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Abstract

This paper deals with the problem of identifying direct causal
effects in recursive linear structural equation models. Using
techniques developed for graphical causal models, we show
that a model can be decomposed into a set of submodels such
that the identification problem can be solved independently in
each submodel. We provide a new identification method that
identifies causal effects by solving a set of algebraic equa-
tions.

Introduction
Structural equation models (SEMs) have dominated causal
reasoning in the social sciences and economics, in which in-
teractions among variables are usually assumed to be linear
(Duncan 1975; Bollen 1989). This paper deals with one fun-
damental problem in SEMs, accessing the strength of linear
cause-effect relationships from a combination of observa-
tional data and model structures.

The problem has been under study for half a century, pri-
marily by econometricians and social scientists, under the
name “The Identification Problem”(Fisher 1966). Although
many algebraic or graphical methods have been developed,
the problem is still far from being solved. In other words, we
do not have a necessary and sufficient criterion for deciding
whether a causal effect can be computed from observed data.
Most available methods are sufficient criteria which are ap-
plicable only when certain restricted conditions are met.

The contribution of this paper consists of two parts. First,
we show how a model can be decomposed into a set of sub-
models such that the identification problem can be solved
separately in each submodel. The technique is orthogonal to
the available identification methods, and it is useful in prac-
tice because it is possible for an identification method which
can not be applied to the full model to become applicable
in smaller submodels. Second, we show a reduction of the
identification problem into a problem of solving a set of al-
gebraic equations. These equations provide an alternative to
the classic Wright’s rule (Wright 1934).

We begin with an introduction to SEMs and the identi-
fication problem, and give a brief review to previous work
before presenting our new results.
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Figure 1: A linear SEM.

Linear SEMs and Identification
A linear SEM over a set of random variables V =
{V1, . . . , Vn} is given by a set of structural equations of the
form

Vj =
∑

i

cjiVi + εj , j = 1, . . . , n, (1)

where the summation is over the variables in V judged to
be immediate causes of Vj . cji, called a path coefficient,
quantifies the direct causal influence of Vi on Vj , and is also
called a direct effect. εj’s represent “error” terms and are as-
sumed to have normal distribution. In this paper we consider
recursive models and assume that the summation in Eq. (1)
is for i < j, that is, cji = 0 for i ≥ j. We denote the
covariances between observed variables σij = Cov(Vi, Vj),
and between error terms ψij = Cov(εi, εj). We denote the
following matrices, Σ = [σij ], Ψ = [ψij ], and C = [cij ].
Without loss of generality, the model is assumed to be stan-
dardized such that each variable Vj has zero mean and vari-
ance 1.

The structural assumptions encoded in a model are the
zero path coefficient cji’s and zero error covariance ψij’s.
The model structure can be represented by a directed acyclic
graph (DAG) G with (dashed) bidirected edges, called a
causal diagram (or path diagram), as follows: the nodes
of G are the variables V1, . . . , Vn; there is a directed edge
from Vi to Vj in G if Vi appears in the structural equation
for Vj , that is, cji 6= 0; there is a bidirected edge between
Vi and Vj if the error terms εi and εj have non-zero corre-
lation (ψij 6= 0). Figure 1 shows a simple SEM and the
corresponding causal diagram in which each directed edge
is annotated by the corresponding path coefficient.
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Figure 2: A typical instrumental variable

The parameters of the model are the non-zero entries in
the matrices C and Ψ. Fixing the model structure and given
parameters C and Ψ, the covariance matrix Σ is given by
(see, for example, (Bollen 1989))

Σ = (I − C)−1Ψ(I − C)T −1
. (2)

Conversely, in the identification problem, given the structure
of a model, one attempts to solve for C in terms of the given
covariance Σ. If Eq. (2) gives a unique solution to some
path coefficient cVjVi

, independent of the (unobserved) error
correlations Ψ, that path coefficient is said to be identified.
In other words, the identification problem is that whether a
path coefficient is determined uniquely from the covariance
matrix Σ given the causal diagram. If every parameter of the
model is identified, then the model is identified. Note that the
identifiability conditions we seek involve the structure of the
model alone, not particular numerical values of parameters,
allowing for pathological exceptions.

