
Weighted Super Solutions for Constraint Programs∗

Alan Holland and Barry O’Sullivan
Cork Constraint Computation Centre

University College Cork, Ireland
email:{a.holland,b.osullivan}@4c.ucc.ie

Abstract

Super solutions to constraint programs guarantee that if a lim-
ited number of variables lose their values, repair solutions can
be found by modifying a bounded number of assignments.
However, in many application domains the classical super so-
lutions framework is not expressive enough since it only rea-
sons about the number of breaks in a solution and the num-
ber of changes that are necessary to find a repair. For ex-
ample, in combinatorial auctions we may wish to guarantee
that we can always find a repair solution whose revenue ex-
ceeds some threshold while limiting the cost associated with
forming such a repair. In this paper we present theweighted
super solutionframework that involves two important exten-
sions. Firstly, the set of variables that may lose their values
is determined using a probabilistic approach enabling us to
find repair solutions for assignments that are most likely to
fail. Secondly, we include a mechanism for reasoning about
the cost of repair. The proposed framework has been success-
fully used to find robust solutions to combinatorial auctions.

Introduction
Solutions arerobust if a repair solution is available should
some assignments become invalid (break). Asuper solu-
tion to a constraint program guarantees that if the solution
breaks, another solution can be found by changing a lim-
ited number of other assignments (Hebrard, Hnich, & Walsh
2004b). It is a generalization of both supermodels in propo-
sitional satisfiability (SAT) (Ginsberg, Parkes, & Roy 1998)
and fault tolerance in constraint programming (CP) (Weigel
& Bliek 1998). This differs from Branching Constraint Sat-
isfaction (Fowler & Brown 2000) which focuses on finding
robust partial solutions to a dynamically changing problem.

In the classical super solutions framework, an(a, b)-super
solution guarantees that if at mosta variables lose their as-
signments, a repair solution can be found by reassigning
thosea variables and at mostb others. Therefore, a super
solution is a preventative approach to dealing with uncer-
tainty that ensures solution robustness. In many application
domains, such as combinatorial auctions, we not only need
to be able to guarantee solution robustness, but we need to

∗This work has received support from Science Foundation Ire-
land under grant number 00/PI.1/C075.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

be able to reason about thecost of repair, since transitions to
some repairs may be more costly than others. We also pro-
pose a probabilistic approach to reasoning abouthow failure
is likely to occurin a solution, thus facilitating contingency
planning where it is needed. Therefore, the weighted su-
per solution (WSS) framework, proposed here, extends the
classical super solutions framework in two important ways:
firstly, it can model the most likely causes of failure in a so-
lution and secondly, can reason about the costs of forming
alternative repairs.

The framework provides for two alternative approaches to
describing the likelihood of failure: usingstaticprobabilities
of failure ordynamicfailure rates, i.e. time-dependent prob-
ability of failure. Using theWeibull distribution(Weibull
1951) we can represent many of the most common failure
distributions such as normal, lognormal and exponential.

It is equally important that we can reason about the costs
associated with alternative ways of repairing a solution.
Changing the values of certain variables may incur a heavier
cost than others, e.g. changing the production schedule on a
large production line may be easier than on a smaller one.

The feasibility of finding robust solutions for combinato-
rial auctions was explored in (Holland & O’Sullivan 2004).
This work motivated the necessary extensions to the su-
per solutions framework proposed in this paper. An ex-
tensive study of robust solutions for combinatorial auctions
using the WSS framework was conducted in (Holland &
O’Sullivan 2005). The revenue of robust solutions for dif-
ferent bid distributions, non-incentive compatibility, posi-
tive discrimination in favor of trusted bidders and an auc-
tion mechanism for increased reparability were amongst the
issues discussed in that work.

In this paper we present the weighted super solution
framework. We present a MAC-based (Sabin & Freuder
1994) search algorithm for establishing a WSS, provide
complexity results and demonstrate the framework on job-
shop scheduling problems and combinatorial auctions.

The Weighted Super Solution Framework
The WSS framework uses probabilistic failures to determine
the sets of variables that require repairs, as well as the costs
of establishing such repairs. We define bothstatic anddy-
namic weighted super solutionsin terms of robustness and
cost of repair.

