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Abstract

Recent work on Stochastic Local Search (SLS) for the SAT
and CSP domains has shown the importance of a dynamic
(non-markovian) strategy for weighting clauses in order to es-
cape from local minima. In this paper, we improve the perfor-
mance of two best contemprorary clause weighting solvers,
PAWS and SAPS, by integrating a propositional resolution
procedure. We also extend the work to AdaptNovelty+, the
best non-weighting SLS solver in the GSAT/WalkSAT se-
ries. One outcome is that our systems can solve some highly
structured problems such as quasigroup existence and par-
ity learning problems which were previously thought unsuit-
able for local search and which are completely out of reach
of traditional solvers such as GSAT. Here we present em-
pirical results showing that for a range of random and real-
world benchmark problems, resolution-enhanced SLS solvers
clearly outperform the alternatives.

Introduction
Stochastic Local Search (SLS) is the method of choice in
many SAT and CSP domains, provided proofs of unsatisfi-
ability or strict optimality are not required. Here we con-
sider SAT problems restricted to conjunctive normal form
or clause form. This is a standard form in which to rep-
resent problems of propositional logic, in which class we
may include finite domain CSPs. Most of the performance
benchmarks in the propositional reasoning literature are
for this class of problems.1 SLS for SAT has been re-
searched intensively since the introduction of GSAT (Sel-
man, Levesque, & Mitchell 1992). GSAT, based on greedy
random hill-climbing, was the first SLS solver to deal suc-
cessfully with large size random and structured SAT prob-
lems that are too hard to be solved by systematic search
methods. During the last decade, there have been many
more systems based on new ideas such as noise strate-
gies (Selman & Kautz 1993; Selman, Kautz, & Cohen
1994), Novelty and R-Novelty schemes (McAllester, Sel-
man, & Kautz 1997), Novelty+ (Hoos 1999) and different
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1This is not, of course, to deny the importance of the usual
formulations of CSPs in terms of many-valued domains, nor of
non-clausal encodings of propositional problems, but SATis one
of the central problem classes of automated reasoning, and enough
is enough for one paper.

clause weighting strategies (Frank 1997; Hutter, Tompkins,
& Hoos 2002; Morris 1993; Schuurmans & Southey 2000;
Schuurmans, Southey, & Holte 2001; Thorntonet al. 2004;
Wu & Wah 2000). See (Hoos & Stulze 2005) for a history
and a lucid account of these and many more local search
methods.

The basic concept of clause weighting is simple: when-
ever a local minimum is encountered, the weight of unsatis-
fied clauses is increased, helping the search to avoid getting
trapped in local minima. Several different clause weighting
algorithms have been found to enhance the performance of
SLS solvers. The current state of the art is represented by
the systems SAPS (scaling and probabilistic smoothing) and
RSAPS (Hutter, Tompkins, & Hoos 2002), and PAWS (pure
additive weighting scheme) (Thorntonet al. 2004). The
winner of the 2004 SAT competition was a rather different
solver, AdaptNovelty+, also by Hoos and Tompkins, which
uses a novelty scheme to order variables (rather than clauses)
for selection and a history-dependent noise strategy. We in-
clude AdaptNovelty+ in the experimental comparisons be-
low.

In the present paper, we report on a technique for en-
hancing the performance of SLS solvers by incorporating
a preprocessing phase in which resolution is used to deduce
consequences of the input clauses, exposing hidden struc-
ture in the problems which the solvers are then able to ex-
ploit. We show that all of the SLS solvers AdaptNovelty+,
RSAPS and PAWS benefit markedly from this technique, es-
pecially on structured problems such as those resulting from
real-world applications. The resolution-enhanced solvers
R+ANOV+, R+RSAPS and R+PAWS all outperform their
parents, and are all able to solve problems which are beyond
the range of earlier solvers such as GSAT and WalkSAT.

