
Axiom Schemata as Metalevel Axioms:
Model Theory∗

Timothy L. Hinrichs and Michael R. Genesereth
Logic Group

Computer Science Department
Stanford University

{thinrich, genesereth}@stanford.edu

Abstract

Logicians frequently use axiom schemata to encode (poten-
tially infinite) sets of sentences with particular syntactic form.
In this paper we examine a first-order language in which it is
possible to write expressions that both describe sentences and
assert the truth of the sentences so described. The effect of
adding such expressions to a knowledge base is the same as
directly including the set of described sentences.

Introduction
Logicians frequently use axiom schemata to encode (po-
tentially infinite) sets of sentences with particular syntactic
properties.

As an example, consider the axiom schema shown below,
whereφ is a sentence with a single free variable.

φ(0) ∧ ∀n.(φ(n) ⇒ φ(n+ 1)) ⇒ ∀n.φ(n)

This schema encodes infinitely many sentences, jointly com-
prising the principle of mathematical induction. The follow-
ing sentences are instances.

p(0) ∧ ∀n.(p(n) ⇒ p(n+ 1)) ⇒ ∀n.p(n)
q(0) ∧ ∀n.(q(n) ⇒ q(n+ 1)) ⇒ ∀n.q(n)
∀x.r(x, 0) ∧ ∀n.(∀x.r(x, n) ⇒ ∀x.r(x, n+ 1))

⇒ ∀n.∀x.r(x, n)

Axiom schemata are differentiated from axioms due to the
presence of metavariables or other metalinguistic notation
(such as dots or star notation), together with conditions on
the variables. Theydescribesentences in a language, but
they are not themselves sentences in the language. As a re-
sult, they cannot be manipulated by procedures designed to
process the language (presentation, storage, communication,
deduction, and so forth) but instead must be hard coded into
those procedures.

In this paper we examine a language in which it is possi-
ble to write expressions that describe sentences and to write
sentences that assert the truth of the sentences so described.

∗Our thanks to Don Geddis, Oliver Duschka, and Nat Love for
their editorial and technical comments on the paper. We would also
like to thank Hewlett-Packard for their support of the work reported
herein.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

The effect of adding such sentences to a knowledge base is
the same as directly including the (potentially infinite) set of
described sentences in the knowledge base.

The use of such a language simplifies the construction
of knowledge-based systems, since it obviates the need for
building axiom schemata into deductive procedures. It also
makes it possible for systems to exchange axiom schemata
with each other and thereby promotes knowledge sharing.

The trick is to provide terminology in our language for
talking about expressions in our language and a “truth” pred-
icate to assert the truth or falsity of the sentences so de-
scribed.

This trick is similar to the trick used to develop a first
order theory for the notion of truth. Unfortunately, those ef-
forts are fraught with difficulties of dealing with paradoxes.
Once we have a way of describing sentences and a truth
predicate, it is tempting to assert that a sentence satisfies
the truth predicate if and only if it is true; but this causes
problems (Tarski 1956). For example, sentences like “This
sentence is false” become self-contradictory.

A number of solutions to this problem have been pre-
sented over the years. See (Turner 1991) for a description
of the problem and some of its solutions. See also (Attardi
& Simi 1995; DesRivieres & Levesque 1965; Haas 1986;
Perlis 1985; Sato 1992; Weyhrauch 1980; Chen, Kifer, &
Warren 1989) for additional material. The various solutions
to this problem offer different tradeoffs of understandability,
coverage, and implementability.

The framework described here is much simpler than any
of these previous approaches. We assert that a sentence
satisfies our truth predicate if and only if the sentence is
true, but we say this only for sentences that do not contain
the truth predicate. This eliminates the paradox mentioned
above, since sentences like “This sentence is false” cannot
be expressed.

From the point of view of formalizing truth, this is a cheat,
since it fails to cover those interesting cases where sentences
contain the truth predicate. However, from the point of view
of capturing axiom schematanot involving the truth predi-
cate, it works just fine. Furthermore, unlike the solutions to
the problem of formalizing truth, our framework is easy for
users to understand, and it is easy to implement.

