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Abstract

Quantified constraints and Quantified Boolean Formu-
lae are typically much more difficult to reason with
than classical constraints, because quantifier alternation
makes the simple, classical notion ofsolution inappro-
priate. As a consequence, even such essential CSP prop-
erties as consistency or substitutability are not com-
pletely understood in the quantified case.
In this paper, we show that most of the properties which
are used by solvers for CSP can be generalized to Quan-
tified CSP. We propose a systematic study of the rela-
tions which hold between these properties, as well as
complexity results regarding the decision of these prop-
erties. Finally, and since these problems are typically in-
tractable, we generalise the approach used in CSP and
propose weakenings of these notions based onlocality,
which allow for a tractable, albeit incomplete detecting
of these properties.

Introduction
Quantified Constraint Satisfaction Problems (QCSP) have
recently received increasing attention from the AI com-
munity (Bordeaux & Monfroy 2002; Börneret al. 2003;
Chen 2004a; 2004b; Mamoulis & Stergiou 2004; Gent,
Nightingale, & Rowley 2004; Gent, Nightingale, & Ster-
giou 2005). A large number of solvers are now available for
Quantified Boolean Formulae (QBF), which represent the
particular case of QCSP where the domains are Boolean and
the constraints are clauses, seee.g.,(Buening, Karpinski, &
Flogel 1995; Cadoliet al.2002; Rintanen 1999) for early pa-
pers on the subject, and (Benedetti 2004; Pan & Vardi 2004;
Audemard & Saı̈s 2005) for some of the latest developments.
The reason behind this trend is that QCSP and QBF are nat-
ural generalisations of CSP and SAT which allow to model
a wide range of problems not directly expressible in these
formalisms, and with applications in AI and verification.

Quantified constraints are typically much more difficult to
reason with than classical constraints. Quantifier alternation
makes it much harder to define the usual CSP notions, like
consistency of a value for a given variable or substitutability
of a value by another, because these properties are based
on the notion ofsolution– for instance, a value is (locally)
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consistent if it participates in a solution to the (sub)problem
at hand. In quantified constraints, the value which should
be assigned to an existential variable in order to satisfy the
constraints depends on the values assigned to the universal
variables preceding it, and the flat notion of solution which
is used in classical CSPs therefore has to be replaced by a
more complex one.

An investigation of the very definition of the CSP notions
for quantified constraints is therefore badly needed. This pa-
per addresses this issue and proposes generalisations of con-
sistency, substitutability, and a wider range of CSP proper-
ties, to the framework of QCSP. This definitional work is
based on a new notion ofoutcomes, which we identify as a
key for defining and understanding all these properties. We
then classify these properties by studying the relationships
between them (e.g.,some can be shown to be weaker than
others), and we characterise the complexity of their associ-
ated decision problem.

Since, as these complexity results show, determining
whether the property holds is typically intractable in gen-
eral, we investigate the use of the same tool which is used
in classical CSP, namelylocal reasoning, and we propose
local versions of these properties which can be decided in
polynomial time.

Note that due to space limitations only some representa-
tive or technically challenging proofs are fully developed,
the other proofs are either sketched or completely skipped.

Quantified Constraint Satisfaction Problems
In this section, we present all the required material on QCSP.
Note that all the results in the paper hold in particular for the
particular case of Quantified Boolean Formulae.

Definition of QCSP
Let D be a finite set. AV -tuplet, whereV represents a finite
set of variables, is a mapping which associates a valuetx ∈
D to everyx ∈ V ; aV -relation is a set ofV -tuples.
Definition 1 (QCSP). A Quantified Constraint Satisfaction
Problem(QCSP) is a tupleφ = 〈X,Q,D,C〉 where:X =
{x1, . . . , xn} is a linearly ordered, finite set ofvariables; Q
associates to each variablexi ∈ X a quantifierQ(xi) ∈
{∀, ∃}; D associates to every variablexi ∈ X a domain
Dxi

⊆ D; andC is a finite set ofconstraints, each of which
is aV -relation for someV ⊆ X .