As a particularly challenging benchmark for empirical
comparison of the solvers, we choose a range of problems
concerning quasigroups (i.e. essentially, Latin squares). We
report experiments with quasigroup existence problems, re-
quiring solutions that satisfy particular algebraic equations.
In passing, it is worth noting that SLS solvers with good
clause weighting schemes are also applicable to quasigroup
completion problems in which a Latin square is sought with
some of the values specified in advance, though this problem
class is not relevant to the present investigation because no
nontrivial resolution between the input clauses is possible.
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Part of the interest of quasigroup problems as bench-
marks stems from early work by Gent and Walsh (1995)
who found these problems to be extremely hard for the SLS
solvers at that time and who conjectured that SLS methods
are inherently unsuitable for them. Latin square problems
exhibit an extreme “small world” topology: in the graph
whose vertices are the variables and whose edges represent
co-occurrence in clauses, the neighbours of each vertex con-
sist of two cliques, while the longest path between any two
vertices is of length 2. Consequently, a flip of any vari-
able rapidly propagates everywhere, making it very difficult
to detect nearby minima in the state space. Since 1995 it
has been part of the “folk wisdom” of automated reasoning
that quasigroup problems require systematic search meth-
ods. We therefore find it most interesting that contempo-
rary SLS solvers can now achieve performance on satisfi-
able quasigroup problems comparable with that of system-
atic SAT solvers. Our results suggest that the superior per-
formance of systematic methods stems not so much from
the power of unit propagation as from the ability of a little
reasoning to simplify problem encodings early in the search.

In our experimental study, we compare R+ANOV+,
R+PAWS, R+RSAPS and the underlying SLS solvers with-
out resolution not only on quasigroup existence problems
but also on random problems and a range of real-world prob-
lems taken from SATLIB (www.satlib.org) and used in pre-
vious SAT competitions. For further comparison, we include
results for WalkSAT and R+WalkSAT on the same prob-
lems. In brief, except in the case of problems such as purely
random ones where resolution gets little purchase, the re-
sults show that the resolution preprocessor brings order of
magnitude improvements over the current state of the art.

In the next section we describe the resolution procedure
and briefly review some of its uses in SAT solvers. In the
subsequent section, we briefly outline the state-of-the-art
SLS solvers to which resolution is most successfully added.
We then present and discuss detailed experimental results2,
before concluding and indicating some future research di-
rections.

Resolution Procedure for SAT
Resolution (Quine 1955; Davis & Putnam 1960; Robinson
1965) is widely used as a rule of inference in first order auto-
mated deduction, where the clauses tend to be few in number
and contain few literals, and where the reasoning is primar-
ily driven by unification. As a procedure for propositional
reasoning, however, resolution is rarely used on its own be-
cause in practice it has not been found to lead to efficient
algorithms.

It has been used as acomponentof propositional reason-
ing systems. In the world of complete search, it is sometimes
used to enhance the performance of complete SAT solvers.
The first efficient integration of resolution into such a solver
was done by Billionnet and Sutter (1992) helping them to
solve randomly generated 3-SAT problems with up to 300
variables. Later, the system Satz (Li & Anbulagan 1997)

2All experiments were conducted on an Intel Pentium 4 PC with
2.4 GHz CPU, under Linux.

used a restricted resolution procedure, adding resolvents of
length≤ 3, as a first phase process before running the com-
plete backtrack search. This implementation gave modest
performance gains (around10%) on random 3-SAT prob-
lems, but was very important to the ability of Satz to solve
many real-world benchmark problems.

