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Abstract

Logicians frequently use axiom schemata to encode (poten-
tially infinite) sets of sentences with particular syntactic form.

In this paper we examine a first-order language in which it is
possible to write expressions that both describe sentences and
assert the truth of the sentences so described. The effect of
adding such expressions to a knowledge base is the same as
directly including the set of described sentences.

Introduction

Logicians frequently use axiom schemata to encode (po-
tentially infinite) sets of sentences with particular syntactic
properties.

As an example, consider the axiom schema shown below,
where¢ is a sentence with a single free variable.

#(0) AVn.(dp(n) = ¢p(n+ 1)) = Vn.¢(n)

This schema encodes infinitely many sentences, jointly com-
prising the principle of mathematical induction. The follow-
ing sentences are instances.

p(0) AVn.(p(n) = p(n+1)) = ¥Yn.p(n)

q(0) AVn.(g(n) = g(n+ 1)) = Vn.q(n)

Va.r(z,0) AVn.(Ve.r(z,n) = Veor(x,n+ 1))
= VYn.Vr.r(z,n)

Axiom schemata are differentiated from axioms due to the
presence of metavariables or other metalinguistic notation
(such as dots or star notation), together with conditions on
the variables. Theylescribesentences in a language, but

The effect of adding such sentences to a knowledge base is
the same as directly including the (potentially infinite) set of
described sentences in the knowledge base.

The use of such a language simplifies the construction
of knowledge-based systems, since it obviates the need for
building axiom schemata into deductive procedures. It also
makes it possible for systems to exchange axiom schemata
with each other and thereby promotes knowledge sharing.

The trick is to provide terminology in our language for
talking about expressions in our language and a “truth” pred-
icate to assert the truth or falsity of the sentences so de-
scribed.

This trick is similar to the trick used to develop a first
order theory for the notion of truth. Unfortunately, those ef-
forts are fraught with difficulties of dealing with paradoxes.
Once we have a way of describing sentences and a truth
predicate, it is tempting to assert that a sentence satisfies
the truth predicate if and only if it is true; but this causes
problems (Tarski 1956). For example, sentences like “This
sentence is false” become self-contradictory.

A number of solutions to this problem have been pre-
sented over the years. See (Turner 1991) for a description
of the problem and some of its solutions. See also (Attardi
& Simi 1995; DesRivieres & Levesque 1965; Haas 1986;
Perlis 1985; Sato 1992; Weyhrauch 1980; Chen, Kifer, &
Warren 1989) for additional material. The various solutions
to this problem offer different tradeoffs of understandability,
coverage, and implementability.

The framework described here is much simpler than any
of these previous approaches. We assert that a sentence

they are not themselves sentences in the |anguage' As a re.S&tiSﬁeS our truth Predicate if and only if the sentence IS
sult, they cannot be manipulated by procedures designed to true, but we say this only for sentences that do not contain
process the language (presentation, storage, communication the truth predicate. This eliminates the paradox mentioned
deduction, and so forth) but instead must be hard coded into above, since sentences like “This sentence is false” cannot

those procedures.
In this paper we examine a language in which it is possi-

be expressed.
From the point of view of formalizing truth, this is a cheat,

ble to write expressions that describe sentences and to write Since it fails to cover those interesting cases where sentences
sentences that assert the truth of the sentences so described:ontain the truth predicate. However, from the point of view
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of capturing axiom schemateot involving the truth predi-
cate, it works just fine. Furthermore, unlike the solutions to
the problem of formalizing truth, our framework is easy for
users to understand, and it is easy to implement.

This paper presents the model theory for this solution to
the problem. A separate paper describes several proof pro-
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cedures that implement the techniques developed here.

In what follows, the baselevel language we will be de-
scribing, named. 3, is a standard, first-order language. The
metalevel language of descriptions, namieg, is also a
standard, first-order language and is disjoint frém. It
includes a mechanism for asserting the truth of described
Lp sentences: a single, unary predicate The first-order
language produced from the union bf’s vocabulary and
Ly,'s vocabulary define the language that we investigate in
this paper. It will be denoted h¥.