AAAI-05 / 360



The notationt[x := a] will denote the tuplet′ defined
by t′x = a andt′y = ty for eachy 6= x. Given aV -tuple
t and a subsetU ⊆ V of its variables, we denote byt|U
the restriction of t to U , which has the same value ast on
the variables ofU and is undefined elsewhere. AnX-tuple
t is said tosatisfy the set of constraintsC if t|V ∈ c for
eachV -relationc ∈ C. The set ofX-tuples satisfying all
constraints ofφ is denoted bysolφ. We use the following
shorthands to denote the set of existential (resp.universal)
variables, the set of variables of index≤ j, and the sets of
existential/universal variables of index≤ j:

Xj = {xi ∈ X | i ≤ j}
E = {xi ∈ X | Q(xi)=∃} Ej = E ∩Xj

A = {xi ∈ X | Q(xi)=∀} Aj = A ∩Xj

A QCSP〈X,Q,D,C〉 represents a logical formulaF :
Q(x1)x1 ∈ Dx1

. . . Q(xn)xn ∈ Dxn
(C1 ∧ · · · ∧Cm). The

QCSP istrue if the interpretation overD in which all domain
and constraint symbols are interpreted according to their de-
finition in D andC is a model ofF .

Game-theoretic material
Quantifier alternation is best understood using an adversar-
ial viewpoint, where two players interact. One of them is al-
lowed to choose the values for the existential variables, and
its aim is to ultimately make the formula true, while the other
assigns the universal variables and aims at falsifying it. Our
presentation of this game-theoretic terminology is inspired
from (Chen 2004b), which uses a similar notion of winning
strategy.
Definition 2 (strategy). A strategy is a family{sxi

| xi ∈ E}
of functions of the following type: for eachxi ∈ E, function
sxi

associates to eachAi−1-tuple a value inD. This function
specifies which value should be assigned to every existential
variable depending on the values assigned to the preceding
universal variables.

In particular, if the firstk variables of the problem are
quantified existentially, we have for everyi ≤ k a constant
sxi

∈ Dxi
which defines which value should directly be

assigned to variablexi.
Let us insist that the tuple of values that will eventually

be assigned to the variables of the problem depends on two
things: 1) the strategy, and 2) the sequence of choices of the
“adversary”,i.e.,the values that are assigned to the universal
variables. One strategy therefore enables a number of poten-
tial scenariosto arise, depending on what the adversary will
do. These scenarios are defined as follows:
Definition 3 (scenario). The set of scenarios of a strategy
s for a QCSPφ, denotedsceφ(s), is the set ofX-tuplest
which are such that, for eachi ∈ 1 . . . n, we have:

if Q(xi) = ∃ then txi
= sxi

(t|Ai−1
)

In other words, the values for the existential variables are
determined by the strategy in function of the values assigned
to the universal variables preceding it (there is no restriction,
on the contrary, on the values assigned to universal variables
since we model the viewpoint of the existential player). Of
particular interest are the strategies whose scenarios are all
solutions. We call themwinning strategies:

Definition 4 (winning strategy). A strategys is a winning
strategy for the QCSPφ if every scenariot ∈ sceφ(s) satis-
fies the constraints ofφ (in other words: ifsceφ(s) ⊆ solφ).

We denote byWINφ the set of winning strategies of the
QCSPφ. It can be shown that a QCSP is true in the sense of
the previous subsection (i.e.,as a model-checking problem)
if it has a winning strategy. Whereas the preceding material
is well-known (Chen 2004b), we introduce the new notion:

Definition 5 (outcome). The set of outcomes of a QCSPφ
is the set of all scenarios of all its winning strategies, i.e., it
is defined as

outφ = {t | ∃s ∈ WINφ
. t ∈ sceφ(s)}.

Note that, whereasoutφ ⊆ solφ in general, the set of out-
comes is identical to the set of solutions if all variables are
existential. We claim in the following that outcomes are in-
deed a natural generalisation of the notion of solution, and
that they play a similar role in many definitions.

To summarise, we have defined 3 sets of tuples (solφ: the
set of solutions,sceφ(s): the set of scenarios of strategy
s, andoutφ: the set of outcomes) and one set of strategies,
(WINφ: the set of winning strategies). The superscriptφ, will
from now on be omitted to simplify notation whenever there
is no ambiguity. All the notions introduced in this subsection
are illustrated in Fig. 1.

