
Recommender Systems: Attack Types and Strategies

Michael P. O’Mahony and Neil J. Hurley and Guénoĺe C.M. Silvestre
University College Dublin

Belfield, Dublin 4
Ireland

michael.p.omahony@ucd.ie

Abstract

In the research to date, the performance of recom-
mender systems has been extensively evaluated across
various dimensions. Increasingly, the issue of robust-
ness against malicious attack is receiving attention from
the research community. In previous work, we have
shown that knowledge of certain domain statistics is
sufficient to allow successful attacks to be mounted
against recommender systems. In this paper, we exam-
ine the extent of domain knowledge that is actually re-
quired and find that, even when little such knowledge is
known, it remains possible to mount successful attacks.

Introduction
Recommender systems help users to find relevant prod-
ucts from the vast quantities that are often available. In
the commercial world, recommender systems have known
benefits, e.g. turning web browsers into buyers, the cross-
selling of products, instilling customer loyalty, etc. In the re-
search to date, the performance of recommender systems has
been extensively evaluated across various dimensions, such
as accuracy, coverage, efficiency and scalability. Recently,
the security of recommender systems has received con-
sideration from the research community (O’Mahony 2004;
Lam & Riedl 2004; Burkeet al. 2005). It is difficult, given
the open manner in which recommender systems operate, to
prevent unscrupulous users from inserting bogus data into a
system. We refer to the insertion of such data as anattack.

Automated collaborative filtering (ACF) algorithms are
a key component of recommender systems (Resnicket al.
1994; Breese, Heckerman, & Kadie 1998). In previous
work (O’Mahony 2004; Lam & Riedl 2004), it has been
shown that user–based ACF algorithms are vulnerable to the
insertion of biased data. While this work has shown that very
effective attacks can be mounted against ACF systems, the
attack strategies relied on the attacker having access to cer-
tain domain knowledge. We have argued that such knowl-
edge is easy to obtain for many real application scenarios. In
this paper, we will examine this aspect of the attacks more
closely. In particular, we vary the amount of domain knowl-
edge that is available in order to quantify the amount and

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

type of knowledge required. We also propose a new attack
strategy, wherein a recommender system is probed and the
system’s output is used to discover attack data.

Attack Strategies
Two attack types are considered in this paper– namelyprod-
uct pushandproduct nukeattacks. The objectives of these
attacks is to promote or demote the predictions that are
made for targeted items, respectively. All attacks are imple-
mented as follows. The attacker assumes a number of iden-
tities within the system being attacked, and creates a user
profile for each identity. We refer to such profiles asattack
profiles. It is in this manner that attack data is inserted into a
system – no other access to a system’s database is assumed.

There are two issues that attackers need to consider when
building attack profiles. The first concerns the selection of
items from which the profiles are constructed; the second
relates to the ratings that are applied to the selected items.
We begin by considering some item selection strategies.

Popular Attack Strategy
In terms of item selection, it is useful to consider the struc-
ture of a typical recommender system dataset. In many in-
stances, a number of distinct item clusters may be present
in the system. For example, in a music domain, examples
of such clusters are House, Country, Classical, Easy Listen-
ing etc. Continuing with this scenario, what would be the
best set of items that an attacker could select to build at-
tack profiles in order to promote (or demote) a new classi-
cal music CD? Assuming that it is intractable for attackers
to build attack profiles that consist of all domain items, it
makes sense to target primarily those users who have pur-
chased classical CD’s in the past, since such users are most
likely to make further purchases of this particular kind of
music. Thus, existing classical music CD’s represent good
choices with which to construct attack profiles in order to
target this particular subdomain of the system.

While the above strategy limits the set of items to be con-
sidered to particular subdomains, some subdomains may en-
compass a large number of items. In these cases, however,
attack costs can be minimised by choosingpopular items
from the subdomain – i.e. items which have received many
ratings from users. There are a number of advantages in
choosing popular items when building attack profiles:

AAAI-05 / 334

• the likelihood of a high number of co–rated items between
genuine and attack profiles is increased, which helps to
ensure high similarities,

• it is desirable that each attack profile have a high proba-
bility of being located in the neighbourhood of many gen-
uine users, thereby minimising the cost of attack in terms
of number of attack profiles that need to be created, and

• popular items tend to receive consistent and predictably
high ratings from users.