Previous Work
Many methods have been developed for deciding whether
a specific parameter or a model is identifiable. Tradi-
tional approaches are based on algebraic manipulation of
the structural equations (Fisher 1966; Bekker, Merckens,
& Wansbeek 1994; Rigdon 1995). Recently graphical ap-
proaches for identifying linear causal effects have been de-
veloped, and some sufficient graphical conditions were es-
tablished (McDonald 1997; Pearl 1998; Spirtes et al. 1998;
Pearl 2000; Tian 2004). The applications of these methods
are limited in scope, and typically some special conditions
have to be met for these methods to be applicable.

For example, the well-known instrumental variable (IV)
method (Bowden & Turkington 1984) require search for
variables (called instruments) that are uncorrelated with the
error terms in specific equations. The graphical criterion for
recognizing a variable Z as instrumental relative to a cause
X and effect Y is described in (Pearl 2000). A typical con-
figuration of the IV method is show in Fig. 2, in which Z
serves as an instrument for identifying the causal effect b as

b = σZY /σZX . (3)

One approach for the identification problem is to write
Eq.(2) for each term σij of Σ using Wright’s method of path
coefficients (Wright 1934). Wright’s equations consist of
equating the (standardized) covariance σij with the sum of
products of parameters (cji’s and ψji’s) along all unblocked
paths between Vi and Vj . A path is unblocked if there is no
nodeX such that both edges connected toX in the path have
an arrow at X (→ X ←). A path coefficient cij is identi-
fied if and only if Wright’s equations give a unique solution

to cij , independent of error correlations. For example, the
Wright’s equations for the model in Fig. 2 are

σZX = a

σZY = ab (4)

σXY = b+ ψXY

Recently, based on Wright’s equations, sufficient graphi-
cal criteria for identification have been developed (Brito &
Pearl 2002b; 2002a).

C-components and Identification
In recent years, causal reasoning with graphical causal mod-
els has been an active research area in the artificial intelli-
gence community. The relation between linear SEMs and
graphical causal models , in which typically no assumptions
were made about the functional forms of how the variables
interact with each other, is analyzed in (Spirtes et al. 1998;
Pearl 1998; 2000). In this section, we will use the tech-
niques developed in graphical causal models to derive a use-
ful property for solving the identification problem.

Let PAj denote the set of variables in V which appears
in the equation (1) for Vj (PAj are the set of parents of Vj

in the causal diagram G.). Eq. (1) can be rewritten (in a
nonparametric form) as1

vj = fj(paj , εj) j = 1, . . . , n. (5)

It can be shown that the causal model defined by Eq. (5)
satisfies the Markov property that each variable Vj is condi-
tionally independent of all its non-descendants in the causal
diagram given paj and εj (Pearl 2000). These conditional
independence assertions imply that the joint probability den-
sity function p(v, ε), where V = {V1, . . . , Vn} and ε =
{ε1, . . . , εn}, can be decomposed (using the chain rule of
probability calculus) into the product

p(v, ε) =
∏

i

p(vi|pai, εi)p(ε) (6)

Then the joint over observed variables is given by

p(v) =

∫
ε

∏
i

p(vi|pai, εi)p(ε)dε (7)

For linear SEMs, p(v) ∼ N(0,Σ) is a normal density with
covariance matrix Σ, p(ε) ∼ N(0,Ψ), and each p(vi|pai, εi)
is a Dirac delta function

p(vi|pai, εi) = δ(vi −
∑

Vl∈PAi

cilvl − εi) (8)

Using the property of the Dirac delta function, Eq. (7) can
be rewritten as

p(v) = p(ε)|εi=vi−
∑

Vl∈P Ai
cilvl

(9)

Therefore Eq. (7) can be taken as an equation for Σ in terms
of C and Ψ which should be equivalent to Eq. (2).