4 433

543 6 543 6 543 6 543 6

2 3 x1

x2

x3

sol

sce(s1)

sce(s2)

out

Figure 1: Illustration of the notions of solution, winning strategy,
scenario and outcome on the QCSP represented by the logical for-
mula∃x1 ∈ [2, 3] ∀x2 ∈ [3, 4] ∃x3 ∈ [3, 6]. x1 + x2 ≤ x3. And
andor labels on the nodes correspond to universal and existential
quantifiers, respectively. The solutions are all triples〈x1, x2, x3〉
s.t.x1 + x2 ≤ x3. The only two winning strategies assignx1 to 2:
one (s1) assignsx3 to 6 while the 2nd one (s2) assigns it tox2 + 2
(note that each strategy is constrained to choose one unique branch
for each existential node). The scenarios ofs1 ands2 are therefore
those indicated, while the set of outcomes of the QCSP is the union
of the scenarios ofs1 ands2 (also shown in bold line).
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Definitions of the CSP properties
A major part of the CSP literature aims at identifying prop-
erties of particular values of some variables. The goal is typ-
ically to simplify the problem by ruling out the possibility
that a variablexi can be assigned to a valuea. Good rea-
sons for that may be thata is guaranteed not to participate in
any solution (a is saidinconsistent(Mackworth 1977)), that
another valueb can replacea in any solution involving it (a
is substitutableto b (Freuder 1991)), or that all solutions in-
volving a can use another value instead (a is removable1).
On the contrary, some other properties can give indications
that instantiatingxi to a is a good idea, for instance because
no solution can assign it another value (a is said to beim-
plied (Monassonet al.1999)), or because we have the guar-
antee to find a solution with valuea onxi, if a solution exists
at all (a is said to befixablefor xi). While all the preceding
properties are about values, related variable-oriented notions
can be defined: the value assigned to a variablexi can be
forced to a unique possibility (determinedvariable), it can
be a function of the values of other variables (dependent), or
it may not matter at all (irrelevant).

In this section, we propose generalisations of the defini-
tions of the main CSP properties to quantified constraints.
We will adopt a predicate notation and write,e.g.,pφ(xi, a)
for the statement “valuea has propertyp for variablexi (in
QCSPφ)”. Here again, the superscriptφ will be omitted for
the sake of clarity, except in the section onlocal reasoning
where this non-ambiguous notation will be needed.

Basic definitions
The first definitions we propose (identified by ad prefix
when an ambiguity with forthcoming definitions is possible)
are based on directly rephrasing the original CSP definitions,
but using the notion of outcomes in place of solutions:

Definition 6 (properties). We define:

inconsistent(xi, a) ≡ ∀t ∈ out. txi
6= a

implied(xi, a) ≡ ∀t ∈ out. txi
= a

d-fixable(xi, a) ≡ ∀t ∈ out. t[xi := a] ∈ out

d-substitutable(xi, a, b) ≡
∀t ∈ out. txi

= a → t[xi := b] ∈ out

d-removable(xi, a) ≡
∀t ∈ out. txi

= a → (∃b 6= a. t[x := b] ∈ out)

d-interchangeable(xi, a, b) ≡
d-substitutable(xi, a, b) ∧ d-substitutable(xi, b, a)

determined(xi) ≡ ∀t ∈ out. ∀b 6= txi
. t[xi := b] 6∈ out

d-irrelevant(xi) ≡ ∀t ∈ out. ∀b ∈ D(xi). t[xi := b] ∈ out

dependent(V, xi) ≡
∀t, t′ ∈ out.

(

∀xj ∈ V. txj
= t′xj

)

→ txi
= t′xi

1The notions of removability and fixability have seemingly
been proposed in (Bordeaux, Cadoli, & Mancini 2004). For homo-
geneity, we adopt the terminology of this paper for all properties.

There would be alternative ways to state the preceding de-
finitions. One can prove in particular that∀t ∈ out. t[xi :=
a] ∈ out holds iff ∀t ∈ out. t[xi := a] ∈ sol.2 Fixability
could therefore be rewritten under this form, and the other
properties could be rephrased in a similar way.

Note also that we obtain the original definitions in the case
where all quantifiers are existential (becauseout = sol). In
other words, these are correct generalisations of the classical
notions.

