
5. different ?d6 ?d7     
Subtask: 
drive ?t1 ?e4 ?d6 ?d7 

Table 3: Two generalized cases that may result in case over-
generalization 

 In this situation, DInCaD adds type preferences not ?t5 
type: refrigTanker and not ?e1 type: perishableLiquid to 
gC1. As a result of adding these preferences, gC2 will have 
a higher similarity value than gC1 in the same situation as 
before. If gC1 picks the regular tanker, it will only satisfy 
one of the two type preferences (i.e., not ?t5 type: 
refrigTanker). The value of ftp will be 0.5. The case gC2 
will have no type preferences because it is more specific 
and, therefore, ftp will have a value of 1. 

Properties of DInCaD  
Our analysis focuses on situations where the domain 
knowledge consists of cases, with or without methods. We 
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also assume that a set of operators is available, which is 
necessary to be able to state the correctness of a plan. 
 Let’s consider the following case bases and their 
corresponding case retrieval procedures: 

• CB-c, a case base consisting of cases. Case retrieval 
selects any applicable case.  

• CB-S, the case base obtained by having the simple 
case generalization of cases in CB-c. Case retrieval 
selects any applicable generalized case.  

• CB-CP, the case base obtained by adding constant 
preferences to the cases in CB-S based on the 
corresponding cases in CB-c. Case retrieval selects 
the most similar case (assuming ftp = 0). 

• CB-CTP, the case base obtained by adding type 
preferences to the cases in CB-CP. Case retrieval 
selects the most similar case. 

If I is an incomplete planning domain theory (i.e., only a 
subset (possibly empty) of the methods for the target 
domain is known) and CB is a case base, then a planning 
domain theory D is consistent with a knowledge base 
I∪CB iff: (1) Every method and operator in I is an instance 
of a method or operator in D, and (2) For every case C = 
(h’,Q’,P,ST’) in CB, there is a method M = (h,Q,ST) in D 
such that h’, Q’, and ST’ are instances of h, Q and ST, 
respectively. Particularly, we are interested in planning 
domain theories that are consistent with I∪CB-c, because 
cases in CB-c represent the episodic knowledge we have 
about the domain.  

Theorem 1. The following statements are true: 
1. Plans obtained by using I∪CB-c are correct in every 
planning domain theory consistent with I∪CB-c. 
2. There are planning domain theories consistent with 
I∪CB-c such that plans obtained with I∪CB-S, I∪CB-
CP, or I∪CB-CTP are not correct. 

Now lets consider the following definition. Let PS = {(p1, 
sol1), (p2, sol2), …, (pn, soln)} be the problem-solution set 
used to generate CB-c. Each pi is a task-state pair (Ti, Si) 
and each soli is a plan to pi. A case base CB is sound 
relative to PS iff whenever a pi in PS is given as a problem, 
the plan generated by using I∪CB is correct in any 
planning domain theory D consistent with I∪CB-c. The 
rationale behind this definition is that at the very least the 
case-based planner should find correct plans to the 
problem-solution pairs it has previously acquired as cases.  

The notion of soundness relative to PS does not imply 
that the plan obtained by using CB must be soli when the 
problem pi is given again. Suppose that Ci is the case 
obtained from (pi, soli), and that when pi is given again as a 
problem, a different case Ck is retrieved. Under the 
assumptions, Ci must imply Ck. A case Ci implies a case Ck 
if whenever Ci can be retrieved, Ck can also be retrieved. 
This happens if (1) the tasks of Ci and Ck are identical, (2) 
there is a one-to-one mapping from conditions in Ci into 
conditions in Ck such that for each condition q in Ck, q is 
also a condition in Ci, or if a condition of the form v1 type: 
t1 occurs in Ck but not in Ci, then there must be a condition 
of the form v1 type: t2 in Ci, such that t2 is a subtype of t1.   

Theorem 2. The following statements are true:  
1. I∪CB-c is sound relative to PS. 
2. I∪CB-S is not sound relative to PS. 
3. I∪CB-CP is sound relative to PS. 
4. I∪CB-CTP is sound relative to PS. 