1We use uppercase letters to represent variables or sets of vari-
ables, and use corresponding lowercase letters to represent their
values (instantiations).
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The integration of products in Eq. (7) can in fact be fac-
torized into a product of integrations depending on the struc-
ture of the causal diagram (Tian & Pearl 2002). Let a path
composed entirely of bidirected edges be called a bidirected
path. The set of variables V in the causal diagram can be
partitioned into disjoint groups by assigning two variables
to the same group if and only if they are connected by a
bidirected path. Assume that V is thus partitioned into k
groups S1, . . . , Sk, each called a c-component of V in G or
a c-component of G. Let Nj be the set of ε variables that
correspond to those variables in Sj (εi corresponds to Vi).
Then the sets N1, . . . , Nk form a partition of ε. We have
that if εi ∈ Nm and εj ∈ Nl belong to different groups then
they are uncorrelated, that is, ψij = 0 for m 6= l. Therefore
we have

p(ε) =

k∏
j=1

p(nj) (10)

Define, for j = 1, . . . , k,

Qj =

∫
nj

∏
{i|Vi∈Sj}

p(vi|pai, εi)p(nj)dnj . (11)

From Eq. (10), P (v) in Eq. (7) can be factorized into a prod-
uct of Qj’s:

P (v) =
k∏

j=1

Qj . (12)

For example, in the model of Figure 1, V is partitioned into
the c-components {X,Z} and {W,Y }, and if we define

Q1 =

∫
p(x|εx)p(z|x, εz)p(εx, εz)dεxdεz, (13)

and

Q2 =

∫
p(w|x, εw)p(y|w, z, εy)p(εw, εy)dεwdεy, (14)

then we have

p(x,w, y, z) = Q1Q2 (15)

The importance of this factorization stems from that each
Qj is computable from p(v), as shown in the following
lemma.

Lemma 1 (Tian & Pearl 2002) Let V (i) = {V1, . . . , Vi},
i = 1, . . . , n, and V (0) = ∅. Qj can be computed as

Qj =
∏

{i|Vi∈Sj}

p(vi|v
(i−1)), j = 1, . . . , k. (16)

For example, in the model of Figure 1, Q1 defined in
Eq. (13) is given by

Q1 = p(x)p(z|x) (17)

and Q2 defined in Eq. (14) is given by

Q2 = p(w|x)p(y|w, z, x). (18)

From the definition of Qj in Eq. (11), we rewrite Eq. (16)
as

∏
{i|Vi∈Sj}

p(vi|v
(i−1)) =

∫
nj

∏
{i|Vi∈Sj}

p(vi|pai, εi)p(nj)dnj

(19)

By Eq. (8) and the property of the Dirac delta function,
Eq. (19) can be rewritten as

∏
{i|Vi∈Sj}

p(vi|v
(i−1)) = p(nj)|εi=vi−

∑
Vl∈P Ai

cilvl
. (20)

Therefore, Eq. (19) represents a set of equations for Σ in
terms of those parameters (cij’s and ψij’s) that appear in
the structural equations for variables in Sj . We obtain that
the set of equations in Eq. (2) can be divided into k inde-
pendent sets of equations represented by Eq. (19), each only
involving parameters corresponding to the variables in a c-
component. And we get the following lemma.

Lemma 2 Let a variable Vi be in a c-component Sj . Eq. (2)
gives a unique solution to a path coefficient cim iff the set of
equations represented by Eq. (19) gives a unique solution to
cim.

We now transform the problem represented by Eq. (19)
back into the form of a set of linear structural equa-
tions. Let Pa(S) denote the union of a set S and the
set of parents of S, that is, Pa(S) = S ∪ (∪Vi∈SPAi).
Let Parent(S) = Pa(S) \ S. Multiply both sides of
Eq. (19) by

∏
{l|Vl∈Parent(Sj)}

p(vl) which is equal to∏
{l|Vl∈Parent(Sj)}

∫
p(vl|εl)p(εl)dεl

∏
{i|Vi∈Sj}

p(vi|v
(i−1))

∏
{l|Vl∈Parent(Sj)}

p(vl)

=

∫ ∏
{i|Vi∈Sj}

p(vi|pai, εi)(
∏

{l|Vl∈Parent(Sj)}

p(vl|εl)p(εl))

· p(nj)dnj

∏
{l|Vl∈Parent(Sj)}

dεl (21)

Define the left side of Eq. (21) as a distribution p′ over the
set of variables Pa(Sj) as2

p′(pa(Sj)) =
∏

{i|Vi∈Sj}

p(vi|v
(i−1))

∏
{l|Vl∈Parent(Sj)}

p(vl)

(22)

