
Generating Hard Satisfiable Formulas by Hiding Solutions Deceptively

Haixia Jia and Cristopher Moore and Doug Strain
Computer Science Department

University of New Mexico
{hjia,moore}@cs.unm.edu, doug.strain@gmail.com

Abstract
To test incomplete search algorithms for constraint satisfac-
tion problems such as 3-SAT, we need a source of hard, but
satisfiable, benchmark instances. A simple way to do this
is to choose a random truth assignment A, and then choose
clauses randomly from among those satisfied by A. How-
ever, this method tends to produce easy problems, since the
majority of literals point toward the “hidden” assignment A.
Last year, (Achlioptas, Jia, & Moore 2004) proposed a prob-
lem generator that cancels this effect by hiding both A and
its complement A. While the resulting formulas appear to be
just as hard for DPLL algorithms as random 3-SAT formulas
with no hidden assignment, they can be solved by WalkSAT
in only polynomial time.
Here we propose a new method to cancel the attraction to A,
by choosing a clause with t > 0 literals satisfied by A with
probability proportional to qt for some q < 1. By varying q,
we can generate formulas whose variables have no bias, i.e.,
which are equally likely to be true or false; we can even cause
the formula to “deceptively” point away from A. We present
theoretical and experimental results suggesting that these for-
mulas are exponentially hard both for DPLL algorithms and
for incomplete algorithms such as WalkSAT.

Introduction
To evaluate search algorithms for constraint satisfaction
problems, we need good sources of benchmark instances.
Real-world problems are the best benchmarks by definition,
but each such problem has structures specific to its applica-
tion domain; in addition, if we wish to study how the running
times of search algorithms scale, we need entire families of
benchmarks with varying size and density.

One way to fill this need is to generate random instances.
For instance, for 3-SAT we can generate instances with n
variables and m clauses by choosing each clause uniformly
from among the 8

(

n

3

)

possibilities. We can then vary these
formulas according to their size and their density r = m/n.
While such formulas lack much of the structure of real-
world instances, they have been instrumental in the develop-
ment and study of new search methods such as simulated an-
nealing (Johnson et al. 1989), the breakout procedure (Mor-
ris 1993), WalkSAT (Selman, Kautz, & Cohen 1996), and
Survey Propagation (Mézard & Zecchina 2002).

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

However, if we wish to test incomplete algorithms such
as WalkSAT and Survey Propagation (SP), we need a
source problems that are hard but satisfiable. In contrast,
above a critical density r ≈ 4.27, the random formu-
las defined above are almost certainly unsatisfiable. Ran-
dom formulas at this threshold appear to be quite hard for
complete solvers (Cheeseman, Kanefsky, & Taylor 1991;
Mitchell, Selman, & Levesque 1992; Hogg, Huberman, &
Williams 1996); but for precisely this reason, it is not fea-
sible to generate large problems at the threshold and then
filter out the unsatisfiable ones. While other classes of
satisfiable CSPs have been proposed, such as the quasi-
group completion problem (Shaw, Stergiou, & Walsh 1998;
Kautz et al. 2001; Achlioptas et al. 2000), we would like to
have problems generators that are “native” to 3-SAT.

A natural way to generate random satisfiable 3-SAT for-
mulas is to choose a random truth assignment A ∈ {0, 1}n,
and then choose m clauses uniformly and independently
from among the 7

(

n

3

)

clauses satisfied by A. The problem
with this is that simply rejecting clauses that conflict with
A causes an unbalanced distribution of literals; in particular,
on average a literal will agree with its value in the hidden
assignment 4/7 of the time. Thus, especially when there are
many clauses, a simple majority heuristic or local search will
quickly find A. More sophisticated versions of this “hid-
den assignment” scheme (Asahiro, Iwama, & Miyano 1996;
Van Gelder 1993) improve matters somewhat but still lead
to biased samples. Thus the question is how to avoid this
“attraction” to the hidden assignment,

One approach (Achlioptas, Jia, & Moore 2004) is to
choose clauses uniformly from among those that are sat-
isfied by both A and its complement A. This is in-
spired by recent work on random k-SAT and Not-All-Equal
SAT (Achlioptas & Moore 2002b), in which symmetry with
respect to complementation reduces the variance of the num-
ber of solutions; the idea is that A and A cancel each others’
attractions out, making either one hard to find. Indeed, the
resulting formulas appear to take DPLL solvers exponential
time and, in general, to be just as hard as random 3-SAT
formulas with no hidden assignment. On the other hand,
WalkSAT solves these formulas in polynomial time, since
after a few variables are set in a way that agrees with one of
the hidden assignments, neighboring variables develop cor-
relations consistent with these (Barthel et al. 2002).

