
A Domain-Independent System for Case-Based
Task Decomposition without Domain Theories

Ke Xu and Hector Muñoz-Avila
Department of Computer Science and Engineering, Lehigh University

{kex2, hem4}@lehigh.edu

Abstract
We propose using domain-independent task decomposition
techniques for situations in which cases are the sole or the
main source for domain knowledge. Our work is motivated
by project planning domains, where hierarchical cases are
readily available, but neither a planning domain theory nor
case adaptation knowledge is available. We present DInCaD
(Domain-Independent System for Case-Based Task
Decomposition), a system that encompasses case retrieval,
refinement, and reuse, following from the idea of reusing
generalized cases to solve new problems. DInCaD consists
of a case refinement procedure that reduces case over-
generalization, and a similarity criterion that takes
advantage of the refinement to improve case retrieval
precision. We will analyze the properties of the system, and
present an empirical evaluation.

Introduction
One of the main motivations for case-based reasoning
(CBR) is that in many domains, cases (i.e., previous
problem-solving episodes) are readily available. This is
one of the crucial reasons for successful applications of
CBR to help-desk, diagnosis and prediction tasks (Watson
1997). Despite these successes, a stumbling block for using
CBR in an even wider range of application domains is the
difficulty to develop adequate case reuse techniques. Most
CBR applications deal with analysis tasks such as
classification. An important reason for this situation is that
relatively simple domain-independent case reuse
techniques, such as taking a majority vote of the
classification from similar cases, have been proven to be
effective for analysis tasks. In contrast, few deployed CBR
applications exist for synthesis tasks such as planning. For
synthesis tasks, domain-independent case adaptation
techniques exist but require complete planning domain
theories, which are not available in many domains. An
alternative is to develop domain-specific case adaptation
techniques. But developing such techniques is also
frequently unfeasible because of the large knowledge
acquisition effort involved.

In this paper we present DInCaD, a system for domain-
independent task decomposition, designed to deal with
situations in which cases are the sole or the main source for
planning domain knowledge. DInCaD encompasses case
retrieval, refinement, and reuse. It reuses generalized cases
to solve new problems. DInCaD consists of a case
refinement procedure that reduces case over-generalization,
and a case similarity criterion that takes advantage of the

case refinement to improve retrieval precision. We support
our claim by an experimental validation of DInCaD. We
also discuss the properties of the system.

Motivation
Our work is motivated by domains in which cases are
readily available but neither a planning domain theory nor
case adaptation knowledge is available. An example is
project planning, which is a business process for
successfully delivering one-of-a kind products and services
under real-world time and resource constraints (PMI 1999).
Project planning covers several domains, including
research proposal development, public events organization,
and civil construction management. Several software
systems for project planning are commercially available.
These systems provide tools for editing work-breakdown
structures (WBS), which indicate how complex tasks can
be decomposed into simple work units.

Authors have found that there is a one-to-one mapping
between elements in a WBS and a hierarchical plan
(Mukkamalla and Muñoz-Avila 2002). Based on this
mapping, an algorithm has been developed that
automatically captures hierarchical cases from a
commercial project planning system.

Related Work
Table 1 compares several case-based reasoning systems
against DInCaD. The comparison explores six features.
The first two features, DT and CB, indicate if the systems
require a planning domain theory or a case base,
respectively. The next two features, DI and DS indicate if
the case adaptation procedure is domain-independent or if
domain-specific adaptation rules are required. The last two
features, ST and AT, indicate if the system performs
planning tasks or analysis tasks, respectively.

System DT CB DI DS ST AT
CHEF √ √ √
Prodigy/Analogy √ √ √ √
SiN √ √ √ √
Ensemble √ √ √
DInCaD √ √ √

Table 1: Comparisons between different systems. Conventions:
DT=Domain theory; CB=Case Base; DI=Domain Independent;

DS=Domain Specific; ST=Synthesis Tasks; AT=Analysis Tasks.

AAAI-05 / 234

 CHEF is representative of case-based planning systems
in which no planning domain theory is required (Hammond
1986). Instead, these systems use cases to represent domain
knowledge, and require to encode domain-specific case
adaptation rules. DInCaD also uses cases to represent
knowledge, but the case adaptation knowledge is domain-
independent.

