A Framework for Representing and Solving NP Search Problems

David G. Mitchell and Eugenia Ternovska

Simon Fraser University
{mitchell,ter} @cs.sfu.ca

Abstract

NP search and decision problems occur widely in Al and a
number of general-purpose methods for solving them have
been developed. The dominant approaches include propo-
sitional satisfiability (SAT), constraint satisfaction problems
(CSP), and answer set programming (ASP). Here, we propose
a declarative constraint programming framework which we
believe combines many strengths of these approaches, while
addressing weaknesses in each of them. We formalize our ap-
proach as a model extension problem, which is based on the
classical notion of extension of a structure by new relations.
A parameterized version of this problem captures NP. We dis-
cuss properties of the formal framework intended to support
effective modelling, and prospects for effective solver design.

Introduction

Applications which require solving NP-complete problems
or their associated search problems abound in Al and other
fields. Progress in these areas is often limited by the in-
ability to solve sufficiently large instances within practical
time bounds. Propositional satisfiability (SAT), finite do-
main constraint satisfaction (CSP), and answer set program-
ming (ASP) are arguably the most prominent declarative
programming approaches to solving such problems. These
may be seen as part of a larger program to develop a col-
lection of widely applicable — and widely applied — prac-
tical tools and techniques for solving NP search problems,
supported with mature mathematical foundations and theo-
retical tools, much as mathematical programming has done
for a range of optimization problems. While SAT, CSP and
ASP have made valuable contributions, they each have many
limitations. Here we present a formal framework for repre-
senting and solving problems which we believe addresses at
least some of these limitations.

Effectiveness of the declarative approach has perhaps
been demonstrated most clearly by SAT. Current SAT
solvers exhibit impressive performance on many industrial
instances and, for example, have become a widely used tool
for hardware verification. This success has been facilitated
by the fact that SAT has very simple syntax and semantics.
Unfortunately, SAT provides a poor modelling language and

Copyright (© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

substantial effort may be required to find good encodings for
some problems.

CSP provides somewhat better modelling capabilities.
The area has also provided a number of useful techniques.
For example, nogood learning and backjumping methods
developed in the CSP context are central to modern SAT
solvers (Mitchell 2005). Solvers for CSP, however, have
found success primarily as components in constraint logic
programming (CLP) tools. These provide rich problem solv-
ing environments, but are really general purpose program-
ming languages and thus neither purely declarative nor tai-
lored to problems of moderate (in)tractability.

ASP is the only area of these three that took modelling
methodology seriously from the outset. ASP input lan-
guages provide essentially all the modelling facilities CSP
does, within a purely declarative framework. A built-in
recursion mechanism provides additional modelling conve-
nience, particularly useful when encoding problems involv-
ing sequences of events, such as in verification and planning
problems. ASP solvers are quite effective, and in particular
may out-perform pure SAT-based methods when recursion
is used in models. However, the recursion mechanism is
provided by the combination of logic programming syntax
and stable-model semantics (Marek & Truszczynski 1999;
Niemela 1999), which is a burden as well as a blessing.
Adapting results and techniques from other areas of logic
may be challenging or impossible, and extending the formal
foundation to richer languages can be challenging. More-
over, the semantics and the resulting style of expressing
some properties are not entirely intuitive, and the prospects
for ASP being widely adopted in industry seem poor.

Modelling Languages

One goal for our framework is to provide a foundation upon
which practical modelling languages can be built. Such a
language should at the least combine all the strengths of
SAT, CSP and ASP, and hopefully provide many additional
benefits. Since this is a paper about the formal foundation,
we will speak primarily about facilities we want in this foun-
dation to support practical modelling.

First and foremost, we believe that declarative modelling
languages should be based, to the greatest extent possi-
ble, on classical logic. This choice permits taking advan-
tage of the properties of classical logic, and in particular fi-

AAAI-05/430

nite model theory, for example in identifying tractable frag-
ments, proving correctness of axiomatizations, etc. More-
over, the combination of rich expressive features and clean
semantics should facilitate producing syntactic variants, for
use in industry, which have these same properties.

Second, on our observations of, for example, logics for
knowledge representation and formal verification, database
query languages, and current directions in SAT constraint
programming research, indicate that certain facilities are
crucial in practice. These include:

e quantification,

e an easy way to express reachability, thus recursion, includ-
ing recursion combined with negation,

e inclusion of a variety of pre-defined (interpreted) con-
straint symbols, such as cardinality and other aggregate con-
straints, as well as some arithmetic,

e clear separation of the descriptions of problems and in-
stances.