AAAI-05 / 384



In this paper, we pursue an alternate approach, inspired
by (Achlioptas & Peres 2003), who reweighted the satisfy-
ing assignments in a natural way. We hide just one assign-
ment, but we bias the distribution of clauses as follows:

1. Predefine a constant q < 1 and generate a random truth
assignment A ∈ {0, 1}n

2. Do rn times: choose a random k-tuple of variables, and
choose from among the clauses in which t > 0 literals are
satisfied by A with probability proportional to qt.

This penalizes the clauses which are “more satisfied” by A,
and reduces the extent to which variable occurrences are
more likely to agree with A. (Note that the naive formu-
las discussed above amount to the case q = 1.) As we will
see below, by choosing q appropriately we can rebalance the
distribution of literals, so that each variable is as likely to
appear positively as often as negatively and no longer points
toward its value in A. By reducing q further, we can even
make it more likely that a variable occurrence disagrees with
A, so that the formula becomes “deceptive” and points away
from the hidden assignment.

We call these formulas “q-hidden,” to distinguish them
from the naive “1-hidden” formulas discussed above, the
“2-hidden” formulas studied in (Achlioptas, Jia, & Moore
2004), and the “0-hidden” formulas consisting of random 3-
SAT formulas with no hidden assignment. Like these other
families, our q-hidden formulas are readily amenable to all
the mathematical tools that have been developed for study-
ing random k-SAT formulas, including moment calculations
and the method of differential equations. Below we cal-
culate the expected density of satisfying assignments as a
function of their distance from A, and analyze the behav-
ior of the Unit Clause (UC) algorithm on q-hidden formulas.
We then present experiments on several complete and in-
complete solvers. For certain values of q, we find that our
q-hidden formulas are just as hard or harder for DPLL algo-
rithms as 0-hidden formulas or 2-hidden formulas, and are
much harder than naive 1-hidden formulas. In addition, we
find that local search algorithms like WalkSAT find our for-
mulas much harder than any of these other families, taking
exponential as opposed to polynomial time. Moreover, the
running time of WalkSAT increases sharply as our formulas
become more deceptive.

The expected density of solutions
For α ∈ [0, 1], let Xα be the number of satisfying truth as-
signments in a random q-hidden k-SAT formula that agree
on a fraction α of the variables with the hidden assignment
A; that is, their Hamming distance from A is (1 − α)n. We
wish to calculate the expectation E[Xα].

By symmetry, we can take A to be the all-true assignment.
In that case, a clause with t > 0 positive literals is chosen
with probability qt/((1 + q)k − 1) (here we normalize the
probabilities by summing over the

(

k
t

)

clauses for all t > 0).
Let B be a truth assignment where αn of the variables are
true and (1 − α)n are false. Then, analogous to (Achliop-
tas, Jia, & Moore 2004), we use linearity of expectation,
independence between clauses, the selection of the literals

0 0.2 0.4 0.6 0.8 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Density of solutions with r=6

α

q=0.5

q=0.618 

q=1 

0 0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

α

Density of solutions with q=0.5

r=3 

r=4 

r=5 

r=5.6 

r=6 

r=7 

Figure 1: The nth root f(α) of the expected number of solu-
tions which agree with the hidden assignment on a fraction
α of the variables. Here k = 3. The upper part of the figure
shows f(α) for q = 1, q = 0.618 and q = 0.5 at r = 6. The
lower part shows f(α) for q = 0.5 and varying r. Note that
at r = 5.6, we have f(α) < 1 for all α ≤ 1/2.

in each clause with replacement, and Stirling’s approxima-
tion for the factorial to obtain (where ∼ suppresses terms
polynomial in n):

E[Xα] =

(

n

αn

)

Pr[B satisfies a random clause]m

=

(

n

αn

)

(

1 −
k
∑

t=1

(

k

t

)

qt(1 − α)tαk−t

(1 + q)k − 1

)m

∼ fk,r,q(α)n

where

f(α) =
1

αα(1 − α)1−α

(

1 − (q(1 − α) + α)k − αk

(1 + q)k − 1

)r

.