The first section explains in more detail hdw sentences

are described and what it means for a set of sentences to beobjects ofLs:

sions to be interpreted as macros which translate into the
appropriate constructor terms.

Example 1 To be more precise about our method for de-
scribing sentences df g, supposée. g is built from the fol-
lowing finite set of relation, function, and object constants
with an infinite set of variables. An infinite set of variables
and finitely many constants is not required for our scheme,
but it is a common case.

relations ofLg: {p, q}
functions ofLg:{f,g,h}

{a,b,c}

finitely describable. The second section discusses the ma- variables ofLg: {v1,vs, ...}
chinery used to assert the truth or falsity of a sentence so The description languagel,;, includes the object con-

described, i.e. it axiomatizes. The third section proves a
notion of soundness and completeness for our scheme.

Expression Descriptions

With the exceptions noted below, we use standard infix nota-
tion. Whether a symbol is a variable, object constant, func-
tion constant, or relation constant will be clear from context.
There are the usual logical operatersh\, V, =, <, and<;

and there are the usual quantifigrand3. A logical expres-
sion is any sequence of symbols in the logic, e-gA Ap,

p(a A D), p(b). A logical sentence can be either open or
closed but in both cases is well-formed, epz), Vz.p(z).

The definitions of model, variable assignment, and logical
implication are standard. See (Genesereth & Nilsson 1987).

Expression Descriptions

First we discuss a choice of method for describing sen-
tences in the baselevel languafjg. Such sentences can
be described in a variety of ways, e.g. od&l numbers

or expression constructors of various sorts (Haas 1986;

Perlis 1985). Our scheme constructs the metalevel language

Ly, from the vocabulary of the baselevel langudgeg. In
what follows we introduce a new object constant for each
of the symbols inLpg that happens to look like the sym-

bol surrounded by quotes, and we use a set of constructor

functions forall, exists, impl, bicond, disj, conj, neg,
relnSent, and funcTerm. For example, we use the term
relnSent(“p”, “a”, “b”) to denote the sentengga, b) and
conj(relnSent(“p”, “a”), relnSent(“q”, “a”)) to denote
p(a) A g(a). (This allows us to describe expressions that
are not sentences, but this causes no problems.)

In order to simplify our examples that involve quoted

expressions, we use a backquote-like notation as syntac-

tic sugar. In particular, to denote an expression, we

use matching quotes around the expression; and, to un-

Stants LLp”, Léq”, LLf’?, Hg??, LLh??, 44a77, le”, Lccﬂ and “Ui”

for each variable);. To differentiate which quoted symbol
is of which type,L,, includes the unary relation constants
relation, function, object, andvariable. Thus the vocab-
ulary for L, includes the following?

relations ofL s :{variable, relation, function, object, =}
functions ofLy,{ forall, exists, impl, bicond, disj, conj,
neg, relnSent, funcTerm}
ObJeCtS OfLM {ccpn , uq” , uf” , ugn , uhw ,
Lha”’ “b”’ “C”’ 44013’7 LL,U277’ LL,US”’ . .}
We require the vocabularies &fy; and L 5 to be disjoint.
L'’s vocabulary is the union of these two vocabulariés.

Example 2 Suppose we want to describe the set of all ax-
ioms that require the relations d@fg to be reflexive, sym-
metric, and transitive; denote this set with In this exam-

ple we define a new relatiow, that names all thé.,, en-
codings for sentences in our set. That is, for every sentence
¥ € A, we want to ensure thai “¢)”) is true.

