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Abstract

In “Single-Value domains”, each agent has the same private
value for all desired outcomes. We formalize this notion and
give new examples for such domains, including a “SAT do-
main” and a “single-value combinatorial auctions” domain.
We study two informational models: where the set of de-
sired outcomes is public information (the “known” case), and
where it is private information (the “unknown” case). Un-
der the “known” assumption, we present several truthful ap-
proximation mechanisms. Additionally, we suggest a general
technique to convert any bitonic approximation algorithm for
an unweighted domain (where agent values are either zero or
one) to a truthful mechanism, with only a small approxima-
tion loss. In contrast, we show that even positive results from
the “unknown single minded combinatorial auctions” litera-
ture fail to extend to the “unknown” single-value case. We
give a characterization of truthfulness in this case, demon-
strating that the difference is subtle and surprising.

Introduction
Classic Mechanism Design studies ways to implement al-
gorithmic procedures in a multi-agent environment, where
agents are utility-maximizers. In this setting, an algorithm
is required to choose one outcome out of a set of possible
outcomes, according to players’ preferences. Each agent ob-
tains some value from any given algorithmic outcome, and
payments may be collected in order to motivate the agents
to “behave as expected”.

This paper studies the important special case in which an
agent obtains the same value from all non-zero outcomes.
We term this thesingle-valuecase. To be more concrete, let
us consider two examples. In a “SAT domain”, which is an
adaptation of the classical SAT problem, a mechanism has
a set of variables, and needs to choose which variables to
satisfy. Each agent obtains some value if and only if at least
one out of his subset of literals is assigned “true”, otherwise
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the agent’s value is zero. In this problem domain, the possi-
ble outcomes are the possible assignments to the variables,
and it is a single-value domain since each agent obtains the
same value from all non-zero outcomes. Another example is
a special case of a combinatorial auctions (CA) domain:m
items are to be partitioned amongn agents, and each agent
has a valuation for any subset of items. In “single-value”
CAs, an agent may desire any number of subsets (each is
not a superset of the other), but her value of each of the sub-
sets must be the same. This is a generalization of single
minded agents (Lehmann, O’Callaghan, & Shoham 2002;
Mu’alem & Nisan 2002; Babaioff & Walsh 2005): while a
single minded agent must desire only one subset of items, a
single-value agent may desire many different subsets – the
point is that she assigns the same value to all of them. We
give more examples for single-value domains below.

There are two possible informational assumptions under
single-value domains. In the first, which we term theknown
case, the mechanism designer knows the agent-specific par-
tition of the outcome space, i.e. which outcomes are zero-
valued by the player, and which are not. In the second,
which we call theunknowncase, the mechanism designer
does not know the partition. In both cases agents’ values
are private. For example, in a “known” SAT domain, the set
of literals that satisfies a certain agent is public knowledge,
and the player is only required to reveal his value for being
satisfied. In an “unknown” SAT domain the player needs to
reveal both his value and his subset of literals, and therefore
has a larger “manipulation power”.

The main purpose of this paper is to explore the con-
trast between these two informational assumptions. These
two assumptions were studied and contrasted in the special
cases of combinatorial auctions (Lehmann, O’Callaghan, &
Shoham 2002; Mu’alem & Nisan 2002; Babaioff & Blum-
rosen 2004) and supply chains (Babaioff & Walsh 2005), but
only with single minded agents. In all other “one parameter”
models (e.g. Archer & Tardos (2001)), there is animplicit
informational assumption that the agent-specific partition of
the outcome space is public (the “known” case). Here we
contrast the “easiness” of the “known” case with the seem-
ingly inherent difficulties of the “unknown” case.

We provide truthful approximation mechanisms for sev-
eral “known” domains. For the “known” SAT domain, we
show that the classic conditional expectations approximation
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algorithm is truthful. For single-value CAs, we show how to
modify the greedy algorithm of Lehmann, O’Callaghan, &
Shoham (2002) to obtain a truthful welfare-approximation
mechanism for the “known” single-value case (i.e. agents
may be multi-minded). To further demonstrate the “easi-
ness” of the “known” case, we give a general technique to
convert “unweighted bitonic” algorithms to truthful mecha-
nisms, incuring only a small loss in the approximation.

The fact that the “known” case exhibits many positive
results is usually explained by the simplicity of the value-
monotonicity condition, which is necessary and sufficient
for truthfulness in this case (Archer & Tardos; Mu’alem &
Nisan). Lavi, Mu’alem, & Nisan (2003) and Saks & Yu
(2005) show that a “weak monotonicity” condition, that gen-
eralizes the value-monotonicity condition, is necessary and
sufficient for truthfulness in all convex domains. Unfortu-
nately, while a “known” single value domain is usually con-
vex, an “unknown” single-value domain is usually not.