Example 1 (illustration of Def. 6). Consider the QCSP
∃x1 ∈ [2, 3] ∀x2 ∈ [3, 4] ∃x3 ∈ [3, 6]. x1 + x2 ≤ x3 (cf.
Fig. 1). We have:inconsistent(x1, 3), inconsistent(x3, 3),
inconsistent (x3, 4), d-substitutable(x3, 5, 6), d-fixable
(x3, 6), d-removable(x3, 5), andimplied(x1, 2).

It is interesting to draw a comparison with what happens
if we consider the same problem but with existential quan-
tification (∃x1 ∃x2 ∃x3. x1 + x2 ≤ x3) or, equivalently, if
we use the classical properties instead of the quantified ones.
Because the tuple〈3, 3, 6〉 is a solution, we have none of the
inconsistency, implication, fixability and removability prop-
erties. This confirms that the properties we have defined are
new notions which do make a difference compared to clas-
sical CSP notions. The relation is indeed the following:

Proposition 1. Let φ be a QCSP and letφ′ be a QCSP
obtained by changing a universal quantifier inφ to an ex-
istential one. Forallxi, a and b, if propertyp(xi, a) (resp.
p(xi, a, b)) holds forφ′, then it also holds forφ.

The classical (unquantified) definitions are therefore cor-
rect, sufficientconditions for the corresponding quantified
property; they allow to detect it only in particular cases.

Generalisation: shallow definitions
The previous definitions are correct in a sense which will be
made formal in the next Section, but they are overly restric-
tive in some cases, as the following example shows:

Example 2 (deepvs. shallow definitions). Consider the
QCSP∀x1 ∈ [1, 2] ∃x2 ∈ [3, 4] ∃x3 ∈ [4, 6]. x1 + x2 = x3.
The winning strategies make arbitrary choices forx2 as
long as they givex3 valuex1 + x2, and the outcomes are
the triples〈1, 3, 4〉, 〈1, 4, 5〉, 〈2, 3, 5〉, 〈2, 4, 6〉. Note that for
variablex2, neither values 3 nor 4 are d-fixable, and none is
d-substitutable to the other. This somehow goes against the
intuition that we are indeed free to choose the value forx2.

The reason why our previous definition did not capture
this case is that it takes into account the values of the vari-
ables occurringafter the considered variable: values 3 and 4
are interchangeable (for instance) only if the QCSPs result-
ing from these instantiations can be solvedusing the same
strategy. We call these definitionsdeep(hence thed prefix).
On the contrary, we can formulateshallowdefinitions of the
properties, which accept value 4 as a valid substitute for 3

2The→ implication is straightforward. Concerning the other
direction (←), consider the QCSPφ′ in which all variables
x1, . . . , xi−1 have been instantiated totx1

, . . . , txi−1
. If ∀t ∈

out. t[xi := a] ∈ sol, then any winning strategy forφ′ starting
with xi = txi

can be changed into a winning strategy withxi = a.
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becausein any sequence of choices leading to the possibility
of choosing 3 forx2, value 4 is also a valid option:

Definition 7 (shallow properties). We define the following
“shallow” versions of properties:

s-fixable(xi, a) ≡

∀t ∈ out. ∃t′ ∈ out.
(

t|Xi−1
= t′|Xi−1

∧ t′xi
= a

)

s-substitutable(xi, a, b) ≡
∀t ∈ out. txi

= a →
∃t′ ∈ out.

(

(t|Xi−1
= t′|Xi−1

) ∧ (t′xi
= b)

)

s-removable(xi, a) ≡
∀t ∈ out. txi

= a →
∃t′ ∈ out.

(

t|Xi−1
= t′|Xi−1

∧ t′xi
6= a

)

s-interchangeable(xi, a, b) ≡
s-substitutable(xi, a, b) ∧ s-substitutable(xi, b, a)

s-irrelevant(xi) ≡
∀t ∈ out. ∀b ∈ D(xi).