Vr.(relation(r) =

d(Vz.<r>(z,z)"))
Vr.(relation(r) =

d(NVry.<r>(z,y) <<r>(y,x)”))
Vr.(relation(r) =

d(Vryz.<r>(z,y) <<r>(z, 2)A<r>(z,y)"))

Notice that- is a metalevel variable and appears unquoted
in all the heads of the rules. Had we left thequoted in
the reflexivity axiom for example, i.el(“Va.r(x, z)”)), the
sentencevz.r(z,z) would have been true id (assuming
there is at least one relation i), regardless whetheris
a relation inL g or not. By escaping the as shown above,
we get the desired results, namely that every relatiohgn
is reflexive, symmetric, and transitivel

In this example, the space savings is small if the number
of relation constants is finite, but in the case of infinitely

guote an expression within these quotes, we use matching many relation constants, the metalevel approach allows the

brackets. For exampley(“q(<x>,b)”) is equivalent to
p(relnSent(“q”, x, “b”)). We intend these quoted expres-

Actually there will be one-elnSent for each arity of relation
constant inL z; the same holds fofuncTerm and the function
constants. In this paper, we will treat a single terna#y:Sent and
a single ternanfuncTerm, but the results extend immediately to
sets ofrelnSent and funcTerm.

infinite axiom setA to be finitely described.

We now give the semantics of the distinguishieg con-
stants axiomatically. The first set of axioms ensures that
every pair of quoted expressions that look different are un-
equal. In what follows, we will refer to the functiorferall,

2\We have left out the relation constamt which will be prop-
erly introduced in the next section.
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exists, impl, bicond, disj, conj, neg, relnSent, and
funcTerm collectively as the constructor functionseg

takes one argumentginSent and funcT erm are ternary,
and the rest are binary.

1. Leto; andos be a distinct pair of constants or variables
in Lg. The sentencéo,” # “oy” is true.

Leto be a constant or variable g andc be a construc-
tor function. Thervz. “c” # c(z) is true3

Let ¢ be a constructor functionvz g.(c()
T =7) s true.

Let ¢; and c; be distinct constructor functions.
VZg.c1(T) # c2(7) is true.

The second set of axioms defines the unary type predi-
catesrelation, function, object, andvariable.

2.

3. (@) =

4.

5. Leto be arelation constant ihg. relation(“c”) is true.
Let o be a function constant, object constant, or variable
in L. —relation(“c”) is true. Likewise forfunction,
object, andvariable.

Let ¢ be a constructor function. The sentence
Vz.~relation(c(x)) is true. Likewise for function,
object, andvariable.

Because all these sentences are in the metalevel languag
Ly, we will refer to these six groups of axiomsg; .

Finite Describability
The primary use ol is to express axiom schemata. In this

This closed version ab is a designator foA. (I

Note that completeness is not necessary for a designator.
A designator need only ensure that for evépy-expression,
the distinguished relation is either true or false for that ex-
pression. The fact that other elements might or might not be
true is of no consequence.

Nonstandard Models ofl",

The axioms ofl"); were chosen to capture certain types of
Ly models—those whose domains represent exactly the ex-
pressions il g. ButI';; only approximates that class; ev-
ery model satisfyind"y; maps every quotefl z expression
onto a distinct element in its domain, thus ensuring the do-
main is infinite. Clearly there are models Bf, with el-
ements besides those needed to represgnexpressions.
In fact, Lowenheim-Skolem-Tarski(LST) ensures there are
models of every infinite cardinality. Nevertheless, we can
view the L, domains as the set of all expressions built out
of the Lz vocabulary extended with those extra elements.
Supposel.g’s vocabulary is limited to a single relation
constantp and a single object constamt The elements in
every domain represent the sentenegs, p(a) V —p(a) as
well as the expressionga, a), p(p), p A —a, p(a V a), etc.
The application of the constructor functions to the vocabu-

§ary of L produces all the expressions ins. This is the

minimum set of elements required by, .

Consider an element;, that does not correspond to any
Lp-expression. Think of as another constant in the vocab-
ulary and apply the constructor functions to that extended

paper, we are interested only in axiom schemata that can beygcapulary, producing new expressions wherés a con-

finitely described.

Definition 1 (Designator) A designatorfor a set of Lg-
sentencesA is a set of L,,-sentencesD with a distin-
guished, unary relatiorl such that for any sentenag in
A, Ty UD Ed(“y”) and for anyL g-expression) not in
A, Ty UD E —~d(“y”). D does not include the relation
constantr, andD U T, is satisfiable.