In addition, effective modelling requires modularity, which
comes naturally with classical logic, but is non-trivial when
recursion through negation is present.

A further goal for our framework, beyond these criteria,
was to provide the most general possible formal foundation,
while capturing exactly the complexity class of interest and
remaining close to classical logic. To satisfy these criteria
and goals, we propose a framework based on classical first-
order logic (FO), formulated in such a way as to capture ex-
actly the problems in NP, even while permitting unrestricted
use of quantifiers, function symbols, and equality. To easily
express recursion, we use an extension of first-order logic
with inductive definitions, FO(ID).

For many industrial practitioners, classical logic may not
be an acceptable modelling language, so languages to be
used in industry will likely be syntactic variants of FO(ID).
This would be analogous to database practice, where most
users of the query language SQL are unaware that it is a
syntactic variant of (a slight extension of) FO.

Preliminaries

A vocabulary is a set 7 of relation and function symbols,
each with an associated arity. Constant symbols are zero-
ary function symbols. A structure A for vocabulary 7 (or, 7-
structure) is a tuple containing a universe | A|, and a relation
(function) for each relation (function) symbol of 7. For rela-
tion symbol R of vocabulary 7, the relation corresponding to
Rin a 7-structure A is denoted R“. The size of a structure A
is the number of elements in its universe, denoted || A||. We
will also have need to consider total size of an explicit rep-
resentation of a structure A, which we denote size(A). For
a formula ¢, we write vocab(¢) for the collection of exactly
those function and relation symbols which occur in ¢. We
reserve the symbol o for the vocabulary of instance descrip-
tions. To simplify presentation, we give our definitions and
proofs for the case without function symbols, but all given
results hold in their presence as well. For precise definitions
and other results from finite model theory which we use but
do not prove, we refer the reader to (Libkin 2004)

Model Extension

In the framework, we cast computational problems as the
logical task of model extension, MX.

Definition: The problem MX is: Given a formula ¢ with vo-
cabulary vocab(¢), and a finite structure A; for vocabulary
o C vocab(p), is there a structure A which is an extension
of Ay to vocab(¢), and such that A = ¢.

The idea is that the finite structure is an object of interest,
such as a graph, and the formula specifies a question about
the object, such as whether it is Hamiltonian or not, in such
a way that the extension relations witness the property.

Example 1. Let the input structure be a graph, G = (V; E),
(i.e., E is binary, symmetric and irreflexive), and ¢ be:

VaVy [(Cligue(x) A Clique(y)) D (x =y V E(x,y))]

Let A be a structure which is an extension of G to the
vocabulary of . Then A |= ¢ iff Clique is a set of vertices
which form a clique in G.

Example 2. Consider the vocabulary {Cell}, which we will
use to specify the elements in a square matrix a, where
Cell(r, ¢, i) will mean that element a, . is i. Let ¢ be:

Vrvi 3e Cell(r,e,i) A YeVi Ir Cell(r, ¢, i)
AVIrYeVivj [(Cell(r,c,i) A Cell(r,c,j)) Di=j]
AVIrYeVi(GivenCell(r, ¢,i) D Cell(r, ¢, 1))

In any structure A satisfying ¢, the extension of relation
Cell lists the entries in a Latin Square of size || A|| x ||A]|.
If Ay is just a universe of size n, then the model extension
problem is that of finding an n X n Latin Square. If A
also specifies the relation GivenClell, then we have the NP-
complete Quasigroup Completion Problem.

Relation symbols which are not interpreted by the in-
stance structure behave as existentially quantified second or-
der variables, so in the case of FO ¢, we have the same
power as existential second order logic (3SO) over finite
structures. Note that the set inclusion in ¢ C wvocab(¢)
in the formalization of the model extension problem must
be proper. If o = vocab(¢), we have model checking, not
model extension.

There is a very close connection between model extension
and the spectrum problem. The spectrum of a sentence ¢ is
the set {n € N | ¢ has a finite model of size n}. If ¢ =
and vocab(¢) = {Ry,..., Ry}, the spectrum of ¢ can be
alternatively viewed as finite models (of the empty vocabu-
lary) of the 3SO sentence Ry, ..., 3R, ¢, by associating
a universe of size n with n. Thus, if ¢ = (), model extension
coincides with the spectrum problem.