Comparing the right hand side of Eq. (21) with that of
Eq. (7), we conclude that Eq. (21), and therefore Eq. (19),
represents a set of structural equations over the set of vari-
ables Pa(Sj) given by

Vl = εl, Vl ∈ Parent(Sj)

Vi =
∑

Vm∈PAi

cimVm + εi, Vi ∈ Sj (23)

2(Tian & Pearl 2002) shows
∏

{i|Vi∈Sj}
p(vi|v

(i−1)) is indeed

only a function of Pa(Sj).
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Figure 3: The SEM in Fig. 1 is decomposed into two sub-
models

such that Pa(Sj) is distributed as p′(pa(Sj)) given by
Eq. (22). The covariance matrix over Pa(Sj), denoted by
Σ′

j = [σ′
ij ], can be computed from the density p′(pa(Sj)) as

σ′
ij =

∫
vivjp

′(pa(Sj))dpa(Sj). (24)

The preceding analysis leads to the following lemma.

Lemma 3 A path coefficient cim is identifiable in the SEM
given by Eq. (23) iff the set of equations represented by
Eq. (19) gives a unique solution to cim.

Given a SEM M with causal diagram G consisting of c-
components S1, . . . , Sk, the SEM given by Eq. (23) with
corresponding Σ′

j will be denoted by M(Sj), and the causal
diagram of M(Sj) will be denoted by G(Sj). G(Sj) can be
obtained from the subgraph ofG composed only of variables
in Pa(Sj) by deleting all the arrows pointing toward a vari-
able in Parent(Sj), which makes sure that each variable in
Parent(Sj) is a root node in G(Sj).

Lemmas 2 and 3 lead to the following two theorems.

Theorem 1 Let a variable Vi be in a c-component Sj in a
SEM M . A path coefficient cim is identifiable iff it is identi-
fiable in the model M(Sj).

Proof: cim is identifiable iff Eq. (2) gives a unique solution
to cim, then by Lemma 2, iff the set of equations repre-
sented by Eq. (19) gives a unique solution to cim, finally by
Lemma 3, iff cim is identifiable in the model M(Sj). 2

Theorem 2 Let V be partitioned into c-components
S1, . . . , Sk in a SEM M . M is identifiable iff each model
M(Sj), j = 1, . . . , k, is identifiable.

Proof: M is identifiable iff each path coefficient is identifi-
able, and by Theorem 1, iff each model M(Sj) is identifi-
able. 2

For example, the identifiability problem for the model
shown in Fig. 1 is reduced to that in two simpler models
shown in Fig. 3(a) and (b), with their density functions given
by (see Eqs. (17), (18), and (22))

p′(x, z) = p(x)p(z|x) = p(x, z) (25)

and

p′(x, z, w, y) = p(w|x)p(y|w, z, x)p(x)p(z) (26)

Y

Z

W

X

Y

W

Y

Z

W

X

(a) G (b) G({W}) (c) G({X,Y, Z})

Figure 4: A SEM model

respectively.
The results in Theorems 1 and 2 are orthogonal to the ex-

isting identification methods. We can apply these two theo-
rems to decompose the model into some simpler models be-
fore attempting to use available identification method. The
decomposition will often be useful in practice because we do
not have a necessary and sufficient criterion or procedure for
deciding the identifiability of either path coefficients or the
whole model. Available methods are typically sufficient cri-
teria that are only applicable when some special conditions
are met. It is possible that an identification method that can
not be applied to the original model becomes applicable in
the reduced models.

For example, the IV method can not be directly applied to
identify the path coefficient c in the model shown in Fig. 1,
because X is correlated with Z which appears in the struc-
tural equation for Y . However Theorem 1 says that c is iden-
tifiable if and only if it is identifiable in the model shown in
Fig. 3(b). Clearly X can serve as an instrument for identify-
ing c in the model in Fig. 3(b) (see Fig. 2), and we conclude
that c is identified as c = σ′

XY /σ
′
XW where σ′

XY and σ′
XW

can be computed from Eq. (26).
As another example, we consider the model M in

Fig. 4(a) which appears in (Brito & Pearl 2002b) as an exam-
ple to show that their identification criterion is not complete,
that is, the model M is identifiable but their criterion is not
applicable. Applying Theorem 2, we obtain that M is iden-
tifiable if and only if both the models in Fig. 4(b) and (c)
are identifiable. Now the criterion in (Brito & Pearl 2002b)
can actually be applied to both models to show that they are
identified.