AAAI-05 / 378

Definition 1 (Static WSS) A solution to a CSP is a static
weighted super solution, or (α,β)-static WSS, if any set of
variables whose probability of losing their current assign-
ments is greater than or equal toα, can be repaired by re-
assigning other values to these and other variables with a
repair cost of at mostβ.

Probabilistic failure rates can also be used to determine
the sets of variables that require repairs. The only difference
between static and dynamic weighted super solutions is in
the selection of assignments for which repairs are necessary.
We definedynamic weighted super solutionsin terms of ro-
bustness and cost of repair as follows:

Definition 2 (Dynamic WSS) A solution to a CSP is a dy-
namic weighted super solution, or (α,β,τ)-dynamic WSS, if
any set of variables whose probability of losing their current
assignments is greater than or equal toα before timeτ , can
be repaired by reassigning other values to these and other
variables with a repair cost of at mostβ.

Modeling Probabilistic Failure
As discussed above, breaks in solutions to constraint pro-
grams may or may not be time-dependant. For example, a
solution to a combinatorial auction results in a break that is
effectively immediate when a bidder refuses to pay. There-
fore a constant probability of failure can be associated with
each variable assignment. A factory scheduling problem
however, may exhibit failure rates over a period of time.

Constant probabilities of failure (Static WSS). We pro-
pose thatassignmentshave varying degrees of robustness to
differentiate between those that are more or less likely to
fail. We assume that assignments have independent prob-
abilities of failure. Repair solutions can be determined for
sets of assignments that are likely to fail, whilst more ro-
bust assignments may not require any repair solution if their
probability of failure is below some threshold. Probabilistic
robustness may be particularly useful in recurring scenarios
where historical information pertaining to the reliability of
assignments is available.

Probabilistic rates of failure (Dynamic WSS). The fail-
ure rates of mechanical components or electronic devices are
typically defined in terms of probability distributions over
time. In general, the type of failure distribution depends
upon the component’s inherent failure mechanisms.

The Weibull distribution can be used to model a variety of
distributions including normal, lognormal, exponential and
Rayleigh (Weibull 1951). It is the most widely used distribu-
tion in reliability engineering, thus ideal for simulating prob-
abilistic failure rates in the WSS framework for the purposes
of determining the sets of assignments that require repairs.

The probability density function of the 2-parameter
Weibull distribution is defined as follows:

f(t) =
γ

η
(
t

η
)
(γ−1)

e(−(t
η)γ) (1)

whereγ andη > 0. γ is the shape parameter of the distri-
bution. If γ is greater than 1, the failure rate is increasing; if

γ is less than 1, the failure rate is decreasing;γ = 1 implies
the failure rate is constant.η is the scale parameter and is
also known as the characteristic life, where1

η is defined as
the time at which there is a 0.632 probability that failure will
have occurred.

The cumulative distribution function (CDF) is the proba-
bility of failure before timet. This is relevant for the sce-
nario in which we are interested, i.e. calculating which sets
of assignments are likely to fail in a given time-frame. The
CDF for the 2-parameter Weibull distribution is as follows:

F (t) = 1− e−(t
η)γ

, t ≥ 0; γ > 0; η > 0. (2)

We use the Weibull CDF to describe the failure rates of as-
signments whose probability of failure is time-dependent.
When this probability is at least some threshold,α, at a given
time,τ , then the corresponding assignment is deemed brittle
and requires a repair solution.

Modeling Repair Cost
The super solution framework guarantees the availability of
repair solutions in cases where up toa variables may break
andb other variables are allowed to change. The approach
assumes that the cost of changing all variables is the same
and that the cardinality of the repair set is a reasonable mea-
sure of the total cost of repair. However, in general, one
needs to be able to differentiate between the costs of alter-
native repairs.

The cost of changing an assignment in a solution may de-
pend on several parameters which, at the very least, include
the original and final assignments, as well as the break vari-
ables themselves. This provides a more flexible and accurate
description of the cost of making changes to a solution. For
example, in a job-shop scheduling problem the values asso-
ciated with variables may represent the various states of a
machine and the cost of alternative state transitions may dif-
fer. Furthermore, this cost may be influenced by the cause
of the break in the solution.

Definition 3 (Cost of Repair) The cost of repair is repre-
sented as a non-negative real number that describes the cost
associated with changing the value of variablex from v1 to
v2 whenA is the set of break variables,C

(x,A)
v1→v2 ∈ R+

0 .