The strategy of using popular items applies to all domains,
irrespective of the degree of connectivity between domain
items. In (Mirza, Keller, & Ramakrishnan 2003), it is noted
that users buy and rate different categories of products in
qualitatively different ways. For example, movie domains
tend to follow ahits–buffsdistribution, where many users
have seen many of the hit movies and where movie buffs, al-
though few in nature, have seen many of the movies. Thus,
movie databases tend to be well connected and hence it can
be difficult to derive good quality clusters. In other domains,
there may be strong connectivities between certain subdo-
mains (e.g. Country and Easy Listening). If such instances
are known and regarded by attackers as single item clus-
ters, then the above approach of selecting popular subdo-
main items for attack profiles remains applicable.

Probe Attack Strategy
Attack profiles constructed using popular subdomain items
have the potential drawback of being easy to detect, partic-
ularly if large numbers of such profiles are created. While
an attacker could attempt to vary the items that are used,
nevertheless a distinctive attack signature may exist. Thus,
a less conspicuous strategy is desirable. One such approach
involvesprobingthe recommender system and using the sys-
tem’s recommendations as a means to select items. By rating
a small number of initial seed items, the attacker can pro-
gressively build up attack profiles which will closely match
the distribution of items that have been rated by genuine
users of the system. Thus, the probability of high similari-
ties between genuine and attack profiles is assured. Further,
any attack profiles that are created are unlikely to be readily
distinguishable from genuine profiles, thereby reducing the
detectability of the attack.

This strategy also has another advantage over the popu-
lar attack, since less domain knowledge is required by an
attacker. Only a small number of seed items need to be se-
lected by the attacker1, thereafter the recommender system
itself is used to identify additional items.

Ratings Strategy
The ratings strategy that we adopt is tailored to the particular
ACF algorithm that is used. Here, we consider the well es-
tablished user–based algorithm described in (Resnicket al.
1994). This algorithm employs a deviation from mean ap-
proach to the calculation of predictions, taking into account
any differences in rating patterns across different users. A

1In a sense, seed items need not necessarily be bogus since they
may in fact reflect the “true” choices of the attacker.

predictionpa,j is computed for a usera on an itemj as a
weighted average ofn neighbours’ ratings as follows:

pa,j = r̄a +
∑n

i=1 w(a, i)(ri,j − r̄i)∑n
i=1 |w(a, i)|

(1)

wherer̄a is the average rating of usera andri,j is the rating
assigned by neighbouri to item j. The similarity,w(a, i),
between the active usera and neighbouri is typically com-
puted using Pearson correlation (Resnicket al.1994).

From (1), the dependence of a prediction on a databased
may be expressed as:

pa,j(d) = r̄a(a) + σa,j(d) (2)

Since the term̄ra(a) depends entirely on the active user, the
insertion of attack profiles into a system can only affect the
deviation from user mean term,σa,j(d). Therefore, for suc-
cessful product push and nuke attacks, it is necessary to en-
sure that the magnitude of the deviation term is maximised
or minimised, respectively. The contribution to this term by
any particular neighbour is a function of:

• the rating of the item for which a prediction is sought,

• the neighbour’s mean rating, and

• the similarity between the neighbour and the active user.

Thus, careful selection of the ratings that are assigned to at-
tack profile items is required. Firstly, attack profiles need to
have a high degree of similarity with genuine users if they
are to influence predictions. Secondly, since Pearson correla-
tion results in values between -1 and 1, it is important that all
attack profiles correlate either positively or negatively with
genuine users. Otherwise, the contributions of multiple at-
tack profiles may be canceled out or attacked items may be
inadvertently pushed instead of being nuked, orvice versa.