Looking at Figure 1, we see that the behavior of f near
α = 1/2 changes dramatically as we vary q. For q = 1 (i.e.,
naive 1-hidden formulas), f ′(1/2) is positive, giving local

AAAI-05 / 385



search algorithms a “push” towards the hidden assignment.
On the other hand, if q is the positive root q∗ of

(1 − q)(1 + q)k−1 − 1 = 0

then f ′(1/2) = 0. Analogous to (Achlioptas & Peres 2003),
this is also the value of q at which literals are equally likely
to agree or disagree with A. Intuitively, then, if q = q∗

we would expect a local search algorithm starting from a
random assignment—for which α is tightly concentrated
around 1/2—to have no local information telling it in which
direction the hidden assignment lies. We call these q∗-
hidden formulas balanced; for k = 3, q∗ is the golden ratio
(
√

5 − 1)/2 = 0.618...
For smaller values of q such as q = 0.5 shown in Figure 1,

f ′(1/2) becomes negative, and we expect a local search al-
gorithm starting at a random assignment to move away from
A. Indeed, f(α) has a local maximum at some α < 1/2,
and for small r there are solutions with α < 1/2. When r
is sufficiently large, however, f(α) < 1 for all α < 1/2,
and as n → ∞ the probability any of these “alternate” so-
lutions exist is exponentially small. We conjecture that for
each q ≤ q∗ there is a threshold rc(q) at which with high
probability the only solutions are those close to A. Setting
max{f(α) | α ≤ 1/2} = 1 yields an upper bound on rc(q),
which we show in Figure 4 below. For instance, the dotted
line in Figure 1 shows that rc(0.5) ≤ 5.6.

We call such formulas deceptive, since local search al-
gorithms such as WalkSAT, DPLL algorithms such as
zChaff that use a majority heuristic in their splitting rule,
and message-passing algorithms such as SPwill presumably
search in the wrong direction, and take exponential time to
cross the local minimum in f(α) to find the hidden assign-
ment. Our experiments below appear to confirm this intu-
ition. In addition, all three types of algorithms appear to en-
counter the most difficulty at roughly the same density rc(q),
where we conjecture the “alternate” solutions disappear.

Unit Clause heuristic and DPLL algorithms
Unit Clause (UC) is a linear-time heuristic which perma-
nently sets one variable in each step as follows: if there are
any unit clauses, satisfy them; otherwise, pick a random lit-
eral and satisfy it. For random 3-SAT formulas, UC succeeds
with constant probability for r < 8/3, and fails with high
probability for r > 8/3 (Chao & Franco 1986). UC can be
thought as the first branch of a simple DPLL algorithm S,
whose splitting rule takes a random unset variable and tries
its truth values in random order; thus UC succeeds if S suc-
ceeds without backtracking. On the other hand, (Cocco &
Monasson 2004; Cocco et al. 2005) showed that S’s ex-
pected running time is exponential in n for any r > 8/3; see
also (Achlioptas, Beame, & Molloy 2001), who used lower
bounds on resolution complexity to show that S takes expo-
nential time with high probability if r > 3.81. In general,
it appears that simple DPLL algorithms begin to take expo-
nential time at exactly the density where the corresponding
linear-time heuristic fails.

In this section, we analyze the performance of UC on our
q-hidden formulas. Specifically, we show that in the bal-
anced case where q = q∗, UC fails for r > 8/3 just as it

does for 0-hidden formulas. Based on this, we conjecture
that the running time of S, and other simple DPLL algo-
rithms, is exponentially large for our formulas at the same
density as for 0-hidden ones.