Prodigy/Analogy is representative of case-based
planning systems that use cases as search control
knowledge (Veloso 1994). These systems assume that a
complete domain theory is available, and implement
domain-independent case adaptation procedures. Paris is
another example of such systems. It uses taxonomical
relations and the domain theory to generate and reuse
abstract cases (Bergmann and Wilke 1995).
 SiN (Muñoz-Avila et al. 2001) is a case-based planning
system that requires both a planning domain theory and a
case base. Cases represent domain knowledge that
enhances the domain theory. SiN implements a domain-
independent case reuse procedure. DInCaD does not
require a domain theory.
 Ensemble classifiers combine votes from individual
classifiers to classify new problems. This kind of
adaptation method has been used successfully for
classification tasks (Dietterich 1997). DInCaD performs
synthesis tasks (i.e., task decompositions).
 To our knowledge, DInCaD is the first case-based
reasoning system that can perform task decompositions
(i.e., synthesis tasks) with a domain-independent case
adaptation procedure, using cases as its sole or main source
of domain knowledge.

Our work is also related to learning planning domain
theories from episodic knowledge. The CaMeL system
(Ilgami et al. 2002) uses the Candidate Elimination
Algorithm to obtain domain theories for hierarchical
planning from solution traces. CaMeL requires a complete
set of operators. It also requires the current state to be
annotated at each planning step in the input solution traces.
DInCaD does not require these annotations. The DISTILL
system learns domain-specific planners from an input of
plans that have certain kinds of annotations (Winner and
Veloso 2003). The input includes the initial state and the
effects of each action in a plan. DInCaD does not require
this information.

Preliminaries
To perform hierarchical decompositions, we follow the
principles of Hierarchical Task Network (HTN) planning
as in the SHOP system (Nau et al. 1999) and case reuse as
in the SiN system. HTN planning achieves complex tasks
by decomposing them into simpler subtasks. Planning
continues by decomposing the simpler tasks recursively
until tasks representing concrete actions are generated.
These actions form a plan achieving the high-level tasks. In
addition to obtaining these plans, we are also interested in
the task hierarchy that led to these plans because the task
hierarchy is a WBS in project planning.

The main knowledge artifacts that indicate how to
decompose tasks are called methods. A method, M, is a 3-
tuple: (h,Q,ST), such that: h, called the head of M, is the
task being decomposed; Q, called the conditions, are the
preconditions required for using the method; and ST are the
subtasks achieving h. To achieve a task that can be
decomposed (called a compound task), an HTN planner
searches for applicable methods. A method M is applicable
to a compound task t, relative to a state S (a set of ground
atoms), iff match(h,t) (i.e., h and t have the same predicate
and arity, and a consistent set of bindings Θ exists, which
maps variables to constants so that all terms in h match
their corresponding ground terms in t) and Q are satisfied
by S (i.e., there exists a consistent extension Θ' of Θ such
that ∀q∈Q {qΘ'∈S} and ∀¬q∈Q {qΘ'∉S}). To achieve a
task that represents an action (called a primitive task),
HTN planners use operators. An operator O is of the form
(h,al,dl), such that: h (the operator's head) is a primitive
task, and al and dl are the so-called add-list and delete-list.
The two lists define how the operator will transform the
current state S when applied: every atom in the add-list is
added to S and every atom in the delete-list is removed
from S. An operator O is applicable to a primitive task t,
relative to a state S, iff match(h,t). A planning problem is a
triple (T,S,D), where T is a set of tasks, S is a state, and D
is a planning domain theory -- a collection of methods and
operators. A plan is a collection of primitive tasks.
Informally, given a planning problem (T,S,D), the
collection of primitive tasks that recursively decompose all
compound tasks in T, relative to S and D, is a correct plan
(Nau et al. 1999).

A case C has the same form as a method, (h,Q,ST). The
only difference is that in a case the task h, the tasks in ST
and the conditions in Q are all ground (i.e, containing no
variables). The rationale is that cases capture concrete
episodes (e.g., how a delivery task was accomplished in an
specific project plan). Cases can also be used to decompose
tasks. A case C is applicable to a compound task t, relative
to a state S iff t and h are identical, and the conditions in Q
are satisfied by S (i.e., ∀q∈Q {q∈S} and ∀¬q∈Q {q∉S}).
 We assume that a type ontology is available. This
assumption is also motivated by project planning, where
cases and type ontologies are frequently available (Xu and
Muñoz-Avila 2004). We define a type ontology Ω as a
collection of relations. These relations can be of two types:
v isa v’ and ?x type: v. The relation v isa v’ indicates that a
type v is a subtype of another type v’. The relation ?x type:
v indicates that a variable ?x is of a type v. These relations
extend the applicability of the cases and methods. For
example, a condition q in a case can also be satisfied if q is
of the form v1 type: t1 and there is a condition of the form
v1 type: t2 in the state such that t2 is a subtype of t1.