If at mostk variables participate in any potential break,
there are

(
n
k

)
possible break sets, therefore the space com-

plexity for storing the costs becomesO(nk+1d2) when rep-
resented extensionally.

The total cost of repair is computed using a function,f ,
that combines the repair costs of the individual assignments
that are modified to form the repair solution. Typically, a
summation of the costs is used to determine the overall cost
of repair.

The algorithm that we propose in this paper requires that
f is monotone non-decreasing in the size of the repair set
so that we can terminate the search for a WSS when an as-
signment is deemed irreparable. IfR1 andR2 are two repair
sets andR1 ⊂ R2, thenf(R1) ≤ f(R2).This restriction is
necessary because it allows us to cease searching for a re-
pair solution in a branch once a threshold cost,β, has been

AAAI-05 / 379

exceeded. Otherwise, the search for repair solutions would
require the computation of a lower bound at each node of the
search for a repair. This search would become prohibitively
expensive without this restriction on the cost function. Con-
current search for repair solutions would become computa-
tionally infeasible.

Algorithm
The WSS framework requires several modifications to
the algorithms used to find classical super solutions (He-
brard, Hnich, & Walsh 2004a; 2004b), to support re-
pair solutions forsets of break variablesof different size
and repair sets ofarbitrary cardinality. Algorithm 1
(weighted-super-solve) can be used to find both
static and dynamic WSS. Whenτ is not defined, denoted
∅, the algorithm detects that a static WSS is required in the
failure procedure and determines an assignment’s prob-
ability of failure using its probabilities,α(x,v), otherwise
Weibull parametersγ(x,v) and η(x,v) are used to compute
the probability of failure by timeτ .

A repair solution,Rb, is provided for every possible set
of break variablesb. Thebacktrack procedure is called
from weighted-super-solve and attempts to extend
the current partial assignment by choosing a variable and as-
signing it a value. Backtracking may occur for one of two
reasons: we cannot extend the current partial assignment to
satisfy the given constraints, or it cannot be associated with
a repair solution whose cost is less than or equal toβ for
a possible break. The procedurereparable searches for
partial repair solutions using backtracking and attempts to
extend the last repair found, just as in (1,b)-super solutions;
the differences being that a repair is provided for a set of
break variables rather than a single variable and the cost of
repair is considered. The procedurecheck-wss-repair
determines the cost of the repair solution and verifies consis-
tency. A summation operator is used to determine the overall
cost of repair in this case. This procedure can also include
auxiliary break and repair restrictions described in (Hebrard,
Hnich, & Walsh 2004a).

Algorithm 1 : weighted-super-solve
input : α, β, τ , RepairCosts:I, CSP:P ={X ,D, C} // Let τ = ∅ for

static-WSS

output: S: an (α,β,τ)-WSS:R: the set of repair solutions

begin
S ← ∅ // Solution

R ← ∅ // Set of repair solutions

Past ← ∅ // Ordered set of assigned variables

AC(P, S) // Perform arc-consistency

backtrack(P ,S,Past,R,0,α,β,τ ,0)
end

Theorem 1 weighted-super-solve terminates and
is sound and complete.

Proof. (Sketch)
Termination: The algorithm never revisits any partial as-
signment or repair for a given break set, of which there are

Procedure backtrack(P ,S,Past,R,lvl,α,β,τ ,m)
:Boolean

begin
if X = Past then return true

choosex ∈ X \ Past

b ← ∅ // set of break variables

Past[lvl] ← x

foreachv ∈ D(x) do
saveD, m andR

m ← max(m, failure({x}, S, τ))

k ← blogm αc // Max size of any break

S ← S ∪ {(x, v)}
if AC(P ,S) then

foreachb ∈ P(Past), | b |≤ k, failure(b, S, τ) ≥ α do
if ¬reparable(P ,S,Past,Rb,0,β) then break

if backtrack(P ,S,Past,R,lvl + 1,α,β,τ ,m) then
return true

restoreD, m andR

S ← S \ (x, v)

Past[lvl] ← ∅
return false

end

Procedure reparable(P ,S,Past,Rb,lvl,β)
:Boolean

begin
if lvl = |S| then return true

y ← Past[lvl]

for v ← Rb[y] to maxinit D(y) // Last value in lex order

do
if y /∈ b or S[y] 6= v then Rb[y] ← v

if check-wss-repair(P ,S,Past,Rb,lvl,β) then
if reparable(P,S,Past,Rb,lvl + 1,β) then return true