As in (Achlioptas, Jia, & Moore 2004), we analyze the
behavior of UC on arbitrary initial distributions of 3-SAT
clauses using the method of differential equations. For sim-
plicity we assume that A is the all-true assignment. A round
of UC consists of a “free step,” in which we satisfy a random
literal, and the ensuing chain of unit-clause propagations.
For 0 ≤ i ≤ 3 and 0 ≤ j ≤ i, let Si,j = si,jn be the num-
ber of clauses of length i with j positive literals and i − j
negative ones, and let si =

∑

j si,j . Let X = xn be the
number of variables set so far, and let mT and mF be the
expected number of variables set true and false in a round.
Then we can model the discrete stochastic process of the Si,j

with the following differential equations for the si,j :

ds3,j

dx
= − 3s3,j

1 − x
(1)

ds2,j

dx
= − 2s2,j

1 − x
+

mF (j + 1)s3,j+1 + mT (3 − j)s3,j

(mT + mF )(1 − x)

The unit clauses are governed by a two-type branching pro-
cess, with transition matrix

M =
1

1 − x

(

s2,1 2s2,0

2s2,2 s2,1

)

.

As in (Achlioptas & Moore 2002a), as long as the largest
eigenvalue of M is less than 1, the branching process is sub-
critical, and summing over the round gives

(

mF

mT

)

= (I − M)
−1 ·

(

1/2
1/2

)

.

We then solve the equation (1) with the initial conditions
s3,0 = 0 and

s3,j =

(

3

j

)

qj

(1 + q)3 − 1

for 0 < j ≤ 3. In the balanced case q = q∗, we find that
UC succeeds on q-hidden formulas with constant probability
if and only if r < 8/3, just as for 0-hidden formulas. The
reason is that, as for 2-hidden formulas, the expected number
of positive and negative literals are the same throughout the
process. This symmetry causes UC to behave just as it would
on random 3-SAT formulas without a hidden assignment.

We note that for q < q∗, UC succeeds at slightly higher
densities, at which it can find one of the “alternate” solutions
with α < 1/2. At higher densities where these alternate so-
lutions disappear, our experimental results below show that
these “deceptive” formulas take DPLL algorithms exponen-
tial time, and for r > rc(q) they are harder than 0-hidden
formulas of the same density.

Experimental results
DPLL
In this section we discuss the behavior of DPLL solvers on
our q-hidden formulas. We focus on zChaff (Zhang ); the

AAAI-05 / 386



4 4.5 5 5.5 6 6.5 7 7.5 8
10

1

10
2

10
3

10
4

10
5

zChaff performance with n=200
M

ed
ia

n 
nu

m
be

r 
of

 D
ec

is
io

ns
 o

ve
r 

49
 tr

ia
ls

r

q=0.2
q=0.3
q=0.4
q=0.5
q=0.618
1−hidden
2−hidden
0−hidden

50 100 150 200 250 300
10

1

10
2

10
3

10
4

10
5

10
6

zChaff performance with r=5.5

N

M
ed

ia
n 

nu
m

be
r 

of
 D

ec
is

io
ns

 o
ve

r 
49

 tr
ia

ls q=0.3
0−hidden
 q=0.618
 2−hidden
1−hidden

Figure 2: The upper part of the figure shows zChaff’s me-
dian running time over 49 trials on 0-hidden, 1-hidden, 2-
hidden and q-hidden formulas with n = 200 and r ranging
from 4.0 to 8.0. The lower part shows the median running
time with r = 5.5 and n ranging from 50 to 300.

behavior of OKsolver (Kullmann 2002) is similar. Fig-
ure 2 shows zChaff’s running time on 0-hidden, 1-hidden,
2-hidden, and q-hidden formulas for various values of q.

Balanced formulas, i.e. with q = q∗ = 0.618..., appear
to be about as hard as 0-hidden ones, and peak in complex-
ity near the satisfiability threshold. This is consistent with
the picture given in the previous two sections: namely, that
these “balanced” formulas make it impossible for algorithms
to feel the attraction of the hidden assignment. In contrast,
naive 1-hidden formulas are far easier, since the attraction to
the hidden assignment is strong.

Deceptive formulas, i.e. with q < q∗, appear to have two
phases. At low density they are relatively easy, and their
hardness peaks at a density rc(q). Above rc(q) they take
exponential time; as for 0-hidden formulas, as r increases
further the coefficient of the exponential decreases as the
clauses generate contradictions more quickly.

We believe that this peak rc(q) is the same threshold den-
sity defined earlier (see Figure 4 below) above which the
only solutions are those close to the hidden assignment. The
situation seems to be the following: below rc(q), there are
“alternate” solutions with α < 1/2, and zChaff is led to
these by its splitting rule. Above rc(q), these alternate solu-
tions disappear, and zChaff takes exponential time to find
the vicinity of the hidden assignment, since the formula de-
ceptively points in the other direction. Moreover, for a fixed
r above rc(q) these formulas become harder as q decreases
and they become more deceptive.