Overview of DInCaD
The case applicability criterion requires the current task
being decomposed to be identical to the task of the case.
This implies that if there are n tasks, each with an average

AAAI-05 / 235

number of arguments, m, and each argument can take an
average number of instantiations, i, the number of cases
required to decompose any task will be n*m

i. This is only
the minimum number of cases as it is desirable to have
alternative cases for some tasks.

To reduce the number of cases required, there are two
alternatives. The first alternative is to relax the task
equality criterion by defining similarity metrics between
non-identical ground tasks. Similarity metrics that use
taxonomical representations for cases have been proposed
(e.g., (Stahl and Bergmann 1998)). This alternative also
requires to create a case reuse mechanism for transforming
the ground subtasks of the case into other ground tasks.
This alternative is typical of case-based planning systems
such as CHEF (e.g., (Hammond 1986)) that rely on cases
as the main source of knowledge. The second alternative is
to generalize cases and use task matching during case
retrieval and HTN task decomposition for case reuse.
These two alternatives are related in that an implicit
generalization is performed when computing similarities
between non-identical ground tasks. They both have to
deal with the issue of the correctness of any plan found,
because cases are generalized (explicitly or implicitly) and
reusing them may yield incorrect plans. We selected the
second alternative because HTN task decomposition is
well defined, which avoids the knowledge engineering
effort to obtain domain-specific adaptation procedures.

We define a generalized case as a 4-tuple gC =
(h,Q,P,ST), where h, Q, and ST are the head, conditions,
and subtasks as in the definition of a method. A
generalized case is applicable to a compound task t,
relative to a state S, iff match(h,t) and the conditions in Q
are satisfied by S. P is a collection of preferences, which
are annotations used to rank applicable cases. We
distinguish between two kinds of preferences: constant and
type preferences. Constant preferences have the form
equal ?v c, indicating that a variable ?v takes the value c.
Constant preferences annotate in the generalized case the
original bindings from the case used to obtain the
generalized case. Type preferences have the form not ?v
type: t. This preference indicates that the variable ?v is not
of type t.

Generalized Case Retrieval
Given a task t and a state S, there might be several
applicable generalized cases. We define a similarity
criterion that is biased towards giving a higher similarity
value to the more specific generalized cases. The following
is the similarity criterion:

sim(gC, CB, Prob) = appl*(w1 * fc + w2 * ftp + w3 * fcp)
where gC = (h,Q,P,ST) is a generalized case, CB is the case
base containing gC, and Prob = (t,S) is a task-state pair
(i.e., the current task being decomposed and the current
state). The formula returns values between 0 and 1. The
elements in the formula have the following properties:

• The factor appl can take a value of either 0 or 1. It
takes a value of 1 if gC is applicable to (t,S), and a
value of 0 otherwise.

• The value of fc is obtained by dividing the number
of satisfied conditions in Q by the maximum
number of conditions of any case in CB.

• The value of ftp is obtained by dividing the
number of satisfied type preferences by the total
number of type preferences in gC. If gC has no
type preferences, ftp is assigned a value of 1 (as
we will explain later, a very specific generalized
case may not have type preferences).

• The value of fcp is obtained by dividing the
number of satisfied constant preferences by the
total number of constant preferences in gC.
Generalized cases always contain constant
preferences.

• The weights w1, w2 and w3 are constants such that
0 < wi < 1 (i = 1,2,3) and w1 + w2 + w3 = 1.

 We assigned the weights w1, w2 and w3 such that for any
two applicable cases: (1) the one with the higher
percentage of satisfied preferences will be ranked higher,
and (2) if they have the same percentage of satisfied
preferences, the one with more conditions will have a
higher similarity value.