∃t′ ∈ out.
(

(t|Xi−1
= t′|Xi−1

) ∧ (t′xi
= b)

)

To see how these definitions compare with classical ones
in the case of purely existential CSPs, consider the QCSP
∃x1 ∈ [1, 2] ∃x2 ∈ [3, 4] ∃x3 ∈ [4, 6]. x1 + x2 = x3. Value
1 is s-substitutable to 2 forx1, while it is not d-substitutable
(i.e., substitutable in the classical sense). The intuition be-
hind this is that here we consider thatx1 is assigned first, and
at this stepthe two choices are equivalent. In other words,
an additional property holdsbecause we consider the vari-
ables in a particular order(note that these properties are
order-dependent). This relaxed definition of (ordered) sub-
stitutability appears to be new and worthy of further study.
In particular, it raises the question of determining an instan-
tiation order which reveals as many properties as possible.

Correctness of these definitions
and relations between them

Our goal in this section is to prove that the definitions we
have introduced are correct. For instance it should be possi-
ble to delete inconsistent or removable values without sig-
nificant alteration of the problem. We start by noticing that,
as in the classical case (Bordeaux, Cadoli, & Mancini 2004),
the following relations hold between the shallow properties:

Proposition 2. The following relations hold between the
properties (forallxi, a andb):

• inconsistent(xi, a) →
∀b ∈ Dxi

. d-substitutable(xi, a, b)

• implied(xi, a) ↔ ∀b ∈ Dx \ {a}. inconsistent(xi, b)

• implied(xi, a) → d-fixable(xi, a)

• ∃b ∈ Dx \ {a}. s-substitutable(xi, a, b) →
s-removable(xi, a)

• inconsistent(xi, a) → s-removable(xi, a)

• s-fixable(xi, b) ↔ ∀a ∈ Dx. s-substitutable(xi, a, b)

• d-irrelevant(xi) ↔ ∀a ∈ Dx. d-fixable(xi, a)

• s-irrelevant(xi) ↔ ∀a ∈ Dx. s-fixable(xi, a)

To complete the picture, we have the following rela-
tions between deep and shallow notions (the deep ones are
weaker):

Proposition 3. For each propertyp among fixability and re-
movability, we have:∀xi ∀a. d-p(xi, a) → s-p(xi, a). For
each propertyp among substitutability and interchangeabil-
ity, we have:∀xi ∀a ∀b. d-p(xi, a, b) → s-p(xi, a, b).

Since inconsistency, (deep and shallow) substitutability,
and interchangeability are therefore subsumed by the prop-
erty of removability, we have to prove the correctness of this
last notion:

Proposition 4. Letφ = 〈X,Q,D,C〉 be a QCSP in which
valuea ∈ D(xi) is removable forxi, and letφ′ denote the
same QCSP in which valuea is effectively removed (i.e.,
φ′ = 〈X,Q,D′, C〉 whereD′(xi) = D(xi) \ {a} and
D′(xj) = D(xj), ∀j 6= i). Thenφ is true iffφ′ is true.

Proof. (sketch) If φ′ has a winning strategy then it is
straightforward thatφ also does. On the other hand sup-
pose thatφ has a winning strategy. That there exist for each
t ∈ out a t′ ∈ out s.t. tXi−1

= t′Xi−1
andtxi

6= a means
that the QCSPφ in which variablesx1, . . . , xi are instanti-
ated tot′x1

, . . . , t′xi
has a winning strategy. Therefore, there

exists a winning strategy forφ which never assigns valuea
to xi, andφ′ is true.

Similarly, since implication (shallow or deep) is a special
case of fixability, the correctness of the 3 notions is proven
by the following proposition:

Proposition 5. Let φ = 〈X,Q,D,C〉 be a QCSP in
which valuea ∈ D(xi) is fixable toxi, and letφ′ denote
the same QCSP in which valuea is effectively fixed (i.e.,
φ′ = 〈X,Q,D′, C〉 whereD′(xi) = {a} andD′(xj) =
D(xj), ∀j 6= i). Thenφ is true iffφ′ is true.

Complexity results
In this section, we study the complexity of the problem of
determining whether the properties defined in Definitions 6
and 7 hold. We assume that checking whethert ∈ sol (i.e.,
whethert satisfies the constraintsC) can be done in time
polynomial in the size of the representation of the input –
this assumption holds for the clausal representation used in
QBF, for binary CSPs with constraints represented as tables,
for numerical constraints,etc.