This paper presents the model theory for this solution to
the problem. A separate paper describes several proof pro-

AAAI-05 / 294

cedures that implement the techniques developed here.
In what follows, the baselevel language we will be de-

scribing, namedLB , is a standard, first-order language. The
metalevel language of descriptions, namedLM , is also a
standard, first-order language and is disjoint fromLB . It
includes a mechanism for asserting the truth of described
LB sentences: a single, unary predicatetr. The first-order
language produced from the union ofLB ’s vocabulary and
LM ’s vocabulary define the language that we investigate in
this paper. It will be denoted byL.

The first section explains in more detail howLB sentences
are described and what it means for a set of sentences to be
finitely describable. The second section discusses the ma-
chinery used to assert the truth or falsity of a sentence so
described, i.e. it axiomatizestr. The third section proves a
notion of soundness and completeness for our scheme.

Expression Descriptions
With the exceptions noted below, we use standard infix nota-
tion. Whether a symbol is a variable, object constant, func-
tion constant, or relation constant will be clear from context.
There are the usual logical operators¬,∧,∨,⇒,⇐, and⇔;
and there are the usual quantifiers∀ and∃. A logical expres-
sion is any sequence of symbols in the logic, e.g.¬ ∧∧p,
p(a ∧ b), p(b). A logical sentence can be either open or
closed but in both cases is well-formed, e.g.p(x), ∀x.p(x).
The definitions of model, variable assignment, and logical
implication are standard. See (Genesereth & Nilsson 1987).

Expression Descriptions

First we discuss a choice of method for describing sen-
tences in the baselevel languageLB . Such sentences can
be described in a variety of ways, e.g. Gödel numbers
or expression constructors of various sorts (Haas 1986;
Perlis 1985). Our scheme constructs the metalevel language
LM from the vocabulary of the baselevel languageLB . In
what follows we introduce a new object constant for each
of the symbols inLB that happens to look like the sym-
bol surrounded by quotes, and we use a set of constructor
functionsforall, exists, impl, bicond, disj, conj, neg,
relnSent, andfuncTerm.1 For example, we use the term
relnSent(“p”, “a”, “b”) to denote the sentencep(a, b) and
conj(relnSent(“p”, “a”), relnSent(“q”, “a”)) to denote
p(a) ∧ q(a). (This allows us to describe expressions that
are not sentences, but this causes no problems.)

In order to simplify our examples that involve quoted
expressions, we use a backquote-like notation as syntac-
tic sugar. In particular, to denote an expression, we
use matching quotes around the expression; and, to un-
quote an expression within these quotes, we use matching
brackets. For example,p(“q(<x>, b)”) is equivalent to
p(relnSent(“q”, x, “b”)). We intend these quoted expres-

1Actually there will be onerelnSent for each arity of relation
constant inLB ; the same holds forfuncTerm and the function
constants. In this paper, we will treat a single ternaryrelnSent and
a single ternaryfuncTerm, but the results extend immediately to
sets ofrelnSent andfuncTerm.

sions to be interpreted as macros which translate into the
appropriate constructor terms.

Example 1 To be more precise about our method for de-
scribing sentences ofLB , supposeLB is built from the fol-
lowing finite set of relation, function, and object constants
with an infinite set of variables. An infinite set of variables
and finitely many constants is not required for our scheme,
but it is a common case.

relations ofLB : {p, q}
functions ofLB :{f, g, h}
objects ofLB : {a, b, c}
variables ofLB : {v1, v2, . . .}
The description language,LM , includes the object con-
stants“p”, “q”, “f”, “g”, “h”, “a”, “b”, “c” and “vi”
for each variablevi. To differentiate which quoted symbol
is of which type,LM includes the unary relation constants
relation, function, object, andvariable. Thus the vocab-
ulary forLM includes the following.2

relations ofLM :{variable, relation, function, object,=}
functions ofLM :{forall, exists, impl, bicond, disj, conj,

neg, relnSent, funcTerm}
objects ofLM : {“p”, “q”, “f”, “g”, “h”,

“a”, “b”, “c”, “v1”, “v2”, “v3”, . . .}
We require the vocabularies ofLM andLB to be disjoint.