Algorithm 1 ComputeResolvents()
1: for each clausec1 of length≤ 3 inF do
2: for each literall of c1 do
3: for each clausec2 of length≤ 3 inF s.t. l̄ ∈ c2 do
4: Compute resolventr = (c1\{l}) ∪ (c2\{l̄});
5: if r is emptythen
6: return ”unsatisfiable”;
7: else
8: if r is of length≤ 3 then
9: F := F ∪ {r};

10: end if
11: end if
12: end for
13: end for
14: end for

In Algorithm 1, we sketch the resolution process imple-
mented in Satz. When two clauses of a CNF formula have
the property that some variablexi occurs positively in one
and negatively in the other, the resolvent of the clauses is a
disjunction of all the literals occuring in the clauses except
xi andxi. For example, the clause (x2 ∨ x3 ∨ x4) is the
resolvent for the clauses (x1 ∨ x2 ∨ x3) and (x1 ∨ x2 ∨ x4)
and is added to the clause set. The new clauses, provided
they are of length≤ 3, can in turn be used to produce other
resolvents. The process is repeated until saturation. Du-
plicate and subsumed clauses are deleted, as are tautologies
and any duplicate literals in a clause. Clearly, the resolution
phase runs in polynomial time, because inn variables there
are onlyO(n3) possible clauses of length 3, and any two
clauses with a non-tautologous resolvent have exactly one
pair of complementary literals, so the total number of resol-
vents generated, including duplicates, is bounded above by
O(n6). Since in real-world problems it is common forn to
be on the order of104, this theoretical upper bound is not
especially reassuring; fortunately, as shown in the experi-
mental results below, in practice it is far from tight.

In the incomplete search world, Cha and Iwama (1996)
were the first to use a restricted form of resolution proce-
dure called neighbour resolution, which adds new resolvent
clauses based on unsatisfied clauses at the local minima and
their neighboring clauses. Their study showed that on hard
random 3-SAT formulas, the clause weighting strategy is
significantly better with neighbour resolution integrated than
without. More recently, Fang and Ruml (2004) implemented
the same idea along with other techniques in their complete
local search solver, where it provides a slight improvement.

Adding Resolution to Modern SLS Solvers
The introduction of GSAT (Selman, Levesque, & Mitchell
1992) and many subsequent SLS variants of WalkSAT (Sel-
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man, Kautz, & Cohen 1994; McAllester, Selman, & Kautz
1997) has caused considerable research interest in modelling
hard combinatorial problems into SAT and applying SLS
solvers to find the solutions. The best contemporary solver
in the WalkSAT family is AdaptNovelty+ (Hoos 2002),
which is an automated version of Novelty+ (McAllester,
Selman, & Kautz 1997). Like other WalkSAT variants, the
performance of Novelty+ critically depends on the setting
of its noise parameter, which controls the greediness of the
search. AdaptNovelty+ addresses this problem by adap-
tively tuning its noise level based on the detection of stag-
nation: it starts with a0 noise level. If no improvement in
the objective evalution value, which is the count of unsatis-
fied clauses, has been made after a number of flips, the noise
level is increased. As soon as the value of the objective func-
tion is improved over its value at the last change of the noise
level, the noise level is reduced. Experimental results have
shown that this adaptive noise mechanism also works well
with other WalkSAT variants (Hoos 2002).

Recently, clause weighting based SLS algorithms, most
notably SAPS (Hutter, Tompkins, & Hoos 2002) and
PAWS (Thorntonet al. 2004), have been very success-
fully applied to hard combinatorial SAT problems. These
algorithms dynamically update the clause weights (or penal-
ties) and hence modify the search landscape to effectively
avoid or escape local minima during the search. Although
these clause weighting SLS algorithms differ in the way
that clause weights should be updated (additive or multi-
plicative updating) or when these weights should be up-
dated (deterministic or probabilistic updating after a period
of time), they all share an underlying strategy, which dynam-
ically updates clause weights based on two mechanisms,in-
creasingandreducing,3 to escape local minima. When the
search encouters a local minimum, it increases the weights
of currently unsatisfied clauses. As violating these unsat-
isfied clauses now costs more than violating other clauses,
the search is forced to move to a new neighbour in or-
der to satisfy those current unsatisfied clauses. As a re-
sult, it escapes the local minimum. However, this increas-
ing mechanism has side-effects: as it locally modifies the
search landscape to escape the current local minimum, it
possibly gives rise to other new local minima, which may in
some cases be even harder to avoid or escape (Morris 1993;
Tompkins & Hoos 2004). The reducing mechanism is em-
ployed to counter these side-effects. After a number of
weight increases, the weights of all weighted clauses are
reduced in order to make the search forget about the high
costs of violating clauses which are no longer helpful since
it escaped the local minima. These two mechanisms signifi-
cantly increase the mobility of the search as well as helping
to focus it on any “critical” clauses.