Cases are ranked according to their similarity values. If
the case-based reasoning process is automatic, the highest
ranked case is selected. If it is interactive, the user selects
one of these cases. Typically, cases with higher similarity
values are preferred, because they represent a
recommendation for more suitable cases from the system
(Aha and Breslow 1998).

Generalized Case Reuse
Once a generalized case gC = (h,Q,P,ST) is retrieved for a
task-state pair (t,S), it is reused in standard HTN planning
fashion. If Θ is a substitution fulfilling the applicability
requirement of gC, the task t is decomposed with the
subtasks STΘ. The task decomposition process continues
recursively with the subtasks until primitive tasks are
obtained. If operators are available, they are applied to
transform the current state as required in HTN planning.
However, when no operators are available, DInCaD still
obtains the decompositions which are viewed as WBSs for
project planning tasks. For the discussion on the theoretical
properties and for the empirical evaluation, we will assume
that the operators are available, so we can state the
correctness of the obtained plans.

Eliciting and Refining Generalized Cases
We now discuss how generalized cases are elicited and
refined. This process is done in three phases: the simple
case generalization phase, the constant preference phase,
and the type preference phase.

AAAI-05 / 236

Simple Case Generalization Phase
 The simple case generalization phase obtains a generalized
case gC = (h’,Q’,P,ST’) from case C = (h,Q,ST) by
replacing each constant ψ in C with a unique variable ?ψ,
if the type, v, of ψ is known. In this situation, the
condition ?ψ type: v is added to Q’. If the type of ψ is
unknown, ψ is kept as a constant in gC. In addition, the
condition: different ?x ?y is added to Q’, for each two
different variables ?x and ?y of the same type.

Table 2 shows a case and its corresponding case
generalization. The case, C, accomplishes a task of
delivering a piece of equipment, e3, between two offices, o7
and o9. The task is accomplished by contracting a delivery
company, dc2. The generalization, gC, replaces constants
with variables and adds condition 5.

C gC
Task:
deliver e3 o7 o9
Condition:
1. e3 type: Equipment
2. o7 type: Office
3. o9 type: Office
4. dc2 type:

Delivery_Company
Subtask:
 contract dc2 e3 o7 o9

Task:
deliver ?e3 ?o7 ?o9
Condition:
1. ?e3 type: Equipment
2. ?o7 type: Office
3. ?o9 type: Office
4. ?dc2 type:

Delivery_Company
5. different ?o7 ?o9
Preferences: <none>
Subtask:
 contract ?dc2 ?e3 ?o7 ?o9

Table 2: A case and its simple case generalization

Constant Preference Phase
Reusing generalized cases will result in a larger coverage
compared to reusing ground cases. Coverage is defined as
the set of problems that can be solved by using a case base.
The reason for this larger coverage is that each binding of
the variables in a generalized case will result in a new plan.
However, the major drawback is that incorrect plans can be
generated. Suppose a case C solves a problem P, and a
generalized gC is obtained from C. Without the original
bindings from C, there is no guarantee that gC will be
retrieved if P is given again. It is easy to construct a
situation where retrieving other generalized cases would
yield an incorrect plan.

To address this limitation, DInCaD adds constant
preferences to gC based on the original constants in C. A
new constant preference of the form equal ?con con is
added for each constant con in C and its corresponding
variable ?con in gC. In the generalized case shown in
Table 2, the following preferences are added: equal ?e3 e3,
equal ?o7 o7, equal ?o9 o9 and equal ?dc2 dc2. If P is given
again, gC will have all of its constant preferences satisfied
whereas other cases will have some constant preferences
not satisfied. Based on the similarity criterion, gC will be
preferred. As we are going to explain later, the constant
preferences will ensure a restricted form of soundness.

Type Preference Phase
There are situations in which more than one generalized
case can be applicable to the same problem. Depending on
the case retrieved, an incorrect plan may be obtained.
These situations are referred as case over-generalization.
To reduce case over-generalization, our bias is to select the
case that are more specific relative to type ontology Ω. To
implement this bias, DInCaD adds type preferences to the
cases. As a result, the more specific cases will have higher
similarity values according to the similarity criterion. Our
experiments show the adequacy of this bias.