Proposition 6. Given a QCSPφ = 〈X,Q,D,C〉 , the prob-
lems of deciding whether:

• valuea ∈ Dxi
is d-fixable, d-removable, inconsistent, im-

plied for variablexi ∈ X ,

• valuea ∈ Dxi
is d-substitutableto or d-interchangeable

with b ∈ Dxi
for variablexi ∈ X ,

• variablexi ∈ X is dependenton variablesV ⊆ X , or is
d-irrelevant,

are PSPACE-complete.
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Proof. (case of d-fixability) Let us first note that given a tu-
ple t and a QCSPφ, determining whethert ∈ outφ can be
done in polynomial space using the following algorithm:

function isOutcome(t in D1 x ... x Dn) : boolean

begin

if not(isSolution(t)) then return false;

forall i = 1..n do

begin

if (xi is universally quantified in the QCSP) then

begin

forall d in Di such that d <> t[xi] do

begin

solve QCSP obtained by fixing variables

x1..xi-1 to t[x1]..t[xi-1] and xi to d

if this QCSP is false then return false

end

end

end

return true

end

Iterating through tuples and finding whether one of them
(t) exists which is an outcome and which is such thatt[xi :=
a] is not an outcome can therefore be done in PSPACE.

As for the proof of hardness, we restrict to the boolean
case, and reduce the PSPACE-hard problem of deciding
whether an arbitrary QBFφ

.
= QX γ(X) is true to that

of deciding an instance ofdeep-fixability. Let y 6∈ X be
a fresh variable, and let us consider the new QBFψ

.
=

QX∃y γ(X) ∧ ¬y. We observe thatφ is true iff ψ is true.
We now show that valuetrue is d-fixable for y in ψ iff ψ is
false which, in turn, holds iffφ is false.

The proof for the first direction is trivial: ifψ is false, then
every value isd-fixablefor every variable, by definition. As
for the other direction instead, iftrue is d-fixable for y in
ψ, ψ must be false, since, by construction, every winning
strategy forψ would assignfalseto y.

It is worth noting that such problems are PSPACE-hard
even in the case of boolean domains (i.e., QBFs).

An analogous result holds for the shallow properties:

Proposition 7. Given a QCSPφ = 〈X,Q,D,C〉 , the prob-
lems of deciding whether:

• valuea ∈ Dxi
is s-fixable, s-removablefor variablexi ∈

X ,
• valuea ∈ Dxi

is s-substitutableto or s-interchangeable
with b ∈ Dxi

for variablexi ∈ X ,
• variablexi ∈ X is s-irrelevant,

are PSPACE-complete.

Interesting refinements of the results above hold when
considering QCSPs with a bounded number of quantifier al-
ternations. We callΣkQCSP andΠkQCSP, respectively, the
QCSPs with at mostk quantifier alternations starting with
an existential or a universal block.

Proposition 8. Given aΣkQCSPφ = 〈X,Q,D,C〉, the
problems of deciding whether:

• valuea ∈ Dxi
is deep-/shallow-fixable, deep-/shallow-

removable, inconsistent, implied for variablexi ∈ X ,

• valuea ∈ Dxi
is deep-/shallow-substitutableto or deep-

/shallow-interchangeablewith b ∈ Dxi
for variablexi ∈

X ,
• variablexi ∈ X is dependenton variablesV ⊆ X , or is

deep-/shallow-irrelevant,

areΠp
k-complete.

Proof. (sketch) Given aΣkQCSPφ, finding whether a tu-
ple t is in outφ is a problem inΠp

k−1
(the algorithm used

in Prop. 6 gives the main ideas). Checking whether fixabil-
ity holds (for instance) amounts to check whether a tuplet
exists which is inout and such thatt[xi := a] 6∈ out, a
problem which is therefore in coNPΠ

p

k−1 = Πp
k. Hardness is

shown using a reduction similar to the one in Prop. 6.

Note that forΠkQCSPs similar results can be obtained
(although slightly less precise ones, the problem being sand-
wiched betweenΠp

k andΠp
k+1

).

Local reasoning
The previous section shows that all of the properties we are
interested in are computationally difficult to detect – roughly
speaking as hard as the resolution of the QCSP problem it-
self. Following the classical CSP approach, we investigate
the use oflocal reasoning to circumvent this intractability
by obtaining sufficient (incomplete, or non-necessary) con-
ditions under which the property holds.