Definition 2 (Finite Describability) A set ofL z-sentences
A is finitely describablef and only if there is a finite desig-
nator for A.

Example 3 Let us return to the example that required all re-
lations in the language to be reflexive, symmetric, and tran-
sitive. Recall we named this infinite sat we will use D to
denote our attempt at designatifg
D is not a valid designator oA because it only satisfies
the first half of the definition. For every sentengdn A,
Ty UD = d(“”). But the second condition in the defi-
nition is that for every expressiapin Lg that is not inA,
Iy U D = —d(“y”). d(x) does not meet that requirement.
For instancel'y; U D & —d(“Vay.p(z,y)”).
To fix that, we need to close the definitiondf
Vt.(d(t) <3r.(relation(r)A
(t = Ve.<r>(z, )"V
t = Yry.<r>(z,y) <<r>(y,z)"V
t = Neyz.<r>(z,y) <<r>(z, 2)A<r>(z,9)")))

3If ¢ has arity n therE is a sequence of n distinct variables.

stant. Because there are infinitely mahy-expressions to
start, there will be infinitely many more elements in the met-
alevel domain: one for each expression including

This application of constructor functions does not change
the cardinality of the domain since there are a finite number
of constructor functions, each of which operates on only a fi-
nite number of elements at a time. But also notice that every
constructor function operates on every element in the met-
alevel domain; thus every element can be considered an ex-
pression. We will refer to the elements in the metalevel do-
main not representing expressiondip as Z-expressions.

It is tempting to try removing these nonstandard mod-
els, but LST ensures we cannot. Moreover, we might
not want to remove them even if we could. Suppose
the only elements in the domain of all models are the
Lp-expressions. Consider the infinite set of sentences
{p(“v1”),p(“v2”),...,p(“vy,”), ...}, which together say
thatp is true for all the variables i 5. Without those non-
standard models, the sentencte (var(z) = p(x)) would
be entailed but would admit no finite proof. Thus, the non-
standard models are necessary for compactness, and as it
turns out they are irrelevant for our purposes, as will be ex-
plained at the end of the next section.

true Sentences

In this section we will present axioms that establish a formal
connection between sentencedlip and terms inL,, that
describe sentences ing. These axioms define a predicate,
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tr, to assert the ‘truth’ or ‘falsity’ of a sentence so described,
e.g. tr(“p(a)”) will ensurep(a) is true. The axioms state
that the encoding for ah z sentence satisfies the predi-
cate if and only if that sentence is true. This is the seventh
axiom set we have introduced.

7. Let¢ be a closed sentencelrs. tr(“¢”) < ¢p is true.

The B subscript onp g indicatesy is in the baselevel lan-
guage, and becaudes does not include the relation con-
stanttr, these axioms do not admit the standard paradoxes.
We use the symbdT to refer to axiom groups 1-7.

Note the importance of the condition that only closed sen-
tences are included in the axioms. If we were to relax this
assumption, we could quickly get contradictions. Consider,
for example, the sentenee(“p(x) V ¢(z)”). If we had ax-
iom (7) for all sentences, we could infer from thiéz) Vv
q(zx), from which we could infetr(“p(z)”) V tr(“q(x)”).
Originally, we had the sentence asserting that, for egch
eitherp(z) is true org(x) is true. From this we infer that
eitherp(z) is true for allz or ¢(x) is true for allz.

Because of the disjointness bf; andL g, the truth value
of an Lg-sentence is undefined in dm,-model, and the
truth value of anl ;,-sentence is undefined in drz-model.
Moreover, since all the axioms ifi,; are inL,,, they do
nothing to foster a relationship betweén,; and L either.

sentence inLg, N is free to satisfytr for any of the zZ-
expressions it likes. Thus for the closed sentencekgn
N(tr) consists of exactly those sentences satisfied by the
L reduct of N. For all other expressiond(¢r) is entirely
unrestricted. (The&.z reduct of anL-model N is the base-
level domain and all mappings for the elementd.in.)