L’s vocabulary is the union of these two vocabularies.�

Example 2 Suppose we want to describe the set of all ax-
ioms that require the relations ofLB to be reflexive, sym-
metric, and transitive; denote this set with∆. In this exam-
ple we define a new relation,d, that names all theLM en-
codings for sentences in our set. That is, for every sentence
ψ ∈ ∆, we want to ensure thatd(“ψ”) is true.

∀r.(relation(r) ⇒
d(“∀x.<r>(x, x)”))

∀r.(relation(r) ⇒
d(“∀xy.<r>(x, y) ⇐<r>(y, x)”))

∀r.(relation(r) ⇒
d(“∀xyz.<r>(x, y) ⇐<r>(x, z)∧<r>(z, y)”))

Notice thatr is a metalevel variable and appears unquoted
in all the heads of the rules. Had we left ther quoted in
the reflexivity axiom for example, i.e.d(“∀x.r(x, x)”)), the
sentence∀x.r(x, x) would have been true ind (assuming
there is at least one relation inLB), regardless whetherr is
a relation inLB or not. By escaping ther as shown above,
we get the desired results, namely that every relation inLB

is reflexive, symmetric, and transitive.�
In this example, the space savings is small if the number

of relation constants is finite, but in the case of infinitely
many relation constants, the metalevel approach allows the
infinite axiom set∆ to be finitely described.

We now give the semantics of the distinguishedLM con-
stants axiomatically. The first set of axioms ensures that
every pair of quoted expressions that look different are un-
equal. In what follows, we will refer to the functionsforall,

2We have left out the relation constanttr, which will be prop-
erly introduced in the next section.

AAAI-05 / 295

exists, impl, bicond, disj, conj, neg, relnSent, and
funcTerm collectively as the constructor functions.neg
takes one argument;relnSent andfuncTerm are ternary,
and the rest are binary.

1. Letσ1 andσ2 be a distinct pair of constants or variables
in LB . The sentence“σ1” 6= “σ2” is true.

2. Letσ be a constant or variable inLB andc be a construc-
tor function. Then∀x.“σ” 6= c(x) is true.3

3. Let c be a constructor function.∀x y.(c(x) = c(y)) ⇒
x = y) is true.

4. Let c1 and c2 be distinct constructor functions.
∀x y.c1(x) 6= c2(y) is true.

The second set of axioms defines the unary type predi-
catesrelation, function, object, andvariable.

5. Letσ be a relation constant inLB . relation(“σ”) is true.
Let σ be a function constant, object constant, or variable
in LB . ¬relation(“σ”) is true. Likewise forfunction,
object, andvariable.

6. Let c be a constructor function. The sentence
∀x.¬relation(c(x)) is true. Likewise forfunction,
object, andvariable.

Because all these sentences are in the metalevel language
LM , we will refer to these six groups of axioms asΓM .

Finite Describability
The primary use ofLM is to express axiom schemata. In this
paper, we are interested only in axiom schemata that can be
finitely described.

Definition 1 (Designator) A designatorfor a set ofLB-
sentences∆ is a set ofLM -sentencesD with a distin-
guished, unary relationd such that for any sentenceψ in
∆, ΓM ∪D |= d(“ψ”) and for anyLB-expressionψ not in
∆, ΓM ∪ D |= ¬d(“ψ”). D does not include the relation
constanttr, andD ∪ ΓM is satisfiable.

Definition 2 (Finite Describability) A set ofLB-sentences
∆ is finitely describableif and only if there is a finite desig-
nator for∆.