As an example, consider the two generalized cases in
Table 3. The case gC1 achieves a task to deliver a
liquid, ?e1, between two locations, ?d1 and ?d3, using a
tanker truck, ?t5. The case gC2 achieves a task to deliver a
perishable liquid, ?e4, between two locations, ?d6 and ?d7,
using a refrigerated tanker truck, ?t1. Consider a type
ontology Ω defining the following relations: RefrigTanker
isa Tanker, RegularTanker isa Tanker, and
PerishableLiquid isa Liquid. Suppose that a new problem
is given where a perishable liquid has to be delivered
between two locations, and that two trucks are available,
one is a refrigerated tanker truck and another one is a
regular tanker truck. Both cases are applicable. Reusing
gC2 will result in a correct plan since it will pick the
refrigerated tanker. However, reusing gC1 may not yield a
correct plan if it picks the regular tanker. Because
RefrigTanker and RegularTanker are siblings in Ω, there is
no criterion to select one over the other one.

gC1 gC2

Task:
deliver ?e1 ?d1 ?d3
Condition:
1. ?t5 type: Tanker
2. ?e1 type: Liquid
3. ?d1 type: Depot
4. ?d3 type: Depot
5. different ?d1 ?d3
Subtask:
drive ?t5 ?e1 ?d1 ?d3

Task:
deliver ?e4 ?d6 ?d7
Condition:
1. ?t1 type: RefrigTanker
2. ?e4 type: PerishableLiquid
3. ?d6 type: Depot
4. ?d7 type: Depot
5. different ?d6 ?d7
Subtask:
drive ?t1 ?e4 ?d6 ?d7

Table 3: Two generalized cases that may result in case over-
generalization

 In this situation, DInCaD adds type preferences not ?t5
type: refrigTanker and not ?e1 type: perishableLiquid to
gC1. As a result of adding these preferences, gC2 will have
a higher similarity value than gC1 in the same situation as
before. If gC1 picks the regular tanker, it will only satisfy
one of the two type preferences (i.e., not ?t5 type:
refrigTanker). The value of ftp will be 0.5. The case gC2
will have no type preferences because it is more specific
and, therefore, ftp will have a value of 1.

Properties of DInCaD
Our analysis focuses on situations where the domain
knowledge consists of cases, with or without methods. We

AAAI-05 / 237

also assume that a set of operators is available, which is
necessary to be able to state the correctness of a plan.
 Let’s consider the following case bases and their
corresponding case retrieval procedures:

• CB-c, a case base consisting of cases. Case retrieval
selects any applicable case.

• CB-S, the case base obtained by having the simple
case generalization of cases in CB-c. Case retrieval
selects any applicable generalized case.

• CB-CP, the case base obtained by adding constant
preferences to the cases in CB-S based on the
corresponding cases in CB-c. Case retrieval selects
the most similar case (assuming ftp = 0).

• CB-CTP, the case base obtained by adding type
preferences to the cases in CB-CP. Case retrieval
selects the most similar case.

If I is an incomplete planning domain theory (i.e., only a
subset (possibly empty) of the methods for the target
domain is known) and CB is a case base, then a planning
domain theory D is consistent with a knowledge base
I∪CB iff: (1) Every method and operator in I is an instance
of a method or operator in D, and (2) For every case C =
(h’,Q’,P,ST’) in CB, there is a method M = (h,Q,ST) in D
such that h’, Q’, and ST’ are instances of h, Q and ST,
respectively. Particularly, we are interested in planning
domain theories that are consistent with I∪CB-c, because
cases in CB-c represent the episodic knowledge we have
about the domain.

Theorem 1. The following statements are true:
1. Plans obtained by using I∪CB-c are correct in every
planning domain theory consistent with I∪CB-c.
2. There are planning domain theories consistent with
I∪CB-c such that plans obtained with I∪CB-S, I∪CB-
CP, or I∪CB-CTP are not correct.

Now lets consider the following definition. Let PS = {(p1,
sol1), (p2, sol2), …, (pn, soln)} be the problem-solution set
used to generate CB-c. Each pi is a task-state pair (Ti, Si)
and each soli is a plan to pi. A case base CB is sound
relative to PS iff whenever a pi in PS is given as a problem,
the plan generated by using I∪CB is correct in any
planning domain theory D consistent with I∪CB-c. The
rationale behind this definition is that at the very least the
case-based planner should find correct plans to the
problem-solution pairs it has previously acquired as cases.