Identification by Regression
In this section, we propose a method for identification that
transforms each of the structural equations into a regression
equation. A linear equation

Vi =
m∑

j=1

cjVij
+ ε (27)

is a regression if and only if ε is uncorrelated with each Vij
,

Cov(Vij
, ε) = 0, j = 1, . . . ,m. (28)
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When Eq. (27) is a regression, each coefficient cj is identi-
fiable. Let S = {Vi1 , . . . , Vim

} and Sj = S \ {Vij
}. Then

we have

cj = βiij .Sj
(29)

where βiij .Sj
denotes the partial regression coefficient and

represents the coefficient of Vij
in the linear regression of

Vi on S. (Note that the order of the subscripts in βij.S is
essential.) Partial regression coefficients can be expressed
in terms of covariance matrices as follows (Cramer 1946):

βij.S =
ΣViVj

− ΣT
ViS

Σ−1
SSΣVjS

ΣVjVj
− ΣT

VjSΣ−1
SSΣVjS

, (30)

where ΣSS etc. represent covariance matrices over corre-
sponding variables.

We introduce our idea by studying the model shown in
Fig. 2 whose structural equations are

Z = εz (31)

X = aZ + εx (32)

Y = bX + εy (33)

ψyx = Cov(εy, εx) 6= 0

We assert that Eq. (32) is a regression since ψxz = 0. There-
fore we have

βXZ = a, (34)

and Eq. (32) can be rewritten as

X = βXZZ + εx (35)

Eq. (33) is not a regression since ψyx 6= 0. If we define

ε′y = εy −
ψxy

ψxx

εx, (36)

then we have

Cov(ε′y, εx) = Cov(ε′y, εz) = 0 (37)

Obtaining the expression for εy from Eq. (36) and substitut-
ing it into Eq. (33), we get

Y = bX +
ψxy

ψxx

εx + ε′y (38)

Substituting into Eq. (38) the expression for εx obtained
from Eq. (35)

Y = (b+
ψxy

ψxx

)X − βXZ

ψxy

ψxx

Z + ε′y (39)

From Eq. (37), we conclude that Eq. (39) is a regression, and
we obtain

βY X.Z = b+
ψxy

ψxx

(40)

βY Z.X = −βXZ

ψxy

ψxx

(41)

Therefore we have transformed the set of structural equa-
tions in Eqs. (31)-(33) into a set of regression equations,
and obtained expressions for partial regression coefficients

in terms of the path coefficients and error covariances as
given in Eqs. (34), (40), and (41). Solving these three equa-
tions leads to unique solutions for a and b, and we conclude
that a and b are identifiable.

Next we show that we can transform a general SEM given
in Eq. (1) into a set of regression equations. First we will
“orthogonalize” the set of error terms to obtain a new set of
error terms {ε′1, . . . , ε

′
n} that are mutually orthogonal in the

sense that

Cov(ε′i, ε
′
j) = 0, for i 6= j. (42)

We will use the Gram-Schmidt orthogonalization process.
The process proceeds recursively as follows. We set

ε′1 = ε1 (43)

For j = 2, . . . , n, we set

ε′j = εj −

j−1∑
k=1

αjkε
′
k (44)

in which

αjk =
Cov(εj , ε

′
k)

Cov(ε′k, ε
′
k)
. (45)

Then Eq. (42) is guaranteed to hold.
Then we will transform the set of structural equations in

(1) into regression equations recursively as follows. For j =
1, substitute Eq. (43) into Eq. (1):

V1 = ε′1 (46)

For j = 2, substitute the expression for ε2 obtained from
Eq. (44) into Eq. (1):

V2 = c21V1 + α21ε
′
1 + ε′2 (47)

Substitute the expression for ε′1 obtained from Eq. (46) into
Eq. (47):

V2 = (c21 + α21)V1 + ε′2 (48)

Since Cov(ε′2, ε
′
1) = 0, Eq. (48) is a regression equation.