Our main observation is that clause weighting SLS al-
gorithms benefit markedly from resolution preprocessing.
We therefore propose a two-phase clause weighting SLS
algorithm that combines the benefits of effective diversi-
fication from the clause weighting mechanism and having

3Also known asscalingandsmoothingin SAPS and other mul-
tiplicative clause weighting SLS algorithms.

extra information from resolution. Our most successful
solvers following this scheme use PAWS or RSAPS as the
clause weighting SLS solver. We call these new algorithms
R+PAWS and R+RSAPS respectively. In the first stage, they
call the ComputeResolvents procedure in Algorithm 1 to add
resolvent clauses toF and also remove duplicate clauses, the
tautologies, and duplicate literals in a clause. They then run
the SLS solver on the resulting clause setFr. The two-phase
model is easily extended to other clause weighting SLS al-
gorithms and even to non-weighting SLS algorithms such as
AdaptNovelty+.

Quasigroup Problems
It is now a commonplace observation that techniques opti-
mised for random SAT problems may run into difficulties
when asked to solve more realistic problems which tend to
be highly structured. For that reason there has been much
interest in recent years in benchmark sets taken from such
structured domains. Among these benchmarks are two prob-
lem classes concerning quasigroups: quasigroup completion
and quasigroup existence. While former is a valuable bench-
mark, exhibiting a balance between randomness and struc-
ture, our present focus is on the latter, since the quasigroup
existence problems give rise to clause sets to which the res-
olution preprocessor applies.

The quasigroup existence problems studied by Fujitaet
al (1993) consist in determining the spectra (that is, the
sizes for which solutions exist) of certain algebraic equa-
tions over quasigroups. Problem qg7, for instance, calls for
quasigroups satisfying the condition thata.ba = ba.b for
all elementsa andb. It is known that solutions exist of all
sizesn congruent to 1 (mod 4) with the possible exception
of sizen = 33. For our experiment we used sizesn = 9 and
n = 13, the latter of which is moderately hard even for sys-
tematic search methods. The nomenclature is that followed
in SATLIB and the SAT competition from which these par-
ticular encodings are taken: problem qgi-x is the i-th ex-
istence problem as numbered in (Fujita, Slaney, & Bennett
1993) for quasigroups of sizex.

Table 1 shows the runtimes and flip counts of the various
solvers on ten quasigroup existence problems, together with
the number of runs out of 100 on which a solution was found
within the limit of 10 million flips. As observed by Gent
and Walsh (1995) GSAT cannot solve any of these problems
within a reasonable time, and WalkSAT without preprocess-
ing reliably solves only the smaller cases of problems qg1
and qg2. The null results for GSAT are omitted from the
table. For the other solvers, the results are fairly consistent
across the range of problems. In every case there is a signif-
icant improvement in runtime, and in every case the number
of flips required to reach a solution decreases dramatically
when the resolution step is performed. Problem qg7-09 in
particular is reduced to triviality for two of the solvers.