Let us consider these issues in the context of the popu-
lar attack strategy. By choosing attack profile items that are
generally liked and disliked by the genuine users of a par-
ticular subdomain, and by rating these items appropriately,
the attacker can achieve the above criteria. Consider a push
attack, for example, where the objective is to maximise the
termσa,j(d) in (2). Our strategy involves assigning the min-
imum rating,rmin, to the disliked items, ratings ofrmin +1
to the liked items and the maximum rating,rmax, to the item
being targeted by the attack. Thus, positive correlations are
achieved between attack and genuine profiles. In addition,
the difference term(ri,j − r̄i) in (1) is maximised for the at-
tack profiles, which is the desired outcome for a successful
push attack. In a similar manner, product nuke attacks can
be implemented by switching the ratings that are assigned
above to the liked and disliked items. This results in neg-
ative correlations between attack and genuine profiles and
leads to minimising the termσa,j(d) in (2).

For the probe attack, it is only necessary to apply the
above strategy to the initial seed items that are selected –
thereafter the recommender system is used to select any fur-
ther items and corresponding ratings.

The difficulty with the above approach lies in identifying
popular items which are both liked and disliked by genuine
users. In some domains, such data is readily accessible. For

AAAI-05 / 335

example, the MovieLens system2 provides the average rat-
ing received by each item in the system. It is also possible
to estimate this data from other sources, i.e. by counting the
number of positive and negative item reviews, etc. In the
results section, we evaluate attack performance when such
knowledge is both fully and only partially known.

Experimental Evaluation
Datasets
We use the following real–world datasets to evaluate the at-
tack strategies as described in the previous section.

The EachMovie recommender system3 operated between
1995 and 1997. The original dataset has some72, 916 users
who provided2, 811, 983 ratings on1, 628 movies. From
this, a random sample of1, 000 users is selected, which con-
tains63, 507 transactions on a rating scale of1 to 6.

The second dataset that is used is provided by the Movie-
Lens research project. MovieLens is a web–based movie
recommender system that began operating in 1997. It con-
sists of943 users,1, 682 movies and contains100, 000 trans-
actions in total. Ratings are based on a scale of1 to 5.

Upon examination, we found that the above datasets were
well connected. Thus, we treat each as a single cluster and
apply our attack strategies accordingly. In addition, we ap-
plied our attack strategies to a dataset obtained from the
Smart Radio system (Hayeset al. 2002), which is a mu-
sic recommendation service operated by Trinity College
Dublin, Ireland. Due to limitations of space, we omit the re-
sults that were obtained using this latter dataset, noting that
similar trends were observed using all three datasets.

ACF Algorithm
We use a tuned version of the user–based ACF algorithm
that was described above. We employ thek–nearest neigh-
bour neighbourhood scheme, with optimal neighbourhood
size chosen by experiment in the usual manner (k is set
to 35 for MovieLens and45 for EachMovie). In addition,
we incorporate the significance weighting algorithm exten-
sion proposed in (Herlockeret al. 1999), which considers
the number of co–rated items between users when comput-
ing similarity weights. Weights that are based on low num-
bers of co–rated items are devalued. In this paper, we con-
sider the Pearson correlation similarity metric only. In ear-
lier work (O’Mahony, Hurley, & Silvestre 2003), the perfor-
mance of various other neighbourhood formation schemes
and similarity metrics when subjected to attack was exam-
ined. None were found to provide robustness against attack.

Metrics
We introduce the following metrics to evaluate our attacks.
For product push attacks, we calculate the increase in the
number ofgood predictions(GP) that are made for items
following an attack. We define a good prediction for an item
j as the number of times the following expression holds true:

pu,j : pu,j ≥ δg,∀ u ∈ Uj (3)

2http://movielens.umn.edu/ .
3http://www.research.digital.com/ .

whereδg is a threshold rating andUj is the set of all genuine
users who have rated itemj.