Example 3 Let us return to the example that required all re-
lations in the language to be reflexive, symmetric, and tran-
sitive. Recall we named this infinite set∆; we will useD to
denote our attempt at designating∆.
D is not a valid designator of∆ because it only satisfies

the first half of the definition. For every sentenceψ in ∆,
ΓM ∪ D |= d(“ψ”). But the second condition in the defi-
nition is that for every expressionψ in LB that is not in∆,
ΓM ∪D |= ¬d(“ψ”). d(x) does not meet that requirement.
For instance,ΓM ∪D 6|= ¬d(“∀xy.p(x, y)”).

To fix that, we need to close the definition ofd.

∀t.(d(t) ⇔∃r.(relation(r)∧
(t = “∀x.<r>(x, x)”∨
t = “∀xy.<r>(x, y) ⇐<r>(y, x)”∨
t = “∀xyz.<r>(x, y) ⇐<r>(x, z)∧<r>(z, y)”)))

3If c has arity n thenx is a sequence of n distinct variables.

This closed version ofD is a designator for∆. �
Note that completeness is not necessary for a designator.

A designator need only ensure that for everyLB-expression,
the distinguished relation is either true or false for that ex-
pression. The fact that other elements might or might not be
true is of no consequence.

Nonstandard Models ofΓM

The axioms ofΓM were chosen to capture certain types of
LM models–those whose domains represent exactly the ex-
pressions inLB . But ΓM only approximates that class; ev-
ery model satisfyingΓM maps every quotedLB expression
onto a distinct element in its domain, thus ensuring the do-
main is infinite. Clearly there are models ofΓM with el-
ements besides those needed to representLB-expressions.
In fact, Löwenheim-Skolem-Tarski(LST) ensures there are
models of every infinite cardinality. Nevertheless, we can
view theLM domains as the set of all expressions built out
of theLB vocabulary extended with those extra elements.

SupposeLB ’s vocabulary is limited to a single relation
constantp and a single object constanta. The elements in
every domain represent the sentencesp(a), p(a) ∨ ¬p(a) as
well as the expressionsp(a, a), p(p), p ∧ ¬a, p(a ∨ a), etc.
The application of the constructor functions to the vocabu-
lary of LB produces all the expressions inLB . This is the
minimum set of elements required byΓM .

Consider an element,π, that does not correspond to any
LB-expression. Think ofπ as another constant in the vocab-
ulary and apply the constructor functions to that extended
vocabulary, producing new expressions whereπ is a con-
stant. Because there are infinitely manyLB-expressions to
start, there will be infinitely many more elements in the met-
alevel domain: one for each expression includingπ.

This application of constructor functions does not change
the cardinality of the domain since there are a finite number
of constructor functions, each of which operates on only a fi-
nite number of elements at a time. But also notice that every
constructor function operates on every element in the met-
alevel domain; thus every element can be considered an ex-
pression. We will refer to the elements in the metalevel do-
main not representing expressions inLB as Z-expressions.

It is tempting to try removing these nonstandard mod-
els, but LST ensures we cannot. Moreover, we might
not want to remove them even if we could. Suppose
the only elements in the domain of all models are the
LB-expressions. Consider the infinite set of sentences
{p(“v1”), p(“v2”), . . . , p(“vn”), . . .}, which together say
thatp is true for all the variables inLB . Without those non-
standard models, the sentence∀x.(var(x) ⇒ p(x)) would
be entailed but would admit no finite proof. Thus, the non-
standard models are necessary for compactness, and as it
turns out they are irrelevant for our purposes, as will be ex-
plained at the end of the next section.

true Sentences
In this section we will present axioms that establish a formal
connection between sentences inLB and terms inLM that
describe sentences inLB . These axioms define a predicate,

AAAI-05 / 296

tr, to assert the ‘truth’ or ‘falsity’ of a sentence so described,
e.g. tr(“p(a)”) will ensurep(a) is true. The axioms state
that the encoding for anLB sentence satisfies thetr predi-
cate if and only if that sentence is true. This is the seventh
axiom set we have introduced.

7. Letφ be a closed sentence inLB . tr(“φ”) ⇔ φB is true.

TheB subscript onφB indicatesφ is in the baselevel lan-
guage, and becauseLB does not include the relation con-
stanttr, these axioms do not admit the standard paradoxes.
We use the symbolΓ to refer to axiom groups 1-7.