The runtimes in Table 1 do not include the time taken
by the resolution preprocessor. It is therefore important to
record the preprocessing times (which are the same for all
three solvers, of course) together with data about the effect
of preprocessing on the problem sizes. It will be seen from
Table 2 that resolution with the length 3 restriction serves to
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Success Time (secs) Flips
Problem Algorithm % Mean Median Mean Median

qg1-07 WalkSAT 100 105.63 79.45 4,292,083 3,228,312
ANOV+ 100 10.35 7.53 438,368 319,176
RSAPS 100 1.58 1.13 27,744 19,840
PAWS 100 3.63 2.94 88,497 71,276
R+WalkSAT 100 0.08 0.06 59,015 41,208
R+ANOV+ 100 0.03 0.02 15,465 10,928
R+RSAPS 100 0.02 0.01 5,190 3,811
R+PAWS 100 0.02 0.01 4,453 2,743

qg1-08 WalkSAT 0 n/a n/a 10M 10M
ANOV+ 57 588.88 718.99 6,997,215 8,543,181
RSAPS 21 891.75 985.13 9,052,119 10M
PAWS 78 205.74 166.16 2,847,046 2,997,505
R+WalkSAT 25 21.24 24.64 8,616,412 10M
R+ANOV+ 100 2.73 1.89 839,387 580,205
R+RSAPS 100 13.91 9.69 2,062,302 1,436,738
R+PAWS 100 1.94 1.38 293,365 208,404

qg2-07 WalkSAT 93 65.84 46.66 2,910,442 2,062,669
ANOV+ 100 5.86 4.49 257,675 197,236
RSAPS 100 0.64 0.48 10,759 8,060
PAWS 100 1.44 1.11 35,719 27,257
R+WalkSAT 100 0.05 0.03 36,053 21,960
R+ANOV+ 100 0.01 0.01 7,610 5,196
R+RSAPS 100 0.01 0.01 2,603 1,795
R+PAWS 100 0.01 0.01 2,538 1,892

qg2-08 WalkSAT 0 n/a n/a 10M 10M
ANOV+ 24 888.31 1,003.18 8,854,866 10M
RSAPS 16 1,005.66 1,080.50 9,307,338 10M
PAWS 61 512.34 569.72 3,795,823 6,910,973
R+WalkSAT 8 25.06 26.18 9,575,403 10M
R+ANOV+ 98 9.79 8.47 2,852,501 2,467,205
R+RSAPS 83 35.23 27.85 4,705,153 3,719,797
R+PAWS 100 19.27 15.02 2,413,993 1,880,763

qg3-08 WalkSAT 28 11.77 14.00 8,409,379 10M
ANOV+ 89 8.08 6.38 4,249,504 3,355,453
RSAPS 100 0.23 0.16 46,904 32,580
PAWS 100 0.66 0.50 140,685 105,531
R+WalkSAT 100 0.16 0.12 167,288 127,427
R+ANOV+ 100 0.10 0.07 84,833 58,417
R+RSAPS 100 0.04 0.03 13,418 8,947
R+PAWS 100 0.03 0.02 10,236 7,450

qg4-09 WalkSAT 10 16.66 17.77 9,374,716 10M
ANOV+ 48 15.03 20.67 7,272,489 10M
RSAPS 100 1.98 1.27 285,221 182,326
PAWS 99 9.03 7.44 1,394,090 1,223,705
R+WalkSAT 100 0.74 0.46 661,461 406,315
R+ANOV+ 100 0.27 0.20 196,105 139,914
R+RSAPS 100 0.18 0.12 55,096 36,995
R+PAWS 100 0.10 0.07 29,713 20,321

qg5-11 WalkSAT 0 n/a n/a 10M 10M
ANOV+ 0 n/a n/a 10M 10M
RSAPS 94 106.01 70.69 2,853,395 1,902,617
PAWS 97 94.96 67.47 2,372,620 1,851,463
R+WalkSAT 1 29.77 29.94 9,943,134 10M
R+ANOV+ 56 18.34 23.93 6,042,269 7,883,243
R+RSAPS 100 3.03 1.97 143,001 93,143
R+PAWS 100 1.80 1.38 82,516 62,950