To illustrate this further, the lower part of Figure 2 shows
zChaff’s median running time on 0-hidden formulas, 1-
hidden formulas, 2-hidden formulas, and q-hidden formulas
for q = q∗ (balanced) and q = 0.3 (deceptive). We fix
r = 5.5, which appears to be above rc(q) for both these
values of q. At this density, the 0-hidden, 2-hidden, and
balanced q-hidden formulas are all comparable in difficulty,
while 1-hidden formulas are much easier and the deceptive
formulas appear to be somewhat harder.

SP

Survey Propagation or SP (Mézard & Zecchina 2002) is
a recently introduced incomplete solver based on insights
from the replica method of statistical physics and a general-
ization of belief propagation. We tested SP on 0-hidden for-
mulas and q-hidden formulas for different values of q, using
n = 104 and varying r. For 0-hidden formulas, SP succeeds
up to r = 4.25, quite close to the satisfiability threshold.
For q-hidden formulas with q = q∗, SP fails at 4.25 just as it
does for 0-hidden formulas, suggesting that it finds these for-
mulas exactly as hard as 0-hidden ones even though they are
guaranteed to be satisfiable. For naive 1-hidden formulas,
SP succeeds at a significantly higher density, up to r = 5.6.

Presumably the naive 1-hidden formulas are easier for SP
since the “messages” from clauses to variables, like the ma-
jority heuristic, tend to push the algorithm towards the hid-
den assignment. In the balanced case q = q∗, this attrac-
tion is successfully suppressed, causing SP to fail at essen-
tially the same density as for 0-hidden formulas, close to the
satisfiability threshold, even though our q-hidden formulas
continue to be satisfiable at all densities. In contrast, the
2-hidden formulas of (Achlioptas, Jia, & Moore 2004) are
solved by SP up to a somewhat higher density r ≈ 4.8. Thus
it seems that the reweighting approach of q-hidden formulas
does a better job of confusing SP than hiding two comple-
mentary assignments does.

For q < q∗, SP succeeds up to somewhat higher densities,
each of which matches quite closely the value rc(q) at which
zChaff’s running time peaks (see Figure 4 below). Build-
ing on our conjecture that this is the density above which the
only solutions are those close to the hidden assignment, we
guess that SP succeeds for r < rc(q) precisely because the
local gradient in the density of solutions pushes it towards
the “alternate” solutions with α < 1/2. Above rc(q), these
solutions no longer exist, and SP fails because the clauses
send deceptive messages, demanding that variables be set
opposite to the hidden assignment.

AAAI-05 / 387



WalkSAT

We conclude with a local search algorithm, WalkSAT. For
each formula, we did up to 104 restarts, with 104 steps per
attempt, where each step does a random or greedy flip with
equal probability. In the upper part of Figure 3 we mea-
sure WalkSAT’s performance on 1-hidden, 2-hidden, and q-
hidden formulas with various values of q. We use n = 200
and r range from 4 to 8. Even for these relatively small for-
mulas, we see that for the three most deceptive values of q,
there is a density at which the median running time jumps
to 108 flips. For instance, q-hidden formulas with q = 0.4
appear to be unfeasible for WalkSAT for, say, r > 5.

We believe that, consistent with the discussion above, lo-
cal search algorithms like WalkSAT greedily follow the
gradient in the density of solutions f(α). For q < q∗,
this gradient is deceptive, and lures WalkSAT away from
the hidden assignment. At densities below rc(q), there are
many alternate solutions with α < 1/2 and WalkSAT finds
one of them very easily; but for densities above rc(q), the
only solutions are those near the hidden assignment, and
WalkSAT’s greed causes it to wander for an exponentially
long time in the wrong region. This picture is supported by
the fact that, as Figure 4 shows below, the density at which
WalkSAT’s running time jumps upward closely matches the
thresholds rc(q) that we observed for zChaff and SP.