The notion of soundness relative to PS does not imply
that the plan obtained by using CB must be soli when the
problem pi is given again. Suppose that Ci is the case
obtained from (pi, soli), and that when pi is given again as a
problem, a different case Ck is retrieved. Under the
assumptions, Ci must imply Ck. A case Ci implies a case Ck
if whenever Ci can be retrieved, Ck can also be retrieved.
This happens if (1) the tasks of Ci and Ck are identical, (2)
there is a one-to-one mapping from conditions in Ci into
conditions in Ck such that for each condition q in Ck, q is
also a condition in Ci, or if a condition of the form v1 type:
t1 occurs in Ck but not in Ci, then there must be a condition
of the form v1 type: t2 in Ci, such that t2 is a subtype of t1.

Theorem 2. The following statements are true:
1. I∪CB-c is sound relative to PS.
2. I∪CB-S is not sound relative to PS.
3. I∪CB-CP is sound relative to PS.
4. I∪CB-CTP is sound relative to PS.

The last issue is the coverage of the case bases (Smyth &
Keane, 1995). We extend the traditional notion of coverage
of case bases to coverage of a knowledge base I∪CB,
defined as:

Coverage(I∪CB) = {p: p is a planning problem that can
be solved by using I∪CB}

The definition of coverage does not indicate if the plan
found for p is correct or not. It just indicates if a plan can
be found or not. We state the following theorem:

Theorem 3. The following statements are true:
1. Coverage(I∪CB-c) ⊆ Coverage(I∪CB-S)
2. Coverage(I∪CB-S) = Coverage(I∪CB-CP) and

Coverage(I∪CB-CP) = Coverage(I∪CB-CTP)

From this analysis, we conclude that, compared to the
other two case bases, CB-CTP and CB-CP have the largest
coverage while preserving soundness relative to problem-
solution sets. However, as we will see in the experimental
evaluation, CB-CTP will result in a better retrieval
precision than CB-CP.

Empirical Evaluation
We performed experiments to measure the precision and
recall of retrieval with CB-S, CB-CP, and CB-CTP. In the
context of case-based planning, we define precision as A/B
and recall as A/(A+C), where A is the number of times that
correct plans were generated, B is the number of times that
plans were generated, and C is the number of times that a
correct plan existed but either an incorrect plan or no plan
was generated.
 For the experiments we used two synthetic domains to
be able to state if the generated plans are correct or not. We
implemented a variant of the UM Translog domain
(Andrews 1996). In this domain, trucks and airplanes are
used to transport packages between different sites. A type
ontology of vehicles and packages is defined so that
vehicles can only deliver compatible packages. For
example, medium trucks transport medium or small
packages, but not large packages. We also implemented an
HTN version of the process planning domain reported in
(Muñoz-Avila and Weberskirch 1996). In this domain,
plans for manufacturing rotary symmetrical workpieces are
generated. These plans must consider inter-relations
between various parts of the workpieces and available
manufacturing tools.
 Each domain was used to generate cases by using a
training set consisted of 240 randomly generated problems.
These cases were used to generate CB-S, CB-CP, and CB-
CTP as explained before. We then replaced the methods
from the original domain with the three case bases. Thus,
we created three knowledge bases consisting of cases and

AAAI-05 / 238

operators only. The test set consisted of 50 new problems
randomly generated in the same domain. A threshold α
was set such that the highest ranked generalized case gC
satisfying sim(gC, CB, P) ≥ α was selected.

Figure 1 shows the results from the two domains. The
value of α was set to 0, 0.949 and 0.951 for the UM
Translog domain, and 0, 0.39 and 0.49 for the process
planning domain. The results show that CB-CTP has a
much better precision than CB-CP and CB-S. For the UM
Translog domain we get best results when α is set to 0.949.
CB-CTP reaches an precision of almost 90% compared to
60% for CB-CP and 50% for CB-S. At the same time, the
recall is only reduced by a factor of 10%. Only when α is
set to 0.951 in the UM Translog domain do the precisions
of CB-CTP and CB-Gen become the same. But at this
point the recall is too low. For the process planning domain,
we get best results when α is set to 0. CB-CTP has an
precision of 80% compared to 40% for CB-CP and 60%
for CB-S. At the same time, the recall is 20% higher than
CB-S and 40% higher than CB-CP. We conclude that using
CB-CTP will result in a better performance, informally
defined as a balance between precision and recall, than
using CB-CP and CB-S.