Likewise, we evaluate product nuke attacks in terms of
the number ofbad predictions(BP) that are made for items
after an attack. In a similar manner to the above, we define a
bad prediction for an itemj using a thresholdδb as:

pu,j : pu,j ≤ δb,∀ u ∈ Uj (4)

This metrics are useful measures of attack success since
users are likely to act on good and bad predictions in a par-
ticular manner – i.e. purchase/do not purchase an item (or at
least consider the purchase or non–purchase of an item). In
this paper, we setδg = rmax− 1 andδb = 1

2 (rmax− rmin).
While definitions of what constitutes good and bad predic-
tions are a subjective matter, we believe that those presented
here are reasonable and suitable for general analysis.

Experimental Procedure
The following procedure, unless stated otherwise, is adopted
in all cases. The performance of an item that is subjected to
attack is evaluated over all the genuine users of a system who
have rated the item in question. For each of these users, an
all but oneprotocol is adopted wherein the test set is com-
prised of the user–item pair in question, and a prediction for
this pair is made using all remaining data. The average result
over all users is then computed.

In the results that are shown in this paper, the average per-
formance that is achieved across all the items that are con-
tained in a system is presented. Average performance is cal-
culated by repeating the above procedure for all items, and
taking the mean of the results obtained.

Results
Popular Attack Strategy
To begin, we assume that full knowledge concerning both
item popularityanditem likeabilityis available to attackers.
Item popularity refers to the number of ratings received by
each item and item likeability refers to the average rating re-
ceived by each item. This scenario in optimal the sense that
an attacker can choose the most popular liked and disliked
items with which to build attack profiles. Table 1 shows the
results for a product push attack on the MovieLens (ML) and
EachMovie (EM) datasets. In each case, attack profiles of
size 100 items are used. The attacks on both datasets were
very successful. For example, the number of good predic-
tions increased to 35% from a pre–attack baseline of 19%
when just 1 attack profile was inserted, a percentage increase
of 84% (MovieLens). For both datasets, it is apparent that
little additional gain was realised by creating more than 16
attack profiles, where the number of good predictions that
was achieved was approximately 86%. The results for prod-
uct nuke attacks are also shown in Table 1. The attacks were,
again, very successful. As before, an attack strength of 16
profiles was sufficient to achieve very large effects, with
83% of all predictions being reduced to less than or equal
to the midpoints of the corresponding rating scales.

We now examine the effect of attack profile size on at-
tack success. The results, shown in Figure 1, correspond to

AAAI-05 / 336

Table 1: The effect of the number of attack profiles inserted
(#) on the outcome of product push and nuke attacks. The
data shown is the number of good and bad predictions that
are achieved by the attacks.

Popular Attack Probe Attack
Push Nuke Push Nuke

GP (%) BP (%) GP (%) BP (%)
ML EM ML EM ML EM ML EM

0 19 24 36 18 19 24 36 18
1 35 46 51 38 26 36 42 31
2 45 55 57 48 32 44 47 37
4 59 67 65 61 40 52 53 45
8 76 79 76 73 49 61 58 55
16 86 87 83 84 59 68 64 63
32 87 89 83 86 66 74 69 70
64 87 89 83 86 71 78 72 74
128 87 89 83 86 74 79 75 77

a constant number (32) of attack profiles inserted into each
of the datasets. For both datasets, the increase in the number
of good predictions grew with attack profile size. The opti-
mum attack profile size appears to be 100 items, where ap-
proximately 88% of all predictions equalled or exceeded the
second–highest rating on the respective scales. Thereafter, at
greater attack profile sizes, only small increases in the num-
ber of good predictions were achieved. Similar trends were
found to apply in the case of product nuke attacks.

0

20

40

60

80

100

0 100 200 300 400

Attack Profile Size

G
o

o
d

P
e
rd

ic
ti

o
n

s
(%

)

ML EM

Figure 1: The effect of attack profile size on the number of
good predictions that are achieved by a popular push attack.

In the above attacks, it was assumed that full item popu-
larity and item likeability knowledge was known. In the next
sections, the effectiveness of the attacks when such knowl-
edge is only partially known is examined.