These nonstandard models would cause problems if we
were interested in the consequences of particlilgr ax-
iomatizations, but because our only interest lies in answer-
ing L queries about the sentences described bylthe
axioms, the nonstandard models are inconsequential.

Formally, letK be a class of.-models.K entails anL g
sentencepyp if and only if the L reducts of K entail ¢.

The next section proves thes reducts of the.-models that
satisfyI" and a description of\ are exactly thd. z-models
that satisfyA itself. We can therefore choose any subset of
the models of” that we like as long as nbp reduct is lost.

In particular, we can choose to consider only the standard
models ofT’, i.e. those whose metalevel domains consist of
exactly theL p-expressions.

Soundness and Completeness

Formally we have not yet defined what a description for
a set of sentences is, but we have laid the groundwork by
defining adesignatorin the section on Expression Descrip-

The only connection between these two languages comestjons, A descriptionfor a set of sentenced is the set

from thetr axioms, which are in neithdr;; nor L g but are
members of the languade

We will thus treatZ-models as the union of aig-model
and anLj,; model, constructed by gluing the two models
together. The result is a two-sorted interpretation. One do-
main, the baselevel domain, is equivalent to themodel’s
domain, and the other, the metalevel domain, is equivalent
to the Lj,-model's domain. All the constants dfg map
into the baselevel domain exactly as they did in the original,
and all the constants ih; map into the metalevel domain
just as in the original.

An L-model with two domains requires additional nota-
tion to clarify which domain a particular quantifier ranges
over. When confusion may arise, we will subscript quan-
tifiers with B and M to indicate their association with the

baselevel and metalevel domains, respectively. The sen-

tences ofl*;; will always be confined to the metalevel do-

D U {d(x) = tr(z)}, whered is the distinguished relation
for the designatoD.

Now we move on to the proofs of soundness and com-
pleteness. Soundness and completeness in this context are
more limited than is usual. The point of employifg, and
I" is to ensure descriptions of a setlof sentences\ have
the same logical consequencesfagself. Thus soundness
requires that if a descriptioP along withI" entail some sen-
tence¢ in L, then the sentences described Byentail ¢
as well. Completeness is the converse: if some set of sen-
tencesA entails some sentengethen a description ofA
along withT" also entail. In both casesy is a baselevel
sentence; thus, soundness and completeness will be shown
for L queries.

Although in what follows we assume finite describability,
the results in this paper apply to any describable set of ax-
ioms, finite or not, unless otherwise stated. However, since

main, as will any sentences used to define a designator. Theour interest lies in the construction of finite systems and fi-

subscriptB in axiom group (7) restricts its quantifiers to the
baselevel domain.

The last section stated the existence of nonstandard mod-

els of "y, by way of Z-expressions. The same holds for
models ofl", where the Z-expressions occur in the metalevel

nite communication, finite describability is essential.
Soundness and completeness build upon two theorems.

The Consistency theorem ensures that for every designator

D of a set of Lg-sentenceg\, every Lg-model of A can

be extended to ah-model that satisfiea, ', andD. The

domain. The existence of these nonstandard models leads toCompatibility theorem shows that every suBkmodel sat-
some unexpected consequences. For instance, the followingisfies not onlyA but also every description df as well.

two sentences are satisfiable wheis an object constant in
Ly tr(“p(<a>)") andtr(“-p(<a>)"). If a maps to a
Z-expression, we claim there is a model that satisfies both of
these statements simultaneously.

Consider anyL-model N that satisfiesI" and has Z-
expressions. Notice that the only constrainttorin NV is
from the axiom setr(“¢”) < ¢p, whereg is a closed sen-
tence inLg. Because of the restriction thatis a closed

Theorem 1 (Consistency)Let A be a satisfiable set of
closedL g-sentences anf) a designator forA. EveryL g-
model that satisfied\ can be extended to ah-model that
satisfiesA UT U D.

Proof: We prove thaf’u D is consistent with\ by taking
one of A’s Lg-modelsN and one of',; U D’s L,;-models
M and creating ai-model! that satisfies\ UT' U D. The
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definition of a designator ensures that U D is satisfiable,
thus ensuring the existence bf.