For CAs with unknown single minded agents, Lehmann,
O’Callaghan, & Shoham (2002) identifies a requirement, ad-
ditional to value monotonicity, that must be satisfied in order
to obtain truthfulness. This property can be loosely stated as
“whenever an agent receives his desired bundle with some
declaration, he will receive his desired bundle when declar-
ing his true desired bundle”. We show that this additional
property no longer suffices when one switches from single
minded agents to single-value agents. E.g. for the greedy
algorithm of Lehmann, O’Callaghan, & Shoham, the above
mentioned “additional property” still holds, but, quite sur-
prisingly, we show that this is no longer sufficient for truth-
fulness, and the greedy algorithm is in fact untruthful for
“unknown” single-value players. We give a different neces-
sary and sufficient condition for truthfulness in the unknown
case, which turns out to be more subtle.

Model
In a Single-Value Domain, there is a finite set of agentsN
(|N | = n) and a set of outcomesΩ. Each agenti ∈ N has a
valuev̄i > 0, and asatisfying set̄Ai ⊂ Ω. The interpretation
is thati obtains a valuēvi from any outcomeω ∈ Āi (in this
case we say thati is satisfiedby ω), and0 otherwise. The set
Āi belongs to a predefined family of valid outcome subsets
Ai. Let t̄i = (v̄i, Āi) ∈ R++ ×Ai denote thetypeof agent
i, andT = Rn

++ × A denote the domain of types, where
A = A1 × · · · × An. We next specify some examples for
single-value domains that will be used throughout the paper.

Example 1: A SAT domain. In the SAT domain, there
is a set ofl variables, which can be assigned either True
or False. Each agent is represented by a clause, which is a
conjunction over a set of literals (each variable can appear
at most once in each clause and can not appear in both its
positive and negated form in any clause). In thek-SAT do-
main, each clause has at leastk literals. Agenti obtains a
valuev̄i > 0 if his clause is satisfied, that is, at least one of
his literals is assigned True. Usually, in such a model, vari-
ables correspond to decisions a planner must make, and the
agents have contradicting needs (a “need” is a variable or its
negetaion). The question which variables to satisfy depends

on the values and the clauses of the different agents. Since
this information is private to the agents, we need to build a
mechanism that elicit this information.

Our general notations translate, in this case, as follows:
Ai is the set of all assignments in which at least one of agent
i’s variables is True, for some specific clause.Ai is the set
of all “valid” Ai’s, for any possible clause.
Example 2: Graph-Packing domains. In such domains,
we are given an underlying graph, and each agent desires
some subset of the edges with some predefined property.
Any subset of edges that satisfies that property is worthv̄i

to agenti. The goal is to associate edges to agents under the
limitation that each edge can be associated to at most one
agent. For example, each agent may desire edges that span
some of the graph nodes (a spanning tree). A special case
is the Edge-Disjoint Paths (EDP) problem in which each
agent desires some set of edges that compose a path from
his source nodesi to his target nodeti. Such problems arise
naturally in routing where agents want to ensure that they
can send packets from a source node to a destination node.
Here, the agent’s type is a valuēvi and some specific pair
of nodessi andti. Ai is the set of all allocations in which
i receives a path between his specific source-target pair of
nodes.Ai is the set of all suchAi, for any possible pair of
source-target nodes.
Example 3: Single-Value CA. There arem different items
to be partitioned to the agents, each agent is single-valued.

Definition 1 (Single-Value players) Player i is a single-
value(multi-minded) player if he has the same value for all
desired bundles. I.e., if there exists aset of desired bundles
S̄i (s ∈ S̄i is one of the bundles thati desires), and a real
valuev̄i > 0, such that̄vi(t) = v̄i if t ⊇ s for somes ∈ S̄i,
and otherwisēvi(t) = 0.1

Graph-Packing domains are a special case, where every edge
is an item. This also clarifies the difference between single
minded and single value combinatorial auctions: the agents
in the EDP problem, for example, are not single minded, as
any path between their source and target nodes will satisfy
them, but they are indeed single-value.

In this paper, we make explicit the crucial difference be-
tween the following two information models:

Definition 2 (“Known” and “Unknown” domains)

1. (“Known” domains) In a Known Single-Value (KSV) do-
mainT , all information is public, except that̄vi is private
to agenti.

2. (“Unknown” domains) In an Unknown Single-Value do-
main (USV)T , the entire type (̄vi and Āi) is private in-
formation of agenti.

The distinction between the known and the unknown
cases appears implicitly in all of our examples. For ex-
ample, in SAT it is implicitly assumed that the satisfying
clause of an agent is publicly known. It is natural to look at
the case in which the satisfying clause is unknown. While

1To get a unique representation we assume thatS̄i is of minimal
size (no set in̄Si contains another set in̄Si).
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this difference was studied for the model of single minded
agents (Mu’alem & Nisan 2002), we show here that its im-
plications for strategic mechanisms are more subtle when
considering general single-value domains.