Note the importance of the condition that only closed sen-
tences are included in thetr axioms. If we were to relax this
assumption, we could quickly get contradictions. Consider,
for example, the sentencetr(“p(x) ∨ q(x)”). If we had ax-
iom (7) for all sentences, we could infer from thisp(x) ∨
q(x), from which we could infertr(“p(x)”) ∨ tr(“q(x)”).
Originally, we had the sentence asserting that, for eachx,
eitherp(x) is true orq(x) is true. From this we infer that
eitherp(x) is true for allx or q(x) is true for allx.

Because of the disjointness ofLM andLB , the truth value
of anLB-sentence is undefined in anLM -model, and the
truth value of anLM -sentence is undefined in anLB-model.
Moreover, since all the axioms inΓM are inLM , they do
nothing to foster a relationship betweenLM andLB either.
The only connection between these two languages comes
from thetr axioms, which are in neitherLM norLB but are
members of the languageL.

We will thus treatL-models as the union of anLB-model
and anLM model, constructed by gluing the two models
together. The result is a two-sorted interpretation. One do-
main, the baselevel domain, is equivalent to theLB-model’s
domain, and the other, the metalevel domain, is equivalent
to theLM -model’s domain. All the constants ofLB map
into the baselevel domain exactly as they did in the original,
and all the constants inLM map into the metalevel domain
just as in the original.

An L-model with two domains requires additional nota-
tion to clarify which domain a particular quantifier ranges
over. When confusion may arise, we will subscript quan-
tifiers withB andM to indicate their association with the
baselevel and metalevel domains, respectively. The sen-
tences ofΓM will always be confined to the metalevel do-
main, as will any sentences used to define a designator. The
subscriptB in axiom group (7) restricts its quantifiers to the
baselevel domain.

The last section stated the existence of nonstandard mod-
els ofΓM by way of Z-expressions. The same holds forL-
models ofΓ, where the Z-expressions occur in the metalevel
domain. The existence of these nonstandard models leads to
some unexpected consequences. For instance, the following
two sentences are satisfiable whena is an object constant in
LM : tr(“p(<a>)”) and tr(“¬p(<a>)”). If a maps to a
Z-expression, we claim there is a model that satisfies both of
these statements simultaneously.

Consider anyL-model N that satisfiesΓ and has Z-
expressions. Notice that the only constraint ontr in N is
from the axiom settr(“φ”) ⇔ φB , whereφ is a closed sen-
tence inLB . Because of the restriction thatφ is a closed

sentence inLB , N is free to satisfytr for any of the Z-
expressions it likes. Thus for the closed sentences inLB ,
N(tr) consists of exactly those sentences satisfied by the
LB reduct ofN . For all other expressions,N(tr) is entirely
unrestricted. (TheLB reduct of anL-modelN is the base-
level domain and all mappings for the elements inLB .)

These nonstandard models would cause problems if we
were interested in the consequences of particularLM ax-
iomatizations, but because our only interest lies in answer-
ing LB queries about the sentences described by theLM

axioms, the nonstandard models are inconsequential.
Formally, letK be a class ofL-models.K entails anLB

sentenceφB if and only if theLB reducts ofK entail φ.
The next section proves theLB reducts of theL-models that
satisfyΓ and a description of∆ are exactly theLB-models
that satisfy∆ itself. We can therefore choose any subset of
the models ofΓ that we like as long as noLB reduct is lost.
In particular, we can choose to consider only the standard
models ofΓ, i.e. those whose metalevel domains consist of
exactly theLB-expressions.

Soundness and Completeness
Formally we have not yet defined what a description for
a set of sentences is, but we have laid the groundwork by
defining adesignatorin the section on Expression Descrip-
tions. A description for a set of sentences∆ is the set
D ∪ {d(x) ⇒ tr(x)}, whered is the distinguished relation
for the designatorD.