Item Popularity We begin by assuming that full item like-
ability knowledge is known and that item popularity knowl-
edge is only partially known. In order to simulate partial
popularity knowledge, a number of attacks are implemented
where it is assumed that only a certain percentage of the
most popular items that are contained in a system are known.
In each of the attacks, attack profile items are drawn from
the known set of the most popular items. A total of 32 attack
profiles of size 100 items are inserted in each attack.

Figure 2 shows the effect of item popularity knowledge on
the number of good predictions that are achieved by a prod-
uct push attack. The percentage of the most popular items
from which attack profile items are drawn is shown on the
x–axis. In the case of EachMovie, for example, when the
top–10% of the most popular items are known, attack pro-
files are constructed using items which are drawn from the
140 most popular items that are contained in the system4.
Drawing from the top–100% of the most popular items sim-
ulates a complete lack of item popularity knowledge.

As can be seen from the figure, attack success diminished
as the lack of item popularity knowledge grew. This result
was anticipated, since the overlap between genuine and at-
tack profiles can be expected to reduce as item popularity
knowledge decreases. In all cases, however, the post–attack
numbers of good predictions were well in excess of the pre–
attack levels for both datasets. In addition, even when no
item popularity knowledge was assumed to be known, attack
success remained high. Consider the EachMovie dataset, for
example, where the number of good predictions only fell to
74%, compared to 90% when the top–10% of the most pop-
ular items were known. Corresponding values of 64% and
90% were obtained for the MovieLens dataset. These find-
ings are significant, since they indicate that item popularity
knowledge is not a necessary requirement for successful at-
tacks. Similar trends were observed for product nuke attacks.

0

20

40

60

80

100

0 20 40 60 80 100

% of Most Popular Items

G
o

o
d

P
re

d
ic

ti
o

n
s

(%
)

ML EM ML pre EM pre

Figure 2: The effect of item popularity on the number of
good predictions achieved by a popular push attack. Attack
profiles contain items which are drawn from the top–X%
(shown on thex–axis) of the most popular items.

Item Likeability In this section, we investigate the effect
of item likeability knowledge on the outcome of a push at-
tack. This knowledge allows an attacker to identify items
that are generally liked or disliked in a system. By assigning
higher ratings to the liked items, the desired positive corre-
lations between attack and genuine users are achieved.

Here we assume that full item popularity knowledge is
known to the attacker. To simulate partial item likeability
knowledge, a number of attacks are implemented where a
certain percentage of liked and disliked items are misclassi-

4From a total of1, 338 items contained in the sample Each-
Movie dataset which received at least1 rating.

AAAI-05 / 337

fied. For example, a misclassification of10% means that a
randomly selected10% of the liked items that are contained
in attack profiles receive a lower rating and a corresponding
percentage of the disliked items receive a higher rating.

The results are shown in Figure 3 for attack profiles
containing 100 items. It can be seen that attacks became
less successful as the percentage of misclassified items ap-
proached50%. The reason for this trend is that lower sim-
ilarities between genuine and attack users were achieved at
higher misclassification rates and thus, fewer attack profiles
were present in neighbourhoods. Nevertheless, it is clear that
the attack remained successful for misclassification rates as
high as40%. At this point, 51% of all predictions either
exceeded or equalled the second–best rating, compared to
87% when all items were correctly classified (MovieLens).
These values are well above the pre–attack baseline number
of good predictions, which was 19%.

When50% of items were misclassified (equivalent to ran-
domly assigning ratings to the liked and disliked items), the
effect of the attack was negligable. The reason for this result
is that attack profiles were equally likely to correlate posi-
tively as they were negatively with genuine users, and thus,
no net effect was observed. Misclassification rates in excess
of 50% resulted in items beingnuked, since negative corre-
lations between genuine and attack profiles predominately
occurred, which lead to low predictions being made.

0

20

40

60

80

100

0 10 20 30 40 50

% Misclas sif ication of Items

G
o

o
d

P
re

d
ic

ti
o

n
s

(%
)

ML EM ML pre EM pre

Figure 3: The effect of item likeability on the number of
good predictions achieved by a popular push attack.