qg6-09 WalkSAT 1 25.00 25.10 9,958,346 10M
ANOV+ 0 n/a n/a 10M 10M
RSAPS 100 0.88 0.71 55,598 44,726
PAWS 100 9.81 8.40 634,952 540,475
R+WalkSAT 100 0.32 0.14 241,304 106,581
R+ANOV+ 100 1.54 0.91 943,542 554,951
R+RSAPS 100 0.02 0.02 3,617 3,078
R+PAWS 100 0.02 0.02 4,022 3,004

qg7-09 WalkSAT 1 27.14 27.38 9,910,996 10M
ANOV+ 34 21.08 25.21 8,363,211 10M
RSAPS 100 0.54 0.48 30,937 27,312
PAWS 100 3.39 2.56 212,259 159,752
R+WalkSAT 100 0.02 0.01 12,856 9,740
R+ANOV+ 100 0.02 0.00 15,573 2,849
R+RSAPS 100 0.00 0.00 697 584
R+PAWS 100 0.01 0.01 808 595

qg7-13 WalkSAT 0 n/a n/a 10M 10M
ANOV+ 0 n/a n/a 10M 10M
RSAPS 1 525.17 526.87 9,968,002 10M
PAWS 2 513.75 518.76 5,148,754 10M
R+WalkSAT 0 51.16 51.16 10M 10M
R+ANOV+ 26 34.70 42.52 8,160,433 10M
R+RSAPS 83 172.10 173.99 5,112,670 5,168,583
R+PAWS 100 58.89 43.93 1,738,133 1,296,636

Table 1: Comparison results on quasigroup existence prob-
lems. ANOV+ is the abbreviation of AdaptNovelty+.

refine the quasigroup existence problems significantly. The
addition of resolvents allows the truth values of up to half
of the variables to be determined, with the result that many
redundant clauses can be deleted and other clauses short-
ened by unit propagation. This happens in all ten cases,
but the effects on runtimes are not uniform across problems.
Nor are they uniform across solvers, PAWS in particular
deriving greater benefit from the preprocessing than either
AdaptNovelty+ or RSAPS.

Before After Time
Problem #Vars #Clauses #Vars #Clauses (secs)
qg1-07 343 68,083 168 3,846 5.79
qg1-08 512 148,957 281 12,434 29.57
qg2-07 343 68,083 179 4,378 6.88
qg2-08 512 148,957 296 13,743 35.31
qg3-08 512 10,469 273 3,335 0.03
qg4-09 729 15,580 435 6,151 0.08
qg5-11 1,331 64,054 824 27,415 1.29
qg6-09 729 21,844 389 7,337 0.22
qg7-09 729 22,060 334 5,728 0.29
qg7-13 2,197 97,072 1,412 45,362 2.63

Table 2: Effect of resolution computation on problem size:
quasigroup existence problems.

0 1 2 3 4 5

x 10
6

0

10

20

30

40

50

60

70

80

90

100

Number of flips

%
 o

f i
ns

ta
nc

es
 s

ol
ve

d

RSAPS
PAWS
R+ANOV+
R+RSAPS
R+PAWS

Figure 1: Detail of theqg5-11performances.

To further illustrate the significant improvement on the
performance of SLS algorithms when the resolution step is
performed, we graph the runlength distribution (RLD) for
all 100 runs on the qg5-11 instance of each algorithm in
Figure 1. The runlengths of WalkSAT, R+WalkSAT and
AdaptNovelty+ are omitted as they fail to find any solu-
tions over 100 runs within 5 million flips. As shown in
Figure 1, R+PAWS and R+RSAPS solve this instance on
100% of runs in under 1 million flips while without resolu-
tion PAWS and RSAPS find solutions within 5 million flips
on around 80% of runs. In addition, within 5 million flips
R+ANOV+ manages solutions on more than 40% of runs
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while AdaptNovelty+ cannot solve the problem at all at this
runlength.