Since agents have private information that the social de-
signer needs to collect in order to decide on the outcome,
we need to construct amechanism. Informally, a mecha-
nism is a protocol coupled with a payment scheme. The
hope is that by designing the payment schemes appropri-
ately, agents will be motivated to behave as expected by the
protocol. Formally, astrategic mechanismM is constructed
from astrategy spaceS = S1× · · ·×Sn, anallocation rule
(algorithm)G : S → Ω, and apayment ruleP : S → Rn

++.
Each agenti acts strategically in order to maximize hisutil-
ity: ui(s, t̄i) = vi(G(s), t̄i)− Pi(s).

direct revelation mechanisms, are a class of mechanisms
in which agents are required to simply reveal their type
(Si = Ti). Of course, revealing the true type may not be
in the best interest of the agent. Atruthful mechanism is a
direct revelation mechanism, in which an agent maximizes
his utility by reporting his true type (“incentive compatibil-
ity”), and in addition his utility will always be non-negative
(“individual rationality”), i.e. his payment will always be
lower that his obtained value. Formally,

Definition 3 (Truthfulness) A direct revelation mechanism
M is truthful if, for any i, any true typēti ∈ Ti, and any
reported typest ∈ T : ui((t̄i, t−i), t̄i) ≥ ui(t, t̄i), and
ui((t̄i, t−i), t̄i) ≥ 0.2

An allocation ruleG is truthful if there exists a payment rule
P such that the direct revelation mechanismM = (G, P ) is
truthful. Truthful mechanisms are useful in that they remove
the strategic burden from agents – choosing the best strategy
for the agent is straight-forward.

In this paper our goal will be to design mechanisms that
maximize thesocial welfare– the sum of players’ values
of the chosen outcome. Although the well known Vickrey-
Groves-Clarke mechanism is a truthful mechanism for the
“unknown” as well as the “known” cases, its computation
can be non-polynomial in cases where the underlying prob-
lem is NP-hard, as it is the case in all our examples. Since
the problems are intractable, we relax our goal and settle for
welfareapproximationinstead of optimal welfare. As usual,
an algorithmG has an approximation ratioc (wherec may
depend on the parameters of the problem) if for any instance
x of the problem, the social welfareG(x) computed byG is
at least the optimal social welfare forx overc. I.e. for anyx
it holds thatc ·G(x) ≥ OPT (x) .

Known Single-Value Domains
We begin by quickly repeating the well-known characteriza-
tion of truthfulness for “known” single-value domains, and
use it to describe truthful approximations for our examples
of single-value domains. We then show how to convert some
approximation algorithms for unweighted domains to truth-
ful mechanisms that almost preserve the approximation.

2Throughout the paper we use the notationx−i =
(x1, ..., xi−1, xi+1, ..., xn).

Monotonicity and Truthfulness
A monotonicity condition which was repeatedly identified in
recent years (Lehmann, O’Callaghan, & Shoham; Archer &
Tardos; Mu’alem & Nisan, etc...) completely characterizes
truthful mechanisms for KSV domains:

Definition 4 (Value monotonicity) An algorithm G is
value monotonicif for all i ∈ N , A ∈ A, and v ∈ Rn

++:
if G(v,A) ∈ Ai and v′i > vi thenG(v′, A) ∈ Ai, where
v′ = (v′i, v−i).

When an algorithm is value monotonic a winner cannot be-
come a loser by improving his bid. The definition of critical
value of Lehmann, O’Callaghan, & Shoham is phrased, in
our notation, as:

Observation 1 (Critical value) If G is value monotonic
then for all i ∈ N , A ∈ A, v−i ∈ Rn−1

++ , there exists a
critical valueci(Ai) ≥ 0, s.t.

• if vi > ci(Ai) thenG(v, (Ai, A−i)) ∈ Ai (“ i wins”).
• if vi < ci(Ai) thenG(v, (Ai, A−i)) /∈ Ai (“ i loses”).

The critical valueci(Ai) is measured with respect to the sat-
isfying setAi. It is dependent on the other agents types, but
as we always consider the types of the other agents as fixed,
we shorten the notation and omit the their types.
In anormalizedmechanism for single-value domain, a loser
pays 0. We use the termmechanismto denote a direct reve-
lation normalized mechanism. The following was observed
many times (Lehmann, O’Callaghan, & Shoham; Archer &
Tardos; Mu’alem & Nisan).

Theorem 1 A mechanism for a KSV domain is truthful if
and only if its allocation ruleG is value monotonic, and any
winneri paysci(Āi).

This implies that any value monotonic algorithm is truth-
ful (with winners paying their critical values, and losers pay-
ing zero). Note that any polynomial time algorithm creates
a polynomial time mechanism (since critical values can be
calculated via binary search).