Now we move on to the proofs of soundness and com-
pleteness. Soundness and completeness in this context are
more limited than is usual. The point of employingLM and
Γ is to ensure descriptions of a set ofLB sentences∆ have
the same logical consequences as∆ itself. Thus soundness
requires that if a descriptionD along withΓ entail some sen-
tenceφ in LB , then the sentences described byD entailφ
as well. Completeness is the converse: if some set of sen-
tences∆ entails some sentenceφ then a description of∆
along withΓ also entailφ. In both cases,φ is a baselevel
sentence; thus, soundness and completeness will be shown
for LB queries.

Although in what follows we assume finite describability,
the results in this paper apply to any describable set of ax-
ioms, finite or not, unless otherwise stated. However, since
our interest lies in the construction of finite systems and fi-
nite communication, finite describability is essential.

Soundness and completeness build upon two theorems.
The Consistency theorem ensures that for every designator
D of a set ofLB-sentences∆, everyLB-model of∆ can
be extended to anL-model that satisfies∆, Γ, andD. The
Compatibility theorem shows that every suchL-model sat-
isfies not only∆ but also every description of∆ as well.

Theorem 1 (Consistency)Let ∆ be a satisfiable set of
closedLB-sentences andD a designator for∆. EveryLB-
model that satisfies∆ can be extended to anL-model that
satisfies∆ ∪ Γ ∪D.

Proof: We prove thatΓ∪D is consistent with∆ by taking
one of∆’s LB-modelsN and one ofΓM ∪D’s LM -models
M and creating anL-modelI that satisfies∆ ∪ Γ ∪D. The

AAAI-05 / 297

definition of a designator ensures thatΓM ∪D is satisfiable,
thus ensuring the existence ofM .

Set the baselevel domain ofI to the domain ofN . Set the
metalevel domain ofI to the domain ofM . Ensure that
I(c) = N(c) for every baselevel constantc and I(c) =
M(c) for every metalevel constantc. Thus the baselevel
constants map into the baselevel domain and the metalevel
constants into the metalevel domain.I must satisfy∆ since
theLB reduct satisfies∆; likewise,I must satisfyΓM ∪D
since theLM reduct satisfiesΓM ∪D.

To satisfy all ofΓ, we need only defineI(tr) so that
I |= tr(“φ”) ⇔ φB . (Nowhere inΓM ∪ D ∪ ∆ is tr
mentioned; thus, we are free to assign it however we like.)
Build tr to befalseof exactly thoseLB-expressions that are
not closed logical consequences ofN , i.e. those elements
in the metalevel domain that do not represent a closed,LB-
sentence that is satisfied byN . Thus tr is true of all the
logical consequences ofN , which satisfies the needed ax-
ioms. SinceI satisfies∆ andΓ ∪D, it satisfies them both.
�

It should be noted that this proof of consistency, at least
for the tr predicate, is a special case of Perlis’(1985) clas-
sical work that restricts the scope of the truth predicate. In
that proof, sentences of the formtr(“φ”) ⇔ φ∗ are shown
to be consistent, whereφ∗ is a transformation ofφ based on
occurrences oftr. In our proof, there are no occurrences of
tr within φ, which makesφ∗ = φ.

The next theorem strengthens Consistency by showing
that the model resulting from the construction above satis-
fies not only∆ and a designator of∆, but every description
of ∆ as well. When this relationship exists between anL-
model and anLB-model for a set of sentences∆, we say
that theL model iscompatiblewith theLB-model for that
designator.

Theorem 2 (Compatibility) Let ∆ be a satisfiable set of
closedLB-sentences that is finitely describable. IfI is an
LB-model for∆ andD is a designator of∆, then there is
anL-model,I ′, that is compatible withI for D.

Proof: Suppose thatI is anLB-model for ∆, and I ′

is theL-model built fromI using the construction in the
Consistency proof. Letd be the distinguished relation
in the designatorD. We need to show thatI ′ satisfies
d(x) ⇒ tr(x). Every element in the domain not represent-
ing anLB-expression is true oftr, which ensuresI ′ satisfies
d(x) ⇒ tr(x). The only remaining elements are those rep-
resentingLB-expressions.