Rb[y] ← min(D(y))

return false
end

Procedure check-wss-repair(P ,S,Past,Rb,lvl,β)
: Boolean

begin
cost ← 0

for i ← 0 to lvl do
y ← Past[i]

if y /∈ b andRb[y] 6= S[y] then
cost ← cost + I(x, S[y], Rb[y])

if cost > β then return false

return consistency of thel first values inRb

end

Procedure failure(b, S, τ) : Real
begin

fail ← 1.0

for x ∈ b do
v ← S[x]

if τ = ∅ then fail ← fail× α(x,v) // Static WSS

elsefail ← fail× CDF(η(x,v),γ(x,v),τ) // Dynamic WSS

returnfail
end

AAAI-05 / 380

finitely many.
Soundness:∀b ∈ P(Past), Rb is the first repair solution of
S, when taken in lexicographical order, forb in the problem
restricted toPast.
Completeness:MAC (Sabin & Freuder 1994) is complete,
therefore no partial assignment is omitted before checking
for reparability. The check for reparability starts from the
last repair found. The cost of repair function is monotone
non-decreasing so no assignment before this last repair in
the search tree can be extended to the current variable be-
cause each prior partial assignment had a minimum cost of
repair that exceededβ. ¤

We also show that finding a WSS isNP-complete in
general for any fixedα (and τ for the case of dynamic
WSSs). We define two decision problems: (α,β)-STATIC
WEIGHTED SUPER SOLUBILITY and (α,β,τ)-DYNAMIC
WEIGHTED SUPER SOLUBILITY as the problems of decid-
ing whether there exists an (α,β)-static WSS or an (α,β,τ)-
dynamic WSS to a problem, respectively.

Lemma 1 Let m = max (
⋃

(x,v)∈s α(x,v)), whereα(x,v) is
the constant probability of failure associated with the as-
signment of valuev to variable x for static-WSS and the
probability of failure at timeτ in the dynamic case. If
blogm αc is bounded by a constantk, the number of pos-
sible breaks requiring repair solutions is polynomial ink.

Proof. For each solutionS there must be a repair solu-
tion for each subsets ∈ P(S), the power-set ofS, whose
probability of failure is greater than or equal toα, i.e.∏

(x,v)∈s α(x,v) ≥ α. But α(x,v) ≤ m, so we can say that:
∏

(x,v)∈s

α(x,v) ≤ m|s|.

If s requires a repair we have

α ≤ m|s| ∴ log α ≤ | s | · log m.

Sincelog α andlog m are both negative:

log α

log m
≥ | s | ∴ logm α ≥ | s |.

Sinceblogm αc ≤ k and| s | ∈ Z, k ≥ | s |.
The size of the largest break-set needing consideration for

repair is≤ k, therefore at most
(

n
k

)
repair solutions are

necessary, wheren is the number of variables. ¤

Theorem 2 (α,β)-STATIC WEIGHTED SUPER SOLUBIL -
ITY and (α,β,τ)-DYNAMIC WEIGHTED SUPER SOLUBIL -
ITY areNP-complete whenblogmax(α(x,v))

αc is bounded
by a constantk.

Proof.
Hardness: To show they are inNP we need a polynomial
witness. This is simply an assignment of the variables that
satisfies the constraints in the problem and, for each of the
O(nk) possible breaks, the set of repair values. This is poly-
nomial for fixedk from Lemma 1.

Completeness:We present a reduction from binary CSP.
Duplicates of each value in the domain of all variables are
created. Constraints are added to behave equivalently on the
duplicate (primed) values. Additional constraints are added
to enforce that a solution can either involve only primed or
duplicate values. This problem is satisfiableiff the original
problem is also satisfiable. If a solution does exist, a WSS
does also because any set ofk values may be primed to form
a repair solution. ¤

Whilst an upper bound onα is fixed, there is no such
constraint onβ. If α is unbounded, then (α,β)-STATIC and
(α,β,τ)-DYNAMIC WEIGHTED SUPER SOLUBILITY are in
PSPACE.

Optimization Problems. It may not always be possible to
find a robust solution for given values ofα, β andτ . In such
situations the problem constraints may be relaxed in several
ways so that different trade-off scenarios are considered.