Random and Real-World Problems

In order to evaluate further the performance of
resolution-enhanced SLS algorithms versus their par-
ents AdaptNovelty+, RSAPS, and PAWS along with GSAT
and WalkSAT, we extended the empirical study to include
hard-constrained random problems used in 2004 SAT
competition and some well-known benchmark problems
such as bwlarge.c, logistics.c, par16-*, and e*ddr2-* series.
Table 3 shows the results for these problems. The results of
GSAT are again not shown in this table as it failed to solve
any of these problems. WalkSAT is able to find the solution
for the logistics.c, e*ddr2-* and random problems, but it is
always outperformed by clause weighting SLS algorithms,
even without resolution enhancement.

In general, this extended study further confirms the supe-
rior performance of resolution-enhanced clause weighting
SLS algorithms in comparison with their parents on struc-
tured problems. On the par16-* and e*ddr2-* series, the per-
formance of resolution-enhanced SLS improves by an order
of magnitude. On the par16-* problems, the performance
of SLS solvers is significantly boosted, PAWS in particu-
lar going from 0.2% without resolution to a 56.6% success
rate with it. On the e*ddr2-* series, the application of res-
olution results in a huge difference in the performance of
AdaptNovelty+ from 5.67% to nearly 100% success and ten
times faster in terms of execution time and flips. R+PAWS
and R+RSAPS are also two times faster than their parents.
The performances of the three resolution-enhanced SLS al-
gorithms are comparable with those of their parents on the
logistics.c problem and slightly worse on the bwlarge.c
problem. This is expected, as the resolution preprocessor
increases the problem sizes somewhat without bringing any
simplification.

On the uniform random problems, resolution-enhanced
SLS solvers gain no benefit from the preprocessing. In fact,
resolution increases the size of the formula between 2% and
5%, making these problems harder to solve for SLS. We
include results for these cases, however, to emphasize that
even where it cannot bring benefits, restricted resolution pre-
processing does not make matters significantlyworse. In
all such cases, the performance of resolution-enhanced SLS
solvers remains comparable with that of their parent solvers.

On problems where applying resolution results in a
smaller size instance than the original one, and especially
where variables are removed, R+PAWS appears to benefit
rather more from the preprocessing than the other solvers in
our study. However, care must be taken over interpreting
the results because whereas RSAPS and AdaptNovelty+ are
designed to run autonomously, PAWS does not appear to be
provided with useful default settings, so we had to hand-tune
its parameters. It is important to note that for this reason we
do not intend to make absolute performance comparisons
between the underlying solvers.

Success Time (secs) Flips
Problem Algorithm % Mean Median Mean Median

unif04 WalkSAT 65.38 3.51 3.47 5,464,756 5,404,806
(8 problems) ANOV+ 51.38 5.25 5.96 6,610,487 3,332,986

RSAPS 42.63 13.17 15.10 7,534,550 4,567,975
PAWS 94.63 3.07 2.45 1,938,207 1,833,543
R+WalkSAT 58.43 15.32 15.43 4,371,635 4,378,580
R+ANOV+ 51.25 5.24 5.73 6,499,467 4,191,363
R+RSAPS 42 14.10 15.92 7,588,603 7,164,512
R+PAWS 93.75 3.74 2.85 2,452,301 1,877,690

bw large.c WalkSAT 0 n/a n/a 10M 10M
ANOV+ 71 8.91 9.17 5,579,415 5,746,796
RSAPS 84 44.09 38.78 4,371,893 3,845,685
PAWS 100 7.75 5.48 1,269,132 889,807
R+WalkSAT 0 n/a n/a 10M 10M
R+ANOV+ 52 12.12 16.45 7,051,380 9,573,926
R+RSAPS 89 50.61 43.18 4,436,449 3,785,521
R+PAWS 100 9.41 6.62 1,093,097 791,997

logistics.c WalkSAT 100 0.51 0.42 641,424 523,357
ANOV+ 100 0.15 0.15 157,501 152,908
RSAPS 100 0.02 0.02 9,453 8,024
PAWS 100 0.02 0.02 10,195 8,494
R+WalkSAT 100 1.67 1.03 1,865,203 1,149,086
R+ANOV+ 100 0.08 0.07 66,874 59,761
R+RSAPS 100 0.03 0.02 10,669 7,968
R+PAWS 100 0.04 0.03 11,729 10,085