The lower part of Figure 3 looks at WalkSAT’s median
running time at a fixed density as a function of n. We com-
pare 1-hidden and 2-hidden formulas with q-hidden ones
with q = q∗ and two deceptive values, 0.5 and 0.3. We
choose r = 5.5, which is above rc(q) for all three val-
ues of q. The running time of 1-hidden and 2-hidden for-
mulas is only polynomial (Achlioptas, Jia, & Moore 2004;
Barthel et al. 2002). In contrast, even in the balanced case
q = q∗, the running time is exponential, and the slope of
this exponential increases dramatically as we decrease q and
make the formulas more deceptive. We note that it might
be possible to develop a heuristic analysis of WalkSAT’s
running time in the deceptive case using the methods of (Se-
merjian & Monasson 2003; Cocco et al. 2005).

The threshold density
As we have seen, there appears to be a characteristic density
rc(q) for each value of q ≤ q∗ at which the running time of
DPLL algorithms like zChaff peaks, at which WalkSAT’s
running time becomes exponential, and at which SP ceases
to work. We conjecture that in all three cases, the key phe-
nomenon at this density is that the solutions with α < 1/2
disappear, leaving only those close to the hidden assign-
ment. Figure 4 shows our measured values of rc(q), and
indeed they are quite close for the three algorithms. We also
show the analytic upper bound on rc(q) resulting from set-
ting max{f(α) | α ≤ 1/2} = 1, above which the expected
number of solutions with α ≤ 1/2 is exponentially small.

Conclusions
We have introduced a simple new way to hide solutions in
3-SAT problems that produces instances that are both hard

4 4.5 5 5.5 6 6.5 7 7.5 8
10

2

10
3

10
4

10
5

10
6

10
7

10
8

WalkSAT performance with n=200

r

M
ed

ia
n 

nu
m

be
r 

of
 fl

ip
s 

ov
er

 4
9 

tr
ia

ls

q=0.2
q=0.3
q=0.4
q=0.5
q=0.618
1−hidden
2−hidden

50 100 150 200 250 300 350 400 450 500 550 600
10

2

10
3

10
4

10
5

10
6

10
7

10
8

WalkSAT performance with r=5.5

M
ed

ia
n 

nu
m

be
r 

of
 fl

ip
s 

ov
er

 4
9 

tr
ia

ls

q=0.3
q=0.5
q=0.618
2−hidden
1−hidden

N

Figure 3: The upper part shows WalkSAT’s median running
time over 49 trials with n = 200 and r ranging from 4 to 8;
the lower part shows the median running time with r = 5.5
and n ranging from 50 to 600.

and satisfiable. Unlike the 2-hidden formulas of (Achliop-
tas, Jia, & Moore 2004) where the attraction of the hidden
assignment is cancelled by also hiding its complement, here
we eliminate this attraction by reweighting the distribution
of clauses as in (Achlioptas & Peres 2003). Indeed, by go-
ing beyond the value of the parameter q that makes our q-
hidden formulas balanced, we can create deceptive formulas
that lead algorithms in the wrong direction. Experimentally,
our formulas are as hard or harder for DPLL algorithms as 0-
hidden formulas, i.e., random 3-SAT formulas without a hid-
den assignment; for local search algorithms like WalkSAT,
they are much harder than 0-hidden or 2-hidden formulas,
taking exponential rather than polynomial time. Our formu-
las are also amenable to all the mathematical tools developed
for the study of random 3-SAT; here we have calculated their
expected density of solutions as a function of distance from
the hidden assignment, and used the method of differential
equations to show that UC fails for them at the same density

AAAI-05 / 388



0.2 0.3 0.4 0.5 0.6
4

5

6

7

8

9

10

11

12

r c(q
)

q

Upper bound
zChaff
SP
WalkSAT

Figure 4: The density rc(q) at which the running time of
zChaff peaks, WalkSAT peaks or exceeds 108 flips, and
SP stops working. We conjecture all of these events occur
because at this density the alternate solutions with α < 1/2
disappear, leaving only those close to the hidden assignment.
Shown also is the analytic upper bound described in the text.

as it does for 0-hidden formulas.
We close with several exciting directions for future work:

1. Confirm that there is a single threshold density rc(q) at
which a) the alternate solutions far from the hidden as-
signment disappear, b) the running time of DPLL algo-
rithms is maximized, c) SP stops working, and d) the run-
ning time of WalkSAT becomes exponential;

2. Prove that simple DPLL algorithms take exponential time
for r > rc(q), in expectation or with high probability;

3. Calculate the variance of the number of solutions as a
function of α, and giving improved upper and lower
bounds on the distribution of solutions and rc(q).