If α is minimized, we maximize the number of potential
breaks that have repair solutions. Alternatively, whenβ is
minimized we seek repair solutions for all potential breaks
but seek to minimize the cost of repair for any such break.
In the case of a dynamic WSS it is also possible to maximize
τ so that the solution is reparable for as long as possible.

Applications
We applied the WSS framework to two separate applica-
tions, job shop scheduling problems (JSPs) and combina-
torial auctions (CAs), to demonstrate its usefulness and ver-
satility. Firstly, we present the effects of changing the input
parameters to small JSPs as a pedagogical example. We then
present results for finding robust solutions for combinatorial
auctions with thousands of bids.

Job Shop Scheduling
Each problem consisted of 3 machines and 4 jobs, each com-
prising a sequence of 3 activities. Each activity required
each machine for a duration chosen over a uniform ran-
dom distribution [1,5]. The objective was to schedule all
activities so that the precedence and resource constraints
amongst activities were respected whilst minimizing the
overall makespan.

In these experiments machinesM1−M3 exhibited differ-
ent failure rates and we assumed Weibull distributions with
γ as 1.0, 1.5 and 2.0, respectively, and a random repair pe-
riod from [1,5] on each machine following a failure. We
let the characteristic lifeη = 100 so that each machine had
a probability of failure of 0.632 by this time. We modeled
the activities as variables, whose domain values represented
start-times. The duration of each activity allowed us to de-
termine the end-time for each activity on each machine given
the start-time. We could, therefore, assign a static probabil-
ity of failure using the difference in the CDF on the rele-
vant machine between these two times. The brittleness of
a variable (activity on a particular machine), therefore, de-
pended upon its assigned value (start-time). Our solver used

AAAI-05 / 381

Table 1: Results (4x3 JSP).
(a) α = 0.01

β mksp nodes
×1000

breaks

0 18.82 67,624 303,848
50 18.92 638,739 743,005
100 19.26 533,368 298,325
150 18.88 500,723 234,598
200 18.32 383,725 136,273
250 18.42 577,310 159,820
300 18.20 449,798 227,233
350 18.48 821,485 174,816
400 17.84 525,212 209,574

(b) α = 0.02
β mksp nodes

×1000
breaks

0 18.28 15,878 53,369
50 18.32 354,186 128,888
100 18.32 290,072 78,951
150 18.28 412,006 105,511
200 18.12 415,698 74,169
250 17.32 243,148 45,748
300 17.80 360,334 53,963
350 17.50 281,017 60,642
400 16.98 421,379 63,510

(c) α = 0.03
β mksp nodes

×1000
breaks

0 18.40 18,915 41,493
50 17.68 33,864 10,959
100 17.80 175,650 40,622
150 18.24 182,240 38,803
200 17.74 193,117 24,728
250 18.18 257,233 73,544
300 17.68 290,801 52,235
350 17.70 370,700 44,384
400 18.16 318,035 59,601

(d) α = 0.04
β mksp nodes

×1000
breaks

0 16.96 3,748 5,329
50 16.98 6,005 1,159
100 17.06 473 163
150 17.14 1,517 362
200 17.08 10,853 1,126
250 16.84 3,445 639
300 16.20 66,100 6,260
350 15.96 249 33
400 15.82 8,158 1,123

a dynamic minimum degree heuristic over the variables and
values were chosen in lexicographical order.

We assumed that the cost of repairing a solution was ma-
chine dependant. Given a break in a solution, the costs of
changing an activity onM1 −M3, were 25, 50 and 75, re-
spectively. Rescheduling activities on different machines
may vary because of calibration/setup/labor costs, etc. We
examined the trade-off between robustness and makespan
for 50 randomly generated instances. Problems had 12 vari-
ables, with domain sizes containing approximately 15-20
values. The last value in the domain was an upper bound on
the latest start-time required for that activity. A solution was
found by bounding the makespan to an initial lower bound.
If a solution was not found, this makespan was incremented
by one and the problem was resolved. This process was re-
peated until a valid solution is found.

Tables 1(a)-1(d) show how the minimal makespan, num-
ber of nodes visited in the search tree and breaks checked
for reparability vary withα andβ. It is noticeable that the
optimal makespan decreases asβ increases and is more pro-
nounced whenβ > 200. Whenβ is low reparability is in-
hibited because fewer repair solutions can be considered, so
the makespan increases. It is also clear that asα decreases
there is a larger number of activities that require repair so-
lutions so the makespan increases as some repair solutions
require later start-times.