Application 1: SAT Domains
Finding an assignment that maximizes the number of sat-
isfied clauses in a SAT domain is a classic problem. The
well known conditional expectation algorithm turns out to
satisfy value monotonicity. Briefly, the algorithm is a poly-
nomial time derandomization of the following simple ran-
domized algorithm: each variable is independently assigned
with False or True with equal probability. This achieves an
expected value of at least(1− 1/2k) fraction of the optimal
value, when each clause contains at leastk literals.

The conditional expectation algorithm goes over the vari-
ables in some arbitrary order, and for each variable, checks
the two conditional expectations, i.e. when this variable
is either True or False, fixing the values of all previously
assigned variables. The value that maximizes the condi-
tional expectation is chosen, and the algorithm moves to the
next variable. We show that this algorithm is value mono-
tonic, hence when agents’ clauses are public information
(the “known” case), this algorithm can be made truthful (but
it is not truthful for the “unknown” case).
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The Single-Value CA Greedy Algorithm:

Input: For each agenti, a valuevi. The set of desired bun-

dles{sk
i }ki

k=1 is known.

Algorithm:

1. Sort the bids by descending order ofvi/
p

sk
i .

2. While the list is not empty, pick the first bid on the list (of
agenti with bundlesk

i ) – agenti wins. Now remove all
other bids ofi from the list, as well as any other bid that
intersectssk

i .

Figure 1:The Single-Value CA Greedy Algorithm is value mono-
tonic, thus it is truthful for “Known” single-value multi-minded
agents. It is not truthful for “Unknown” agents.

Theorem 2 The conditional expectation algorithm is truth-
ful for the “known” case, and it achieves a(1 − 1/2k)-
approximation fork-SAT, in polynomial time.

Proof: Suppose agenti wins with some valuev. We need
to show that he wins with a valuev′ > v. Let j be his first
desired variable that was satisfied when he declaredv. Sup-
pose now that he declaresv′. Consider the first time,j′, in
which the assignment toxj′ was reversed (with respect to
the assignment when he declaredv). If j′ < j then this must
imply thatxj′ appears ini’s clause, since at this point noth-
ing besidesi’s value is different. The fact that beforehand
i was not satisfied untilj means that now, after reversing
xj′ ’s assignment,i is satisfied, and we’re done. Otherwise,
j′ ≥ j. But then notice that at stepj the assignment for
xj must be the same as before, because at this point noth-
ing was changed besides the fact thati has raised his value.
Thereforei is satisfied, as needed.

Application 2: Single-Value CAs
We show that the greedy algorithm of Lehmann,
O’Callaghan, & Shoham, that was originally designed
for single minded agents, can be modified to fit the more
general case of single-value agents (under the “known”
assumption). For ease of exposition we first assume that
each agenti is “ki-minded”, that is, has a set of desired
bundles of sizeki, where these desired bundles are known.
We then explain how the case of general multi-minded
agents (which might have an exponential number of desired
bundles) with proper oracles can be solved. We also adapt
the algorithm to create a polynomial algorithm for EDP.

Theorem 3 The Single-Value CA Greedy Algorithm (see
Figure 1) is truthful for known multi-minded bidders, and
it achieves a(

√
m + 1)-approximation in polynomial time.

Proof: By Theorem 1, to prove truthfulness we only need
to check that the allocation algorithm is value monotonic.
If agent i wins (and is satisfied) with some bundlesk

i and
increases his value, all his bids only improve. The allocation
beforesk

i is considered does not change unless one of agent
i’s bundles win. If this is not the case,sk

i is considered at a
prior stage to its original stage, thus must win.

The approximation proof relies on the fact that the mech-
anism is a

√
m-approximation for single minded agents

(Lehmann, O’Callaghan, & Shoham). LetW,OPT be the
set of winners in the greedy and the optimal allocations, re-
spectively. LetOPT1 = OPT∩W andOPT2 = OPT \W .
If we transform all agents inOPT2 to be single minded
agents that only desire the bundle thatOPT allocates to
them, the result of the greedy algorithm will not change.
Since the allocationW2 (allocating to each agent inW2 his
desired bundle) is valid, and by the fact that the greedy algo-
rithm for single minded agents is a

√
m-approximation, we

get that
∑

i∈W2
v̄i ≤

√
m ·

∑
i∈W1

v̄i. Thus
∑

i∈OPT v̄i ≤
(
√

m + 1) ·
∑

i∈W1
v̄i, and the theorem follows.