Consider an arbitraryLB-expressionφ. If φ is nota mem-
ber of∆, thenΓ ∪D |= ¬d(“φ”) by the definition of a des-
ignator. SinceI ′ satisfiesΓ∪D it cannot satisfyd(“φ”), and
sod(x) ⇒ tr(x) as a whole is true inI ′. If φ is a member in
∆, thend(“φ”) is entailed byΓ ∪D and therefore satisfied
by I ′. To satisfyd(x) ⇒ tr(x), I ′ must therefore satisfy
tr(“φ”). SinceI satisfies∆ it must satisfyφ. By construc-
tion, I ′ must therefore satisfytr(“φ”). Again the sentence
is true. SinceI ′ satisfies bothΓ ∪D and{d(x) ⇒ tr(x)},
it satisfies their union.�

The significance of this theorem is that for any descrip-
tion D of ∆, everyLB-model of∆ can be extended to at

least oneL-model ofΓ ∪ D that satisfies every description
of ∆, i.e. using the description does not cause us to lose any
importantLB-model reducts, which is essentially enough
for soundness. For completeness to hold, it must also be
the case that there are no extraLB-model reducts that result
from using the description instead of the sentences them-
selves. For this, we must show that everyL-model that sat-
isfiesΓ and some description of∆, when reduced toLB ,
satisfies∆.

Theorem 3 (Soundness)Let∆ be a set of closed sentences
in LB with descriptionD. For anyLB-sentenceψ,D∪Γ |=
ψB implies∆ |= ψ.

Proof: If ∆ is unsatisfiable, the conclusion follows im-
mediately, so suppose∆ is satisfiable. Further suppose
D∪Γ |= ψB , and for the purpose of contradiction that there
is anLB-model I such thatI satisfies∆ but notψ. Be-
causeI satisfies∆, we can apply the Compatibility theorem
to ensure there is a compatibleL-modelI ′ for the designa-
tor of D that satisfiesD ∪ Γ. Since it is compatible and
I does not satisfyψ, we know thatI ′ does not satisfyψ
when restricting quantifiers to the baselevel domain. Thus
I ′ does not satisfyψB . This contradicts the assumption that
D∪Γ |= ψB . ThereforeI must satisfyψ and becauseI was
chosen arbitrarily∆ |= ψ. �

Theorem 4 (Completeness)Let ∆ be a set of closed sen-
tences inLB with descriptionD. For anyLB-sentenceψ,
∆ |= ψ implies thatD ∪ Γ |= ψB .

Proof: Suppose that∆ |= ψ, and suppose thatI ′ is any
L-model that satisfiesD ∪ Γ.

First, we show thatI ′ satisfies∆∪D ∪Γ when the quan-
tifiers in ∆ are restricted to the baselevel domain. Consider
any sentenceφB in ∆B . By the definition of a description
and one step of deduction, we know thatΓ ∪D |= tr(“φ”).
By the definition ofΓ, we know that the sentencetr(“φ”) ⇔
φB is an element ofΓ. By a simple application of modus po-
nens, we getD ∪ Γ |= φB . Therefore, any model ofD ∪ Γ
is a model ofφB . This argument holds for all elements of
∆B . Thus, every model ofD∪Γ is a model of∆B ∪D∪Γ.
This includesI ′. If ∆ were unsatisfiable, there would be no
such modelI ′ and the result follows immediately.

SinceI ′ satisfies∆B ∪ D ∪ Γ, it must also satisfy∆B .
Since every sentence in∆B is contained in the languageLB

and every quantifier ranges over the baselevel domain, the
LB-reduct ofI ′ must satisfy∆B . But then, by our supposi-
tion, that reduct satisfiesψB , and therefore so mustI ′. �

Example

As a demonstration of the utility of metalevel axiom
schemata, consider a first-order axiomatization for the
unique names axioms when the language includes a single

AAAI-05 / 298

object constanta and a single, unary function constantf .

a 6= f(a)
a 6= f(f(a))
...
f(a) 6= f(f(a))
f(a) 6= f(f(f(a)))
...