Set the baselevel domain Hto the domain ofV. Set the
metalevel domain of to the domain ofM/. Ensure that
I(¢) = N(c) for every baselevel constantand I(c) =
M (c) for every metalevel constant Thus the baselevel

least onel.-model of ' U D that satisfies every description

of A, i.e. using the description does not cause us to lose any
important L 3-model reducts, which is essentially enough
for soundness. For completeness to hold, it must also be
the case that there are no extrg-model reducts that result
from using the description instead of the sentences them-

constants map into the baselevel domain and the metalevel selves. For this, we must show that evéamodel that sat-

constants into the metalevel domainmust satisfyA since
the L reduct satisfieQ\; likewise, I must satisfyl'y; U D
since theL ,, reduct satisfie§',, U D.

To satisfy all of ", we need only defind (¢r) so that
I E tr(“¢”) < ¢p. (Nowhere inT'j; U D U A is tr
mentioned; thus, we are free to assign it however we like.)
Build ¢r to befalseof exactly thosd. g-expressions that are
not closed logical consequences®f i.e. those elements
in the metalevel domain that do not represent a clofed,
sentence that is satisfied By. Thustr is true of all the
logical consequences @¥, which satisfies the needed ax-
ioms. Sincel satisfiesA andI’ U D, it satisfies them both.
d

It should be noted that this proof of consistency, at least
for the tr predicate, is a special case of Perlis’(1985) clas-
sical work that restricts the scope of the truth predicate. In
that proof, sentences of the form(“¢”) < ¢* are shown
to be consistent, whekg is a transformation of based on
occurrences ofr. In our proof, there are no occurrences of
tr within ¢, which makes)* = ¢.

The next theorem strengthens Consistency by showing

that the model resulting from the construction above satis-
fies not onlyA and a designator ok, but every description

of A as well. When this relationship exists between/an
model and anl g-model for a set of sentences, we say
that theL model iscompatiblewith the L g-model for that
designator.

Theorem 2 (Compatibility) Let A be a satisfiable set of
closedL g-sentences that is finitely describable.Ilfs an
Lg-model forA and D is a designator ofA, then there is
an L-model,I’, that is compatible witl for D.

Proof: Suppose thaf is an Lg-model for A, and I’
is the L-model built from I using the construction in the
Consistency proof. Letl be the distinguished relation
in the designatorD. We need to show thai’ satisfies
d(xz) = tr(z). Every element in the domain not represent-
ing anL g-expression is true df-, which ensureg’ satisfies
d(xz) = tr(z). The only remaining elements are those rep-
resentinglL g-expressions.

Consider an arbitrary, g-expression. If ¢ isnota mem-
ber of A, thenI' U D |= —~d(“¢”) by the definition of a des-
ignator. Sincd’ satisfied"U D it cannot satisfyi(“¢”), and
sod(z) = tr(z) as awhole is true iti’. If ¢ is a memberin
A, thend(“¢”) is entailed byl’ U D and therefore satisfied
by I'. To satisfyd(z) = tr(z), I’ must therefore satisfy
tr(“¢”). Sincel satisfiesA it must satisfy¢. By construc-
tion, I’ must therefore satisfir(“¢”). Again the sentence
is true. Sincel’ satisfies botli’ U D and{d(z) = tr(x)},
it satisfies their unionlJ

The significance of this theorem is that for any descrip-
tion D of A, every Lg-model of A can be extended to at

isfiesT" and some description ok, when reduced td g,
satisfiesA.

Theorem 3 (Soundness) et A be a set of closed sentences
in L with descriptionD. For any L z-sentence), DUT =

Y impliesA = .