The running time of the algorithm is polynomial in the
total number of bundles that all agents desire (

∑N
i=1 ki). It

is easy to verify that all that is needed for the algorithm is
subsequent queries of the form “given a set of items, return
a minimal size subset of items that you desire if such subset
exists”. Provided with such an oracle access, the mecha-
nism performs a polynomial number of operations. In some
cases, such queries can indeed be answered in polynomial
time, even if agents have an exponential number of desired
bundles. For example, in the case of the Edge Disjoint Paths
domain. In this case, the query takes the following form:
given a subgraph of the original graph, a source node and
a target node, find the shortest path between the two nodes.
This of course can be done in polynomial time. By remov-
ing the agent and the edges assigned to him, we can make
sure that he will receive only one bundle, and no edge will
be assigned to two different agents.

Corollary 1 The Greedy Algorithm is truthful for KSV
agents in the EDP model, and achieves a(

√
m + 1)-

approximation in polynomial time.

We note that in general the greedy algorithm isnot truth-
ful for USV agents. In particular the greedy algorithm is not
truthful for EDP, as we show in the next section.

In a companion paper (Babaioff, Lavi, & Pavlov 2005) we
explore strategic mechanisms for the USV case, and provide
general methods to create such mechanisms.

Converting Unweighted Algorithms to Truthful
Mechanisms
As a last demonstration to the applicability of value mono-
tonicity, we give a general technique to create a truth-
ful (value monotonic) mechanism from any given “un-
weighted algorithm” that satisfies the condition of un-
weighted bitonicity. In general an allocation is bitonic if it
satisfies the following definition due to Mu’alem & Nisan.

Definition 5 A monotone allocation algorithmA is bitonic
if for every bidderj and anyv−j , the welfarewA(v−j , vj)
is a non-increasing function ofvj for vj < ci(Ai) and a
non-decreasing function ofvj for vj ≥ ci(Ai).

In an unweighteddomain, agents’ values are fixed to be
one. Thus, an unweighted algorithmBR just decides which
agents are satisfied, and which are not. Clearly, many com-
binatorial algorithms can be viewed as unweighted alloca-
tion algorithms. Bitonic allocation rules for the weighted
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Algorithm based on a Bitonic Unweighted Allocation Rule

Input: For each agenti, a valuevi.

Algorithm:

1. Each agenti, that bidsvi, participates in any classC such
thatvi ≥ eC−1.

2. UseBR to determine the winners in every class.

3. Output the classC∗ for which eC−1n(C) is maximal,
wheren(C) denotes the number of winners in classC.

Figure 2:Converting ac-approximation bitonic unweighted algo-
rithm to a truthful(ec ln v̄max)-approximation algorithm.

case were defined by Mu’alem & Nisan. Unweighted
bitonicity is weaker. Intuitively unweighted bitonicity
means that adding a loser cannot increase the number of
winners. Formally, for a set of playersX with value of one
for some outcomes, letBR(X) be the subset ofX of satis-
fied players. Then,

Definition 6 (Unweighted Bitonicity) BR satisfies Un-
weighted Bitonicity if for any set of playersX and any
i /∈ X, if i /∈BR(X ∪ i) then|BR(X ∪ i)| ≤ |BR(X)|.

The mechanism presented in Figure 2 takes any un-
weighted bitonic allocation ruleBR and creates a truth-
ful mechanism,UBM(BR), for KSV agents: We main-
tain ln(v̄max) classes, each agent participates in some of the
classes, according to his declared value.BR is then used to
determine the set of winners in each class, and the global set
of winners is taken to be the winners in the class with the
highest value.

Lemma 1 If BR satisfies unweighted bitonicity then
UBM(BR) is truthful for the KSV model.

Proof: By Theorem 1 we only need to show that the algo-
rithm is value monotonic. Assume that agenti wins, so he
appears with value1 in classC∗. If i increases his value, the
only change is that he may now participate in some higher
classes after classC∗. There is no change in classC∗ and all
prior classes. In all higher classes, by unweighted bitonic-
ity, if i remains a loser then the value of the class does not
increase. We conclude that either classC∗ remains the win-
ning class or a higher class withi winning in it become the
winning class. In any casei remains a winner.

Theorem 4 Given any unweighted bitonicc-approximation
algorithm BR, UBM(BR) is a truthful (ec ln v̄max)-
approximation algorithm for the KSV model.

Proof: Using Lemma 1, it only remains to show the ap-
proximation. Letω∗(N, v̄) denote both the value of the
optimal outcome with respect to the set of agentsN and
valuesv̄, as well as the set of satisfied agents in that out-
come. LetA(C) = {i ∈ N |vi ∈ [eC−1, eC)} de-
note the set of agents for which the last class they ap-
pear in is C. Let W (C)ω∗(N, v̄) ∩ A(C) be the set
of agents in the optimal allocation and with value in
[eC−1, eC). Let Cm be the class with the maximal value
of ω∗(W (C), v̄). It holds thatω∗(W (Cm), v̄) ≥ ω∗(N,v̄)

ln v̄max
.