We have

β21 = c21 + α21, (49)

and Eq. (48) can be rewritten as

V2 = β21V1 + ε′2 (50)

For j = 3, . . . , n, we substitute the expression for εj ob-
tained from Eq. (44) into Eq. (1)

Vj =
∑
i<j

cjiVi +

j−1∑
k=1

αjkε
′
k + ε′j . (51)

If for k = 1, . . . , j − 1, each of the Eq. (1) for Vk can be
rewritten as a regression equation

Vk =
k−1∑
i=1

βki.Ski
Vi + ε′k, (52)
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where

Ski = {V1, . . . , Vk−1} \ {Vi}, (53)

then substituting the expression for ε′k’s obtained from
Eq. (52) into Eq. (51)

Vj =
∑
i<j

cjiVi +

j−1∑
k=1

αjk(Vk −
k−1∑
i=1

βki.Ski
Vi) + ε′j

=

j−1∑
k=1

(cjk + αjk −
∑

k+1≤l≤j−1

βlk.Slk
αjl)Vk + ε′j

(54)

From Eq. (42) and Eq. (52) it is easy to show that

Cov(ε′j , Vk) = 0 for k = 1, . . . , j − 1. (55)

Therefore Eq. (54) is also a regression equation. We have
in fact proved, by induction, that Eq. (54) is a regression
equation for j = 2, . . . , n, and we obtain

βjk.Sjk
= cjk + αjk −

∑
k+1≤l≤j−1

βlk.Slk
αjl,

j = 2, . . . , n, k = 1, . . . , j − 1, (56)

where Sij’s are defined in Eq. (53).
Eq. (56) expresses a partial regression coefficient, for each

pair of variables, in terms of the parameters (path coeffi-
cients and error covariances) of the model. Given the model
structure (represented by zero path coefficients and zero er-
ror correlations), some of the cjk’s and αjk’s will be set to
zero in Eq. (56), and we can solve the identifiability problem
by solving Eq. (56) for cjk’s in terms of the partial regression
coefficients. This provides an alternative to the Wright’s
equation method, and we will refer to Eq. (56) as the par-
tial regression equations. A path coefficient cij is identi-
fied if and only if the set of partial regression equations give
a unique solution to cij , independent of error correlations.
The partial regression equations are linear with respect to
path coefficient cjk’s and αjk’s (although not linear with re-
spect to ψij’s), while Wright’s equations are nonlinear with
respect to cjk’s. As a consequence, the partial regression
equations may have some advantages over Wright’s equa-
tions when we look for computer programs that can identify
path coefficients automatically by solving these algebraic
equations.

As an example, the partial regression equations for the
model shown in Fig. 1 are given by

βWX = a (57)

βZW.X = 0 (58)

βZX.W = b+ αZX (59)

βY Z.WX = d (60)

βY W.XZ = c+ αY W (61)

βY X.WZ = −βWXαY W (62)

which happens to be linear with respect to all the parame-
ters. It is not difficult to solve these equations to obtain that
the path coefficients a, d, and c are identified. On the other
hand, the Wright’s equations for this model are nonlinear
and would be difficult to solve.

Conclusion
Using graphical model techniques, we show that a SEM can
be decomposed into some submodels such that the identi-
fication problem can be solved independently in each sub-
model. The decomposition can serve as a preprocessing step
before attempting to apply existing identification methods.

We derive an expression for the partial regression coeffi-
cient βji.Sji

, for each pair of variables Vi and Vj , in terms
of the model parameters, while the classic Wright’s rule ex-
presses each covariance σij in terms of the model parame-
ters. This provides a new principled method for solving the
identifiability problem since the identifiability of a param-
eter or the model can be determined by solving the result-
ing algebraic equations for path coefficients. The method
may have advantages over Wright’s method since the set of
partial regression equations are linear with respect to path
coefficients. For models with a few variables, the set of par-
tial regression equations are typically much easier to solve
by human experts than Wright’s equations so as to obtain
necessary and sufficient identification results. However, the
set of partial regression equations may be nonlinear with re-
spect to error covariances, and (as Wright’s method) there-
fore cannot be directly used as identification criterion, rather
it provides a new tool for deriving identification criteria. We
are currently working on deriving identification criteria us-
ing the set of partial regression equations.

Wright’s equations can be written down by inspecting the
causal diagram. We are still investigating how the partial
regression equations are related to the paths in the causal
diagram.
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