Final Remarks
DInCaD is a system for domain-independent task
decomposition designed to deal with situations in which
cases are the sole or the main source for planning domain
knowledge. DInCaD generalizes cases to improve
coverage and adds constant preferences to preserve
soundness relative to the task-state pairs. To improve
retrieval precision, DInCaD refines the cases by adding
type preferences, and defines a similarity criterion that
takes these preferences into account. Our experiments
show an improvement in retrieval precision and a balance
between precision and recall with certain values of the
threshold α. For future work, we will study techniques to
determine these values of α in advance.

References
Aha, D.W., and Breslow, L. Refining conversational case
libraries. In Proceedings of EWCBR-98. Providence, RI:
Springer, 1998.
Andrews, S., Kettler, B., Erol, K., & Hendler, J. UM
Translog: A Planning Domain for the Development and
Benchmarking of Planning Systems. Technical Report,
Dept. of CS, Univ. of Maryland at College Park, 1995.
Bergmann, R., and Wilke, W. 1995. Building and refining
abstract planning cases by change of representation
language. JAIR, 1995.
Bergmann, R. and Stahl, A. Similarity Measures for
Object-Oriented Case Representations. In Proceedings of
EWCBR-98. Springer, 1998.
Dietterich, T.G.. Machine learning research: Four current
directions. AI Magazine, 18(4):97--136, 1997.
Hammond, K.J. Chef: A model of case-based planning. In
Proceedings of AAAI-86. AAAI Press, 1986.
Ilghami, O., Nau, D.S., Muñoz-Avila, H., & Aha, D.W.
CaMeL: Learning Methods for HTN Planning. In
Proceedings of AIPS-02. AAAI Press, 2002.
Leake, D.B, & Wilson, D. Categorizing Case-Base
Maintenance: Dimensions and Directions. In Proceedings
of EWCBR-98, Springer-Verlag, 1998.
Mukammalla, S. & Muñoz-Avila, H. Case Acquisition in a
Project Planning Environment. In Proceedings of ECCBR-
02. Springer, 2002.
Muñoz-Avila, H., Aha, D.W., Nau D. S., Breslow, L.A.,
Weber, R., & Yamal, F. SiN: Integrating Case-based
Reasoning with Task Decomposition. In Proceedings of
IJCAI-2001. AAAI Press, 2001.
Muñoz-Avila & Weberskirch, Planning for manufacturing
workpieces by storing, indexing and replaying planning
decisions. In Proceedings of AIPS-96. AAAI-Press, 1996.
Nau, D., Cao, Y., Lotem, A., & Muñoz-Avila, H. SHOP:
Simple hierarchical ordered planner. In Proceedings of
IJCAI-99. Stockholm: AAAI Press, 1999.
Project Management Institute (PMI). PMI’s A Guide to the
Project Management Body of Knowledge. Technical
Report. No.: PMI 70-029-99, 1999.
Smyth, B., and Keane, M.T., Remembering to forget: A
competence-preserving case deletion policy for case-based
reasoning systems. In Proceedings of IJCAI-95. AAAI
Press, 1995.
Veloso, M. Planning and learning by analogical reasoning.
Springer-Verlag, 1994.
Watson, I. Applying Case-Based Reasoning: Techniques
for Enterprise Systems. Morgan Kaufman Publishers, 1997.
Winner, E. and Veloso, M.M. 2003. DISTILL: Learning
Domain-Specific Planners by Example. In Proceedings of
ICML-2003, 2003.
Xu, K., & Muñoz-Avila, H. CaBMA: Case-Based Project
Management Assistant. In Proceedings of IAAI-2004.
AAAI Press, 2004.

CB-CTP
CB-CP

CB-S

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.949 0.951

(a)

Pr
ec

is
io

n

CB-CTP

CB-CP

CB-S

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.39 0.49

(c)

Pr
ec

is
io

n

CB-CTP

CB-CP
CB-S

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.949 0.951

(b)

R
ec

al
l

CB-CTP

CB-CP

CB-S

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.39 0.49

(d)

R
ec

al
l

Figure 1: (a) Precision and (b) recall for the UM Translog
domain. (c) Precision and (d) recall for the process
planning domain. The x-axis takes the values of α. The y-
axis goes from 0% to 100%.

AAAI-05 / 239