Now let v̂i be the value of agenti rounded down to an
integral power ofe, and let v̂ denotes the vector of such
values. Since agents bid at least ane fraction of their
true values,ω∗(W (Cm), v̄) ≤ e ω∗(W (Cm), v̂). Since
the unweighted rule is ac-approximation allocation rule,
it follows that ω∗(W (Cm), v̂) ≤ c eCm−1n(Cm) ≤
c eC∗−1n(C∗), where the last inequality is since the mech-
anism chooses the classC∗ that maximizeseC−1n(C).
We conclude thatω∗(N, v̄) ≤ (ln v̄max)ω∗(W (Cm), v̄) ≤
(ln v̄max)e ω∗(W (Cm), v̂) ≤ (ln v̄max)e c eC∗−1n(C∗).
Hence the value achieved by the mechanism is at least
eC∗−1n(C∗).

Unknown Single-Value Domains
Unfortunately, designing truthful mechanisms for USV do-
mains seems to be much harder than for KSV domains. The
greedy algorithm of Lehmann, O’Callaghan, & Shoham is
one of the rare examples for truthfulness in unknown do-
mains. Somewhat surprisingly, it turns out that our modified
version of Lehmann, O’Callaghan, & Shoham, for single-
value CA (presented in Figure 1), and in particular for the
EDP problem, stops being truthful for the unknown case:

Proposition 1 The EDP Greedy Mechanism is not truthful
for the Unknown EDP problem.

Proof: We show that if each agent has to report both
his value and his source-target node pair, the EDP Greedy
Mechanism is not truthful. Consider the undirected cycle
graph on 5 nodes,n1, n2, . . . , n5. Suppose agent 1 has type
($10, (n1, n2)) (has a value of $10 for paths fromn1 to n2),
and agent 2 has type($5, (n1, n5)), and that they both bid
truthfully. Agent 3 has type($100, (n1, n2)). If he bids
truthfully he wins (receive the edge(n1, n2)), and pays10,
as this is his critical value to win. However, if he bids
($100, (n5, n2)), then he still wins and receives the edges
(n5, n1) and (n1, n2) (so he is satisfied). But, his critical
value for winning will now be zero, as he would have been
able to win and receive the edges(n2, n3), (n3, n4), (n4, n5)
even if he would have declared any value greater than0 (in
this case he would still win, but, he would not be satisfied
according to his true type). Thus agent3 can increase his
utility by declaring a false type.

This is quite surprising, as one can show that the follow-
ing claim still holds: if an agent is satisfied with some type
declaration then he will still be satisfied with his true type
declaration. Although this condition characterizes truthful
mechanisms for “unknown” single minded bidders, it is, ap-
parently, not enough in general. We turn to give a general
characterization for truthfulness in USV domains.

Characterization of Truthfulness
Unlike in the “known” model, in the “unknown” model an
agent is requested to report his satisfying set in addition to
his value. The agent reports analleged satisfying setAi,
which might differ from his true satisfying set̄Ai. This im-
plies an important difference from the “known” case: it is
not true that an agent is satisfied if and only if he is a win-
ner. Given an outcomeω, the mechanism can only decide
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if i is a winner (ω ∈ Ai), but cannot decide ifi is satisfied
(ω ∈ Āi), sinceĀi is private information. Clearly, necessary
conditions for truthfulness in KSV domains are also neces-
sary in USV domains. Therefore, for USV truthfulness to
hold, the allocation rule must be value monotonic and the
winners’ payments must be by critical values (assuming that
losers pay 0). The difference from KSV domains is that we
need to make sure that the agent’s best interest will be to
report his satisfying set truthfully.

Definition 7 The alleged satisfying setAi 6= Āi is asatisfy-
ing lie for agenti with respect to(v−i, A−i) ∈ Rn−1

++ ×A−i,
if there exists a valuevi such thatG(v,A) ∈ Āi. If
G(v,A) ∈ Āi ∩ Ai we say that it is awinner’s satisfying
lie, and ifG(v,A) ∈ Āi \Ai we say that it is aloser’s satis-
fying lie.

E.g. in an Exact single minded CAs (a winner receives
his requested bundle and a loser receives∅), there are no
loser’s satisfying lies, and any winner’s satisfying lie must
be supersets of the agent’s desired bundle.

In a truthful algorithm there must be no satisfying lie that
increases the utility of some agent. We present a condition
that prevents such a utility increase for a lying winner, and a
condition that prevents such an increase for a lying loser.

Definition 8 A value monotonic algorithmG

• ensures minimal payments, if for any agenti ∈ N and
Āi ∈ Ai, if Ai 6= Āi is a winner’s satisfying lie for agent
i with respect to(v−i, A−i), then it holds thatci(Āi) ≤
ci(Ai).