The last issue is the coverage of the case bases (Smyth & 
Keane, 1995). We extend the traditional notion of coverage 
of case bases to coverage of a knowledge base I∪CB, 
defined as:  

Coverage(I∪CB) = {p: p is a planning problem that can 
be solved by using I∪CB} 

The definition of coverage does not indicate if the plan 
found for p is correct or not. It just indicates if a plan can 
be found or not. We state the following theorem: 

Theorem 3. The following statements are true:  
1. Coverage(I∪CB-c) ⊆ Coverage(I∪CB-S) 
2. Coverage(I∪CB-S) = Coverage(I∪CB-CP) and 

Coverage(I∪CB-CP) = Coverage(I∪CB-CTP) 

From this analysis, we conclude that, compared to the 
other two case bases, CB-CTP and CB-CP have the largest 
coverage while preserving soundness relative to problem-
solution sets. However, as we will see in the experimental 
evaluation, CB-CTP will result in a better retrieval 
precision than CB-CP. 

Empirical Evaluation 
We performed experiments to measure the precision and 
recall of retrieval with CB-S, CB-CP, and CB-CTP. In the 
context of case-based planning, we define precision as A/B 
and recall as A/(A+C), where A is the number of times that 
correct plans were generated, B is the number of times that 
plans were generated, and C is the number of times that a 
correct plan existed but either an incorrect plan or no plan 
was generated. 
 For the experiments we used two synthetic domains to 
be able to state if the generated plans are correct or not. We 
implemented a variant of the UM Translog domain 
(Andrews 1996). In this domain, trucks and airplanes are 
used to transport packages between different sites. A type 
ontology of vehicles and packages is defined so that 
vehicles can only deliver compatible packages. For 
example, medium trucks transport medium or small 
packages, but not large packages. We also implemented an 
HTN version of the process planning domain reported in 
(Muñoz-Avila and Weberskirch 1996). In this domain, 
plans for manufacturing rotary symmetrical workpieces are 
generated. These plans must consider inter-relations 
between various parts of the workpieces and available 
manufacturing tools.  
 Each domain was used to generate cases by using a 
training set consisted of 240 randomly generated problems. 
These cases were used to generate CB-S, CB-CP, and CB-
CTP as explained before. We then replaced the methods 
from the original domain with the three case bases. Thus, 
we created three knowledge bases consisting of cases and 
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operators only. The test set consisted of 50 new problems 
randomly generated in the same domain. A threshold α 
was set such that the highest ranked generalized case gC 
satisfying sim(gC, CB, P) ≥ α was selected.  

Figure 1 shows the results from the two domains. The 
value of α was set to 0, 0.949 and 0.951 for the UM 
Translog domain, and 0, 0.39 and 0.49 for the process 
planning domain. The results show that CB-CTP has a 
much better precision than CB-CP and CB-S. For the UM 
Translog domain we get best results when α is set to 0.949. 
CB-CTP reaches an precision of almost 90% compared to 
60% for CB-CP and 50% for CB-S. At the same time, the 
recall is only reduced by a factor of 10%. Only when α is 
set to 0.951 in the UM Translog domain do the precisions 
of CB-CTP and CB-Gen become the same. But at this 
point the recall is too low. For the process planning domain, 
we get best results when α is set to 0. CB-CTP has an 
precision of 80% compared to 40% for CB-CP and 60% 
for CB-S. At the same time, the recall is 20% higher than 
CB-S and 40% higher than CB-CP. We conclude that using 
CB-CTP will result in a better performance, informally 
defined as a balance between precision and recall, than 
using CB-CP and CB-S. 

Final Remarks 
DInCaD is a system for domain-independent task 
decomposition designed to deal with situations in which 
cases are the sole or the main source for planning domain 
knowledge. DInCaD generalizes cases to improve 
coverage and adds constant preferences to preserve 
soundness relative to the task-state pairs. To improve 
retrieval precision, DInCaD refines the cases by adding 
type preferences, and defines a similarity criterion that 
takes these preferences into account. Our experiments 
show an improvement in retrieval precision and a balance 
between precision and recall with certain values of the 
threshold α. For future work, we will study techniques to 
determine these values of α in advance. 
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Figure 1: (a) Precision and (b) recall for the UM Translog 
domain. (c) Precision and (d) recall for the process 
planning domain. The x-axis takes the values of α. The y-
axis goes from 0% to 100%. 
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