Finding a WSS can become computationally intensive
when α is low, increasing the number of combinations
of breaks needing consideration. For example, from Ta-
bles 1(a)-1(d) we can see how the number of nodes in the
search tree can grow exponentially. As the number of possi-
ble breaks decreases, the number of concurrent searches for
separate repair solutions also decreases. The search-effort is
greatly reduced whenα = 0.04 (Table 1(d)) because fewer
assignments require repair solutions.

The number of nodes visited and breaks checked are not

tightly correlated withβ for the following reason. Whenβ is
low, searches for repair solutions may fail quickly, whereas
when it is high, the repair searches visit more nodes but
the success rate increases thereby leading to initial solutions
more quickly. These two effects counteract one another asβ
increases.

Tables 1(a)-1(d) also show the number of breaks checked
for reparability before we extend the search tree (column
breaks). This corresponds to the number of calls made to the
reparable procedure. From these results it is clearly im-
portant that repair solutions are not sought for assignments
that are robust in order to minimize the computational bur-
den. This is why probabilistic failures in the WSS frame-
work are critical in subtly differentiating between assign-
ments that are brittle and those that are robust.

Combinatorial Auctions

A combinatorial auction (CA) involves the sale of multi-
ple distinguishable items in which bids can be submitted
on any combination of items that interest a bidder. The
winner determination problem (WDP) for CAs isNP-
complete (Rothkopf, Pekec̆, & Harstad 1998) and inapprox-
imable (Sandholm 2002), and is equivalent to the Set Pack-
ing Problem. The problem of bid withdrawal following
winner determination in CAs constitutes a serious risk for
the bid-taker because the irrevocable awarding of items to
other non-reneging bidders may mean that a repair solution
of sufficient revenue may be impossible to achieve (Hol-
land & O’Sullivan 2005). A robust solution in which bid-
withdrawal may be repaired with a bounded loss in revenue
is particularly desirable for a risk averse bid-taker.

Some bidders may be deemed unreliable and probabili-
ties of failure can be associated with their bids. The WSS
framework permits us to find repair solutions for sets of brit-
tle winning bids, i.e. those whose probability of withdrawal
is≥ α. Super solutions for combinatorial auctions offer the
possibility of restricting the number of changes required to
form a repair solution of sufficient revenue for any bid with-
drawal (Holland & O’Sullivan 2004). When attempting to
repair a solution after a winning bid has been withdrawn by
a bidder, the bid-taker must reallocate unsold items amongst
bidders. However, the bid-taker may have to pay compen-
sation to a bidder if an item is withdrawn from him; this
compensation can be regarded as a repair cost. Using the
parameterβ, the WSS framework can consider such repair
costs so that a repair can be found to achieve a high revenue
solution. The maximum cost of repair,β, may be deter-
mined by the particular break in the solution. For example,
all bidders may agree that if they withdraw a bid, they pay
a penalty to the bid-taker equal to a certain fraction of the
bid amount. This penalty can then be used to fund a reas-
signment of items, i.e. provide a fund of sizeβ that can be
used to compensate winning bidders whose bids are revoked
in order to find a repair solution.

We have used the Combinatorial Auction Test Suite
(CATS) (Leyton-Brown, Pearson, & Shoham 2000) to gen-
erate 100 sample auction problems in which there were 20

AAAI-05 / 382

100
98
96
94
92
90
88
86
84
82
80
78
76

 250 500 750 1000 1250 1500 1750 2000

R
ev

en
ue

 (
%

 o
f o

pt
im

um
)

Bids

WSS Revenue
Non-WSS Average Repair Revenue

Non-WSS Worst-Case Repair Revenue

Figure 1: Average revenues for (1) WSS, (2) non-robust re-
pair solutions and (3) worst-case non-robust repair solutions.
Worst-case repair revenue for each WSS is≥90%.

items for sale and 100-2000 bids1. CATS uses economically
motivated bidding patterns to generate auction data in vari-
ous real world scenarios. In these experiments we used the
arbitrary auction distribution that simulates electronic
component auctions. We established robust solutions for
CAs using the WSS framework.