• encourages winning, if for any agenti ∈ N and Āi ∈
Ai, if Ai 6= Āi is a loser’s satisfying lie for agenti with
respect to(v−i, A−i), then it holds thatci(Āi) = 0.

In an Exact single minded CAs, this condition implies that
the price of a superset is at least as any of its subsets (i.e.
this reduces to the condition of Lehmann, O’Callaghan, &
Shoham).

Theorem 5 MechanismM with allocation algorithmG is
truthful for the USV model if and only ifG is value mono-
tonic, the payments are by critical values,G encourages
winning and ensures minimal payments.

Proof: Case if: The proof that truthful bidding ensures
non-negative utility (individual rationality) is exactly the
same as in the KSV case (Theorem 1) and is omitted. To
prove incentive-compatibility we need to show that for all
i ∈ N,A−i ∈ A−i, v−i ∈ Rn−1

++ , Āi ∈ Ai, if i changes his
bid fromvi andAi to v̄i andĀi his utility does not decrease.

If i has a non positive utility by biddingvi andAi, in-
dividual rationality ensures that he can weakly improve his
utility to zero, by biddinḡvi andĀi. If i has positive utility
by lying, this implies that he is satisfied (since his payment
is non negative, even if a loser). If he is a loser, then since the
algorithm encourages winning, he would also win, be satis-
fied and pay zero if truthful. Thus the agent has the same
utility of v̄i by bidding truthfully.

Finally, we consider the case thati is satisfied and wins,
that is ω ∈ Ai ∩ Āi. In that case he paysci(Ai) ≤ vi

and has utilityv̄i − ci(Ai) ≥ 0. Now assume thati bids

Āi and vi instead. SinceM ensures minimal payments,
G(v, (Āi, A−i)) ∈ Āi (i is still satisfied if he reports̄Ai

instead ofAi). i paysci(Āi) ≤ ci(Ai), so his utility does
not decrease. Now that he bids̄Ai, sincev̄i ≥ ci(Āi) his
utility will remain the same if he bids̄vi instead ofvi.

Case only if:Assume that the USV mechanism is ex post
individually-rational and incentive-compatible. This implies
that it is also individually rational and incentive-compatible
for the KSV model, therefore by Theorem 1 it must be value
monotonic and the payments must be by critical values.

Next, we show that the algorithm encourages winning.
Assume in contradiction that it does not, this means that
for somei ∈ N,A ∈ A, v ∈ Rn

++, Āi ∈ Ai such that
G(v,A) ∈ Āi \ Ai it holds thatci(Āi) > 0. Assume that
v̄i = vi andi lies and reports̄vi andAi 6= Āi (untruthful
bidding). In this case his utility is̄vi (since he loses and pays
0, but is satisfied). By bidding truthfully, if̄vi < ci(Āi),
he loses and is unsatisfied, and his utility is0 < v̄i. If
v̄i = ci(Āi) his utility is also0 < v̄i (whether winning
or losing). Finally, ifv̄i > ci(Āi), he wins and his utility is
v̄i − ci(Āi) < v̄i. In any case his utility is smaller than̄vi,
contradicting incentive-compatibility.

Finally, we show that the mechanism ensures minimal
payments. Assume in contradiction that it does not. Then for
somei ∈ N,A ∈ A, v ∈ Rn

++, Āi ∈ Ai, i bidsvi > ci(Ai)
andAi such thatG(v,A) ∈ Ai ∩ Āi (i is satisfied and he
wins) butci(Āi) > ci(Ai). Assume that̄vi = vi andi re-
ports v̄i andAi 6= Āi (untruthful bidding). In this case he
has a utility ofv̄i − ci(Ai) > 0 (since he is satisfied). Ifi
bidsv̄i andĀi (truthfully) there are two cases. Ifi is a loser,
he is not satisfied and his utility is zero. Ifi is a winner, he
is satisfied, he paysci(Āi) > ci(Ai), so his utility is smaller
thanv̄i − ci(Ai). We conclude thati has improved his util-
ity by reporting his satisfying set untruthfully, contradicting
incentive-compatibility.

The next Lemma presents a characterization of algorithms
that ensure minimal payments (in the interest of space we
omit its proof):

Lemma 2 A value monotonic algorithmG ensures mini-
mal payments if and only if for alli ∈ N,A ∈ A, v−i ∈
Rn−1

++ , Āi ∈ Ai, such thatAi 6= Āi is a satisfying lie
for agenti with respect to(v−i, A−i), it holds that for any
v′i > ci(Ai) (i wins with a bidv′i and Ai, but he does not
bid his exact critical value), agenti wins and is satisfied if
he bidsv′i andĀi.

We next present a family of domains that enable the de-
sign of algorithms that “ensure minimal payments”.