Note that the sentence set

a 6= f(x)
x 6= y ⇒ f(x) 6= f(y)

entails the unique names axioms above, but is stronger than
we want.

Let’s see how to take advantage oftr to finitely describe
this infinite set of axioms. The designator for these sen-
tences can be defined as including the sentenceφ 6= ψ when-
everφ andψ are distinct terms in the languageLB .

d(relnSent(“ 6= ”, y, z)) ⇐
term(y) ∧ term(z) ∧ y 6= z

The object constanta is a term, as isf(φ), whereφ is a
term.

term(“a”)
term(funcTerm(“f”, y)) ⇐ term(y)

Closing these two definitions and adding in the sentence
d(x) ⇒ tr(x) gives a full description of the unique names
axioms.

d(x) ⇔
∃yz.(x = relnSent(“ 6= ”, y, z)∧
term(y) ∧ term(z) ∧ y 6= z)

term(x) ⇔
(x = “a”∨
∃y.(x = funcTerm(“f”, y) ∧ term(y)))

d(x) ⇒ tr(x)

Conclusion and Future Work
Injecting metalevel axiom schemata into a first order lan-
guage enhances a logician’s ability to concisely axiomatize
certain domains. The scheme presented here starts with a
particular baselevel languageLB and constructs a metalevel
language,LM , and the infinite axiom setΓ to supportLM .
BecauseΓ depends only on thelanguageLB , building Γ
into a proof procedure allows that procedure to manipulate
any description of sentences inLB . That is, with some mild
restrictions we can construct a proof system`LB

such that
for any descriptionD of LB-sentences∆, D `LB

φ if and
only if ∆ |= φ, whereφ is anLB-sentence.

In one sense, this implementation is trivial. If the vari-
ables and constants ofLB are recursively enumerable, so too
is an infinite axiom set with a finite description inLM . One
can interleave this enumeration with a favorite proof proce-
dure and ensure semi-decidability, soundness, and complete-
ness. But such a proof procedure is far from practical. In
the sequel, we give a resolution-based procedure that avoids
enumerating axiom schemata when possible.

The tr predicate described here was developed for the
purposes of knowledge sharing and can be used as a re-
placement for the truth predicatetrue described in the
KIF (Knowledge Interchange Format) manual (Genesereth,
Fikes, & et al. 1992).tr is conceptually simpler thantrue
and, therefore, easier for users to understand. It is also more
amenable to implementation.

References
Attardi, G., and Simi, M. 1995. A Formalization of View-
points.Fundamenta Informaticae23:149–173.
Chen, W.; Kifer, M.; and Warren, D. 1989. Hilog: A
foundation for higher-order logic programming. Technical
report, State University of New York at Stony Brook.
DesRivieres, J., and Levesque, H. J. 1965. The consistency
of syntactical treatments of knowledge.Computational In-
telligence12(1):23–41.
Enderton, H. 2001.A Mathematical Introduction to Logic.
Hartcourt/Academic Press.
Genesereth, M., and Nilsson, N. 1987.Logical Founda-
tions of Artificial Intelligence. Morgan Kaufmann.
Genesereth, M.; Fikes, R.; and et al. 1992. Knowledge
interchange format version 3 reference manual. Technical
report, Stanford University.
Haas, A. 1986. A syntactic theory of beliefs and knowl-
edge.Artificial Intelligence28(3):245–292.
Perlis, D. 1985. Languages with self-reference, I: Founda-
tions. Artificial Intelligence25(3):301–322.
Sato, T. 1992. Meta-programming through a truth predi-
cate. InJICSLP, 526–540.
Tarski, A. 1956.The Concept of Truth in Formalized Lan-
guages. Clarendon Press. 152–278.
Turner, R. 1991.Truth and Modality for Knowledge Rep-
resentation. The M.I.T. Press.
Weyhrauch, R. 1980. Prolegomena to a theory of mech-
anized formal reasoning. Artificial Intelligence 13(1-
2):133–170.

AAAI-05 / 299