Combinatorial auctions are easily modeled as a constraint
optimization problem which can be solved using a combi-
nation of CP and operations research techniques. Binary
variables represent bids and our search mechanism used a
reverse lexicographic value ordering heuristic. This com-
plemented our dynamic variable ordering heuristic that se-
lects the most promising unassigned variable as the next one
in the search tree. We used the product of the solution of
the linear programming (LP) relaxation of the problem, to
give an approximate bound on revenue, and the degree of a
variable to determine the likelihood of its participation in a
robust solution.

Our experiments simulated an auction in which the bid-
taker was willing to accept a solution that was at least 90%
of optimal revenue but guaranteed a repair solution could
be found, whilst still satisfying the revenue constraint, given
any single bid withdrawal. Backtracking by the bid-taker on
winning bids using withdrawal penalties and compensation
payments to bidders whose winning bids are revoked was
permissible. Prior to finding a robust solution we solved
the WDP optimally using a conventional ILP solver. We
then imposed the minimum tolerable revenue constraint for
a solution and searched for a WSS that optimized revenue.

Figure 1 clearly illustrates the benefits of using the WSS
framework for finding robust solutions to a combinatorial
auction. In this figure we can see that the average revenue of
a robust solution found using the WSS framework requires
at most a 3% compromise on optimal revenue. However, we
are always guaranteed that a solution can be found in which
revenue is at least 90% of the optimum when a single bid
is withdrawn because of the revenue constraint used to find
robust solutions. Contrast this with the non-robust scenario,
where we can see that the bid-taker is vulnerable, particu-
larly in smaller auctions involving fewer bids. The average

1The CATS flags included intprices with bidalpha set to 1000.

revenue of a repair solution varies between 86% and 97%
of optimal revenue, while the average worst-case revenue is
significantly lower (77%–93%). We see from Figure 1 that
once the number of bids≥ 1000, a robust solution found
using the WSS framework can provide optimal revenue.

Conclusion
Weighted super solutions extend the basic framework (Gins-
berg, Parkes, & Roy 1998; Hebrard, Hnich, & Walsh 2004b)
in two important ways. Firstly, the set of variables that may
lose their values is determined using a probabilistic approach
enabling us to find repair solutions for assignments most
likely to fail. Secondly, we include a metric for reasoning
about the cost of repair. The framework provides an expres-
sive basis for establishing robust solutions when faced with
variable assignments that may lose their values when the so-
lution breaks.This framework is practical and useful in many
application domains, such as scheduling and combinatorial
auctions, where reasoning about uncertainty and the cost of
repair is important.

References
Fowler, D. W., and Brown, K. N. 2000. Branching
constraint satisfaction problems for solutions robust under
likely changes. InProc. of CP-2000, LNCS 1894, 500–
504.
Ginsberg, M. L.; Parkes, A. J.; and Roy, A. 1998. Super-
models and Robustness. InProc. of AAAI, 334–339.
Hebrard, E.; Hnich, B.; and Walsh, T. 2004a. Robust solu-
tions for constraint satisfaction and optimization. InProc.
of ECAI, 186–190.
Hebrard, E.; Hnich, B.; and Walsh, T. 2004b. Super so-
lutions in constraint programming. InCP-AI-OR, LNCS
3011, 157–172.
Holland, A., and O’Sullivan, B. 2004. Super solutions for
combinatorial auctions. InERCIM-Colognet Constraints
Workshop (CSCLP 04), LNAI 3419, 187–200.
Holland, A., and O’Sullivan, B. 2005. Robust solutions
for combinatorial auctions. InACM Conf. on Electronic
Commerce. (to appear).
Leyton-Brown, K.; Pearson, M.; and Shoham, Y. 2000.
Towards a universal test suite for combinatorial auction al-
gorithms. InACM Conf. on Electronic Commerce, 66–76.
Rothkopf, M.; Pekĕc, A.; and Harstad, R. 1998. Computa-
tionally manageable combinatorial auctions.Management
Science44(8):1131–1147.
Sabin, D., and Freuder, E. C. 1994. Contradicting conven-
tional wisdom in constraint satisfaction. InProc. of ECAI,
125–129.
Sandholm, T. 2002. Algorithm for optimal winner deter-
mination in combinatorial auctions.AIJ 135(1-2):1–54.
Weibull, W. 1951. A statistical distribution function of
wide applicability.Journal of Applied Mechanics293–297.
Weigel, R., and Bliek, C. 1998. On reformulation of con-
straint satisfaction problems. InProc. of ECAI, 254–258.

AAAI-05 / 383