Truthfulness in Semi-Lattice Domains
In this section we give a sufficient conditions for mecha-
nisms for “semi-lattice” domains to be truthful. All non
VCG results for USV domains that we are aware of are for
semi-lattice domains e.g., the mechanism for single-minded
CA of Lehmann, O’Callaghan, & Shoham as well as mech-
anisms for single-value domains by Briest, Krysta, & Vock-
ing. We are not aware of any truthful non VCG mechanisms
for non semi-lattice domains (e.g, the SAT domain and the
single-value combinatorial auctions domain).
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Definition 9 The familyAi is a semi-latticeif for any two
setsA1

i , A
2
i ∈ Ai, it holds thatA1

i ∩A2
i ∈ Ai.

The domainA = A1×, . . . ,×An is a semi-latticeif for
all i ∈ N it holds thatAi is a semi-lattice.

For example, in a single minded CA, ifA1
i andA2

i are
the sets of satisfying allocations for bundless1

i ands2
i re-

spectively, thenA1
i ∩ A2

i is the set of satisfying allocations
if agenti desires the bundles1

i ∪ s2
i .

Definition 10 LetA be a semi-lattice. An outcomeω ∈ Ω
is a distinguishing minimal element forA ∈ A, if for any
i ∈ N , eitherω /∈ Ai or ω ∈ Ai \ A′

i for all A′
i ∈ Ai such

thatA′
i ⊂ Ai.

If a distinguishing minimal element belongs to a satisfying
set, it does not belong to any of its proper subsets. For the
single-minded CA domain, assume thatAi is the set of al-
locations in whichi receives a bundle that containssi, and
similarly A′

i is the set of allocations fors′i. If A′
i ⊂ Ai this

implies thatsi ⊂ s′i. If for A, i wins and receivessi, then
he is not satisfied for anyA′

i ⊂ Ai (since he must receive
s′i ⊃ si to be satisfied). This implies that an “Exact” mech-
anism for single-minded CA has the following property.

Definition 11 An algorithmG for USV semi-lattice domain
has thedistinguishing minimal element propertyif for all
A ∈ A, v ∈ <n

++, it outputs an outcomeω ∈ Ω that is a
distinguishing minimal element forA.

Next, we look at mechanisms for semi-lattice domains
with the distinguishing minimal element property. We show
that in order to ensure minimal payments in these domains,
we only need to look at possible subsets of the satisfying
setĀi. This is exactly the case for “Exact” mechanisms for
single-minded CA, for which we only need to care about lies
for supersets of the agent’s desire bundle, and make sure the
agent never pays less for a superset.

Lemma 3 Assume that a monotonic algorithmG for a USV
semi-lattice domain has the distinguishing minimal element
property. ThenG ensures minimal payments if and only if
for all i ∈ N,A ∈ A, v ∈ <n

++, Āi ∈ Ai, such thatAi ⊂
Āi, it holds thatci(Āi) ≤ ci(Ai).
Proof: The proof follows from the observation below.

Observation 2 Assume that a monotonic algorithmG for
a USV semi-lattice domain has the distinguishing minimal
element property. IfAi 6= Āi is a possible satisfying lie for
agenti with respect toA−i ∈ A−i andv−i ∈ <n−1

++ , then
Ai ⊂ Āi.

Proof: Assume that there exists a valuevi such that
G(v,A) ∈ Ai ∩ Āi. This implies that eitherAi ⊂ Āi or
Ai ∩ Āi ⊂ Ai. Assume in contradiction thatAi ∩ Āi ⊂ Ai

and Ai ∩ Āi 6= ∅. Since the domain is a semi-lattice,
A′

i = Ai ∩ Āi ∈ Ai. SinceG has the distinguishing
minimal element property, ifω ∈ Ai it holds that since
A′

i = Ai∩Āi ∈ Ai andA′
i ⊂ Ai we can derive thatω /∈ A′

i.
We conclude thatω ∈ Ai \ Āi, which is a contradiction toω
being satisfying fori (in Āi).

The next Corollary is derived directly from the above
Lemma and Theorem 5.

Corollary 2 An algorithm is truthful for the USV model if
it is value monotonic, it encourages winning and it has the
distinguishing minimal element property.

Conclusions
This paper studies single-value domains under the frame-
work of Mechanism Design, and investigates the effect of
the “known” vs. the “unknown” informational assumption.
We show that for the “known” case, positive results can be
constructed relatively easily. This is contrasted with the dif-
ficulties of the “unknown” case, for which we show that even
the greedy algorithm of Lehmann, O’Callaghan, & Shoham
does not maintain truthfulness when switching from single
minded to single-value domains. We shed some additional
light on this phenomena by providing a new characterization
of truthfulness for the unknown case. The main open ques-
tion that we raise is whether this difference, as shown by the
characterization, implies some real impossibilities.
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