par16-* WalkSAT 0 n/a n/a 10M 10M
(5 problems) ANOV+ 0 n/a n/a 10M 10M

RSAPS 0 n/a n/a 10M 10M
PAWS 0.2 10.21 10.21 9,623,108 10M
R+WalkSAT 0 n/a n/a 10M 10M
R+ANOV+ 4 6.07 6.01 9,795,548 10M
R+RSAPS 15.2 9.71 10.58 9,176,854 10M
R+PAWS 56.6 6.15 7.57 6,740,259 8,312,353

e*ddr2-* WalkSAT 76 9.48 9.79 6,214,625 6,436,834
(6 problems) ANOV+ 5.67 14.12 14.25 9,907,019 10M

RSAPS 100 1.81 1.54 64,275 53,256
PAWS 100 0.95 0.91 53,609 48,889
R+WalkSAT 31.69 22.71 22.54 5,412,279 5,175,889
R+ANOV+ 99.17 1.68 1.35 870,454 702,870
R+RSAPS 100 1.04 0.89 44,707 37,555
R+PAWS 100 0.54 0.51 30,548 27,073

Table 3: Comparison results on random and realistic
benchmark problems. ANOV+ is the abbreviation of
AdaptNovelty+.

Before After Time
Problem #Vars #Clauses #Vars #Clauses (secs)
unif04-52 500 2,125 500 2,220 0.03
unif04-62 550 2,337 550 2,430 0.03
unif04-65 550 2,337 550 2,427 0.04
unif04-80 600 2,550 600 2,628 0.03
unif04-83 650 2,762 650 2,863 0.02
unif04-86 650 2,762 650 2,849 0.03
unif04-91 700 2,975 700 3,064 0.03
unif04-99 700 2,975 700 3,054 0.03
bw large.c 3,016 50,457 3,016 54,563 0.27
logistics.c 1,141 10,719 1,141 11,628 0.07
par16-1 1,015 3,310 607 1,815 0.03
par16-2 1,015 3,374 632 1,929 0.03
par16-3 1,015 3,344 620 1,875 0.03
par16-4 1,015 3,324 619 1,853 0.03
par16-5 1,015 3,358 627 1,903 0.02
e0ddr2*1 19,500 103,887 15,549 81,864 1.19
e0ddr2*4 19,500 104,527 16,011 85,014 1.14
enddr2*1 20,700 111,567 16,019 84,182 1.39
enddr2*8 21,000 113,729 15,905 83,451 1.46
ewddr2*1 21,800 118,607 16,265 8,832 1.69
ewddr2*8 22,500 123,329 15,815 81,240 1.85

Table 4: Effect of resolution computation on problem size:
random and realistic problems.
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Conclusion
We have integrated restricted resolution as preprocessing in
the SLS solvers AdaptNovelty+, PAWS and RSAPS. The
resolution-enhanced SLS solvers show their best perfor-
mance on structured problems such as quasigroup existence
and real-world problems. In cases where the preprocessor
does not simplify clauses, there is little effect, but where
some unit clauses result, order of magnitude improvements
in the local search are observed. We consider it particularly
interesting that this technique allows SLS methods to ap-
proach the performance of systematic ones on several prob-
lems (quasigroup existence, parity learning) which are not
usually thought suitable for local search.

Current and future research includes experimenting with
the effect of resolution preprocessing on other clause
weighting and novelty techniques, as well as combining
neighbour resolution (Cha & Iwama 1996) with resolution
preprocessing.

In the wider context, this work is part of a trend towards
hybrid solvers for SAT and CSP. It is clear that hybrid meth-
ods can enhance both performance and robustness, espe-
cially in real-world domains. We present our experimental
results as evidence that resolution and clause weighting SLS
indeed work effectively together on a wide range of such
problems.
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