Proof: If A is unsatisfiable, the conclusion follows im-
mediately, so supposA is satisfiable. Further suppose
DUT E v, and for the purpose of contradiction that there
is an L zg-model I such that/ satisfiesA but notvy. Be-
cause/ satisfiesA, we can apply the Compatibility theorem
to ensure there is a compatiblemodel I’ for the designa-
tor of D that satisfiesD U I'. Since it is compatible and
I does not satisfy), we know thatl’ does not satisfy)
when restricting quantifiers to the baselevel domain. Thus
I’ does not satisfy . This contradicts the assumption that
DUT = ¢p. Thereforel must satisfy) and becausé was
chosen arbitraripA = . O

Theorem 4 (Completeness) et A be a set of closed sen-
tences inL g with descriptionD. For any Lz-sentencep,
A E¢impliesthatDUT | ¢p.

Proof: Suppose thaf\ = 1, and suppose thdt is any
L-model that satisfie® UT.

First, we show that’ satisfiesA U D UT when the quan-
tifiers in A are restricted to the baselevel domain. Consider
any sentencep in Ag. By the definition of a description
and one step of deduction, we know tliat D = tr(“¢”).

By the definition of", we know that the senten¢e( “¢”) <

¢p is an element of. By a simple application of modus po-
nens, we geD UT | ¢p. Therefore, any model b U T

is a model ofpz. This argument holds for all elements of
Apg. Thus, every model ab UT" is a model ofAg U DUT.
This includes!’. If A were unsatisfiable, there would be no
such model’ and the result follows immediately.

Sincel’ satisfiesAp U D UT, it must also satisfiA g.
Since every sentence ik is contained in the languades
and every quantifier ranges over the baselevel domain, the
Lg-reduct ofI’ must satisfyA . But then, by our supposi-
tion, that reduct satisfiegg, and therefore so musgt. (1

Example

As a demonstration of the utility of metalevel axiom
schemata, consider a first-order axiomatization for the
unigue names axioms when the language includes a single
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object constant and a single, unary function constght

a7 [f(a)
a#f(f(a))

7/
# f(f

Note that the sentence set

a7 f(z)
v #y=[f(x) # f(y)

entails the unique names axioms above, but is stronger than
we want.

Let’s see how to take advantagetofto finitely describe
this infinite set of axioms. The designator for these sen-
tences can be defined as including the senténge) when-
everg andy are distinct terms in the languadse;.

d(relnSent(“ #£7,y,z)) <
term(y) Aterm(z) Ny # z

The object constant is a term, as isf(¢), where¢ is a
term.

term(“a”)

term(funcTerm(“f”,y)) < term(y)

Closing these two definitions and adding in the sentence
d(xz) = tr(x) gives a full description of the unique names
axioms.

d(z) &
Jyz.(x = relnSent(“ £",y,2) A
term(y) Aterm(z) Ny # z)
term(z) &
(x — Ha” \/
Fy.(z = funcTerm(“f”,
d(z) = tr(x)

y) Aterm(y)))

Conclusion and Future Work

Injecting metalevel axiom schemata into a first order lan-
guage enhances a logician’s ability to concisely axiomatize

certain domains. The scheme presented here starts with a

particular baselevel languadg; and constructs a metalevel
language L, and the infinite axiom sdt to supportLy,.
Becausel' depends only on thteanguageL s, building T’

into a proof procedure allows that procedure to manipulate
any description of sentencesirs. That is, with some mild
restrictions we can construct a proof system, such that

for any descriptionD of Lz-sentenced\, D . ¢ if and
only if A = ¢, whereg is anL g-sentence.

In one sense, this implementation is trivial. If the vari-
ables and constants 6f; are recursively enumerable, so too
is an infinite axiom set with a finite description in,;. One
can interleave this enumeration with a favorite proof proce-

dure and ensure semi-decidability, soundness, and complete-

ness. But such a proof procedure is far from practical. In

the sequel, we give a resolution-based procedure that avoids

enumerating axiom schemata when possible.

AAAI-05 /

The tr predicate described here was developed for the
purposes of knowledge sharing and can be used as a re-
placement for the truth predicateue described in the
KIF (Knowledge Interchange Format) manual (Genesereth,
Fikes, & et al. 1992)r is conceptually simpler thatrue

and, therefore, easier for users to understand. It is also more
amenable to implementation.
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