In summary, the results presented above are significant for
two reasons. Firstly,low–costattacks, involving relatively
few, small–sized attack profiles, are capable of achieving
considerable success. Secondly, the attacks remain success-
ful even when relatively little domain knowledge is known.

Probe Attack Strategy
The key issue in the implementation of a probe attack lies
in the selection of the initial seed items. For simulation pur-
poses, we randomly select 10 seed items from the set of the
100 most popular items. It is assumed that item likeability
knowledge is known for the seed items. Additional items
and corresponding ratings are then selected incrementally
by choosing each successive item randomly from the top–N
recommended list, which is obtained from the system under

attack. In cases where multiple attack profiles are inserted
into a system, each attack profile is created independently –
i.e. there is no feedback between successive attack profiles.
Each attack profile consists of a total of 100 items.

The results for product push and nuke attacks are shown
in Table 1. The attacks achieved significant success against
both datasets. As before, attack success improved when
greater numbers of attack profiles were inserted into the sys-
tem databases. For example, when 32 attack profiles were
inserted, the push attack against the MovieLens dataset re-
sulted in 66% of all predictions equalling or exceeding the
second–highest rating, compared to 40% when 4 attack pro-
files were used. Nevertheless, both of these values were con-
siderably greater than the pre–attack number of good predic-
tions, which was equal to 19%. It can also be seen from the
results that little additional attack gains were realised by in-
serting more than 64 profiles into either dataset.

Figure 4 shows the effect of attack profile size on the out-
come of the push attack (similar trends applied for the nuke
attack). The results correspond to an attack strength of 64
profiles inserted. As with the popular attack, attack success
increased as attack profiles were constructed using more
items. In this case, however, attack profiles sizes of up to 400
were required in order to achieve the greatest effects, com-
pared to profile sizes of only 100 for the popular attack strat-
egy. Thus, while the probe attack strategy was successful in
substantially influencing the predictions that were made, the
popular attack achieved better results in cases where full do-
main knowledge was known. It is clear, therefore, that the
ready availability of such knowledge represents an increased
security threat to user–based ACF algorithms.

0

20

40

60

80

100

0 200 400 600

Attack Profile Size

G
o

o
d

P
re

d
ic

ti
o

n
s

(%
)

ML EM

Figure 4: The effect of attack profile size on the number of
good predictions that are achieved by a probe push attack.

We now examine the effect of the number of initial seed
items that are chosen on the outcome of the probe attack
strategy. The results are shown in Figure 5 for both datasets.
Experiments were conducted using three different seed pro-
file sizes, ranging from 5 to 15 items. Attack profiles were
then incrementally increased in size up to a total of 100
items. In each of the attacks, 64 attack profiles were inserted.
As can be seen, there is very little difference in the results
between seed profile sizes of 10 and 15 items. Attacks based
on 5 seed items performed only marginally worse, with av-
erage differences of only 3% seen in terms of the numbers
of good and bad predictions that were achieved.

AAAI-05 / 338

Thus, we conclude that the findings of this section have
serious consequences for system security, since domain
knowledge concerning only a small number of items is re-
quired in order to implement successful attacks.

50

60

70

80

ML Push EM Push ML Nuke EM Nuke

G
o

o
d

/
B

a
d

P
re

d
ic

ti
o

n
s

(%
)

5

10

15

 Seed

 Size :

Figure 5: The effect of initial seed attack profile size on the
outcome of probe product push and nuke attacks.

Large–Scale Systems
It is important to understand how system robustness varies
with dataset size – for example, as the number of genuine
users in a system grows, attacks may well become more dif-
ficult to implement successfully. Thus, we conducted exper-
iments using different–sized samples drawn from the Each-
Movie dataset, where identical popular push attacks were
carried out on each. Only 1 attack profile, containing 25
items, was used in each case. Since it is reasonable to expect
that newer items are likely to be the subject of most attacks
(given that such items often sell at premium rates and that
more established opinions are held on older, more frequently
rated items), the results presented in Table 2 therefore relate
to those items which have received≤ 100 ratings in the var-
ious sample datasets. Note that, even at the largest sample
size (10,000 users), 52% of all items satisfied this criterion.