Acknowledgments
H.J. is supported by an NSF Graduate Fellowship. C.M.
and D.S. are supported by NSF grants CCR-0220070, EIA-
0218563, and PHY-0200909. C.M. thanks Tracy Conrad
and Rosemary Moore for their support.

References
Achlioptas, D., and Moore, C. 2002a. Almost all graphs
with average degree 4 are 3-colorable. STOC 199–208.
Achlioptas, D., and Moore, C. 2002b. The asymptotic
order of the random k-SAT threshold. FOCS 779–788.
Achlioptas, D., and Peres, Y. 2003. The threshold for ran-
dom k-SAT is 2k(ln 2− o(k)). STOC 223–231.
Achlioptas, D.; Beame, P.; and Molloy, M. 2001. A sharp
threshold in proof complexity. STOC 337–346.
Achlioptas, D.; Gomes, C.; Kautz, H.; and Selman, B.
2000. Generating satisfiable problem instances. AAAI 256
– 261.

Achlioptas, D.; Jia, H.; and Moore, C. 2004. Hiding satis-
fying assignments: two are better than one. AAAI 131–136.
Asahiro, Y.; Iwama, K.; and Miyano, E. 1996. Random
generation of test instances with controlled attributes. DI-
MACS Series in Disc. Math. and Theor. Comp. Sci. 26.
Barthel, W.; Hartmann, A.; Leone, M.; Ricci-Tersenghi,
F.; Weigt, M.; and Zecchina, R. 2002. Hiding solutions
in random satisfiability problems: A statistical mechanics
approach. Phys. Rev. Lett. 88(188701).
Chao, M., and Franco, J. 1986. Probabilistic analysis of
two heuristics for the 3-satisfiability problem. SIAM J.
Comput. 15(4):1106–1118.
Cheeseman, P.; Kanefsky, R.; and Taylor, W. 1991. Where
the really hard problems are. IJCAI 163–169.
Cocco, S., and Monasson, R. 2004. Heuristic average-
case analysis of the backtrack resolution of random 3-
satisfiability instances. Theor. Comp. Sci. 320:345–372.
Cocco, S.; Monasson, R.; Montanari, A.; and Semerjian,
G. 2005. Approximate analysis of search algorithms
with “physical” methods. In Percus, A.; Istrate, G.; and
Moore, C., eds., Computational Complexity and Statistical
Physics. Oxford University Press.
Hogg, T.; Huberman, B.; and Williams, C. 1996. Phase
transitions and complexity. Artificial Intelligence 81.
Johnson, D.; Aragon, C.; McGeoch, L.; and Shevon, C.
1989. Optimization by simulated annealing: an experimen-
tal evaluation. Operations Research 37(6):865–892.
Kautz, H.; Ruan, Y.; Achlioptas, D.; Gomes, C.; Selman,
B.; and Stickel, . 2001. Balance and filtering in structured
satisfiable problems. IJCAI 351–358.
Kullmann, O. 2002. Investigating the behaviour of a SAT
solver on random formulas. Technical Report CSR 23-
2002, University of Wales Swansea.
Mézard, M., and Zecchina, R. 2002. Random k-
satisfiability: from an analytic solution to a new efficient
algorithm. Phys. Rev. E 66:056126.
Mitchell, D.; Selman, B.; and Levesque, H. 1992. Hard
and easy distributions of SAT problems. AAAI 459–465.
Morris, P. 1993. The breakout method for escaping from
local minima. AAAI 40–45.
Selman, B.; Kautz, H.; and Cohen, B. 1996. Local search
strategies for satisfiability testing. 2nd DIMACS Challange
on Cliques, Coloring, and Satisfiability.
Semerjian, G., and Monasson, R. 2003. A study of pure
random walk on random satisfiability problems with “phys-
ical” methods. LNCS 2919:120–134.
Shaw, P.; Stergiou, K.; and Walsh, T. 1998. Arc con-
sistency and quasigroup completion. ECAI workshop on
non-binary constraints.
Van Gelder, A. 1993. Problem generator mkcnf.c. DI-
MACS challenge archive.
Zhang, L. zChaff. ee.princeton.edu/˜chaff/zchaff.php.

AAAI-05 / 389