Proposition 9. Let φ = 〈X,Q,D,C〉 be a QCSP
whereC = {c1, . . . , cm}. We denote byφk the QCSP
〈X,Q,D, {ck}〉 in which only thek-th constraint is con-
sidered. We have:

• for any propertyp among inconsistency or implication:
(
∨

k∈1..k pφk(xi, a)
)

→ pφ(xi, a)

• for any propertyp among deep or shallow fixability:
(
∧

k∈1..k pφk(xi, a)
)

→ pφ(xi, a)

• for any propertyp among deep or shallow substitutability
or interchangeability:

(
∧

k∈1..k pφk(xi, a, b)
)

→ pφ(xi, a, b)

Proof. Common to all these propositions is an important
monotonicityproperty of the set of outcomes: if we have two
QCSPsφ1 = 〈X,Q,D,C1〉 andφ2 = 〈X,Q,D,C2〉 (with
the same quantifier prefix) and if the solutions ofC1 are a su-
perset of the solutions ofC2, thenoutφ1 ⊇ outφ2 . The proof
for inconsistency/implication directly follows: for instance
(implication) if for somek we have∀t ∈ outφk . txi

= a,
then it also holds that∀t ∈ outφ. txi

= a.
Consider now deep fixability. Assuming that∀k. ∀t ∈

outφk we havet[xi := a] ∈ outφk , if we take a tuple
t ∈ outφ, thent[xi := a] also belongs tosolφ =

⋂

k solφk .
We already noticed that∀t ∈ out. t[xi := a] ∈ sol holds iff
∀t ∈ out. t[xi := a] ∈ out, which completes the proof.

For shallow fixability, assume that∀k. ∀t ∈ outφk .∃t′ ∈
outφk . t|Xi−1

= t′|Xi−1
∧t′xi

= a. Now if somet belongs to
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outφ it also belongs to eachoutφk and for eachk there hence
exists a tuplet′ ∈ outφk with t|Xi−1

= t′|Xi−1
∧ t′xi

= a.
Since all these tuples start the same, this shows the existence
of a tuplet ∈ outφ with the same property.

Local reasoning can therefore be used to check that some
property holds by inspecting the constraints one by one with-
out considering the problem as a whole, for instance that a
value is substitutable to another just because this property
holds for each constraint. In some other cases like inconsis-
tency, it also allows to determine that a property holds just
because one particular constraint has the property.

As already noticed in (Bordeaux, Cadoli, & Mancini
2004) in the non-quantified case, removability is not as well-
behaved since it is not possible to use local reasoning.

Conclusions and related work
Defining clearly what basic properties like inconsistency and
substitutability mean in the case of quantified constraints is
a non-trivial question which is important in understanding
and solving this class of problems. A number of definitions
were suggested in the literature but many of them did not
take into account the specificities of quantifier alternation,
which is needed to obtain the most precise definitions. Sub-
stitutability in QCSP has for instance been considered by
(Mamoulis & Stergiou 2004), but using essentially the clas-
sical (unquantified) notions. Most definitions have otherwise
been proposed for the particular case of QBF, for instance in
(Rintanen 1999; Cadoliet al. 2002), several techniques are
proposed to fix and remove values. These works have shown
that detecting properties is essential and can lead to a con-
sistent pruning of the search space, but no clear and general
framework to understand these properties was available.

We have seen in this paper that all basic CSP properties
can be generalised to QCSP using the notion ofoutcome. We
have first defined the so-calleddeepproperties, whose defi-
nitions directly follows from the notion of outcome, and we
have shown that these notions can be refined into the more
generalshallowones, giving precise conditions under which
a given value can be removed or fixed. Note that the defi-
nition of (in)consistency we have obtained is equivalent to
the one defined in (Bordeaux & Monfroy 2002); it is never-
theless expressed in a simpler and more elegant way which
avoids explicitly dealing with And/Or trees.

Very similarly to the classical CSP case, the decision
problem for these properties is no easier than the (Q)CSP
problem itself, but we have shown that the same kind of lo-
cal reasoning used in CSP is also valid for most properties.
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