The results indicate that the optimum neighbourhood size
(w.r.t. predictive accuracy) increased as the sample size
grew. This finding was expected since greater numbers of
high quality neighbours were likely to be present in the
larger sample datasets. Of critical importance is the fact that
the attacks remained successful, irrespective of dataset size,
where the percentage increase in the number of good pre-
dictions that was achieved remained (approximately) con-
sistent, at 46%. We can therefore conclude that dataset size
does not have a significant effect on attack success.

Conclusions
In this paper, we have introduced item and ratings selection
strategies for attacks against user–based ACF algorithms.
Our popular attack strategy achieved the greatest effects in
situations where full domain knowledge concerning item
ratings was known. We also found, however, that even when
little domain knowledge was available, very successful at-
tacks were still possible. The probe attacks also resulted in
considerable success, and have the advantages of requiring
less domain knowledge to implement and, importantly, at-
tack profiles that are created using this approach are likely
to be difficult to detect.

The security implications of the above findings are clear.
In future work, we will expand upon the solutions to de-

Table 2: Popular push attacks carried out on various samples
drawn from the EachMovie dataset.

Dataset # Users Neigh. % Items with % Inc.
Sample Size Pop.≤ 100 GP

d1 2,000 40 79 46
d2 4,000 50 67 45
d3 6,000 65 60 47
d4 8,000 80 55 60
d5 10,000 95 52 47

fend against attack as proposed in (O’Mahony 2004). These
techniques aim to exclude from neighbourhoods any biased
data that is present in a system. In particular, we introduced
the profile utility concept, which defines novel approaches
to neighbourhood formation and similarity weight transfor-
mation. This technique significantly increases the cost (i.e.
the number and size of attack profiles required) of successful
popular attacks. It needs to be investigated whether this tech-
nique will be as successful against other forms of attack. In
addition, an investigation of the robustness of various other
recommender system algorithms, e.g. content–based, demo-
graphic and hybrid approaches, needs to be conducted.

References
Breese, J. S.; Heckerman, D.; and Kadie, C. 1998. Em-
pirical analysis of predictive algorithms for collaborative
filtering. In Proc. of the Fourteenth Annual Conference on
Uncertainty in Artificial Intelligence43–52.
Burke, R.; Mobasher, B.; Zabicki, R.; and Bhaumik, R.
2005. Identifying attack models for secure recommenda-
tion. In Proc. of the Beyond Personalization 2005 Work-
shop, Int. Conference on Intelligent User Interfaces19–25.
Hayes, C.; Cunningham, P.; Clerkin, P.; and Grimaldi, M.
2002. Programme driven music radio.In Proc. of the 15th
European Conference on Artificial Intelligence633–637.
Herlocker, J.; Konstan, J.; Borchers, A.; and Riedl, J. 1999.
An algorithmic framework for performing collaborative fil-
tering. In Proc. of the 22nd Int. Conference on Research
and Development in Information Retrieval230–237.
Lam, S. K., and Riedl, J. 2004. Shilling recommender
systems for fun and profit.In Proc. of the 13th Int. World
Wide Web Conference393–402.
Mirza, B. J.; Keller, B. J.; and Ramakrishnan, N. 2003.
Studying recommendation algorithms by graph analysis.
Journal of Intelligent Information Systems20(2):131–160.
O’Mahony, M. P.; Hurley, N. J.; and Silvestre, G. C. M.
2003. An evaluation of the performance of collaborative
filtering. In Proc. of the 14th Irish Int. Conference on Arti-
ficial Intelligence and Cognitive Science164–168.
O’Mahony, M. P. 2004. Towards robust and efficient auto-
mated collaborative filtering.Ph.D. Dissertation.
Resnick, P.; Iacovou, N.; Suchak, M.; Bergstrom, P.; and
J.Riedl. 1994. GroupLens: An open architecture for col-
laborative filtering of netnews.In Proc. of the ACM Confer-
ence on Computer Supported Cooperative Work175–186.

AAAI-05 / 339