The complexity of model extension lies between satisfi-
ability and model checking. FO satisfiability is undecid-
able, FO model extension is NEXPTIME-complete, and
FO model checking is PSPACE-complete. Model extension
avoids undecidability of FO by specifying the finite universe
as part of the instance.

Theorem 1. The first-order model extension problem is
NEXPTIME-complete.

AAAI-05/431

The proof is a straightforward reduction from Bernays-
Schoenfinkel satisfiability or from combined complexity of
3SO over finite structures, and is given in the Appendix.
(The case of Theorem 1 with ¢ = 0 is equivalent to the
result from (Jones & Selman 1974) that a set X C Nis a FO
spectrum iff it is in NEXPTIME.)

Capturing NP
To capture NP, we define a parameterized version.

Definition: Fix an unrestricted FO formula ¢ and a vocabu-
lary o C vocab(¢). The problem MX(o, ¢) is: Given a finite
structure Aj for vocabulary o, is there an extension A of A;
to vocab(¢) such that A |= ¢.

The intuition, and intended methodology, is that ¢ represents
the problem, and a structure A; for vocabulary o represents
a particular instance. As a decision problem, we are inter-
ested in the existence of an extension of A that satisfies ¢,
while the search problem is that of finding such an extension.
It is easy to see that for some choices of ¢ and o, MX(¢,0)
is NP-complete.

Example 3. Let 0 be {E}, so the input structure is a
graph Ay = G = (V; E), and the vocabulary of ¢ be
{E,R,B,G}. An an extension of Aj to this vocabulary
gives a 3-colouring of the graph, with colours R,B and G.
To require the colouring be total and proper, let ¢ be:

Vz[(R(z) V B(z) V G(z)) A =(R(x) A B(z))
A=(R(z) A G(x)) A =(B(z) A G(2))]

N\ VavylE(z,y) O (=(R(z) A R(y))
A=(B(z) A B(y)) A=(G(x) AG(y))]

MX(¢,0) is equivalent to graph 3-colourability: The exten-
sions to Ay that satisfy ¢, if there are any, correspond ex-
actly to the proper 3-colourings of G. A slightly more com-
plicated formula can express K -colourability, with an addi-
tional input relation to specify K.

This example shows that every problem in NP can be re-
duced in polytime to a model extension problem MX(¢,0).
Next we show the much stronger property that the prob-
lems in NP are exactly those that are equivalent to a problem
MX(¢p,0), for some choice of ¢ and o.

Definition: We say a class of finite o-structures K is ex-
pressed by MX(o, ¢) iff for any o-structure A;, A; € K iff
there is an extension A of Ay such that A |= ¢.

We assume standard encodings of languages by classes of
structures, and vice versa (see, e.g. (Libkin 2004)).

Theorem 2. Let o be a vocabulary, K a class of finite o-
structures. Then K is in NP iff for some FO formula ¢, K is
expressed by MX(o, ¢).

Proof. <) Suppose that K is expressed by (¢, o). Then
A; € K iff some extension A of Aj to vocab(¢) satisfies ¢.
A is a suitable certificate for Ay, since its size is polynomial
in the size of A, and A = ¢ can be checked in time poly-
nomial in the size of A. To see this, first notice that the sum
of all arities of relations in A is at most |¢|, so size(A) can
be at most |A[l?l = |A;|!¢l < size(A;)?. Since ¢ is fixed,

this is polynomial size(Aj). There is an algorithm which
checks if A |= ¢ in time O(|p| 4 size(A)!?), which is also
polynomial in size(Ay).

=) Suppose K € N P. We need to find ¢ and o such that
(¢, o) expresses K. By Fagin’s theorem (Fagin 1974) there
is an 3SO ¢ such that A € K iff A |= ¢, where 1 is of the

form 3P, and ¢ is FO. Let o = vocab(¢) — {P}. We have
that for any o-structure A;, Ay e K < A Ev & A E

3P¢ < A |= ¢, where A is the extension of A; to vocab(¢)

by the relations pPA witnessing the existential second order
quantifier. Thus (¢, o) expresses K. O

Some lower complexity classes can be captured simi-
larly, applying results for various fragments of 3SO (Graedel
1992). For example, FO universal Horn MX (o, ¢) expresses
P over ordered structures. The 27 levels of the Polynomial
Hierarchy PH are captured by I}, MX(o,¢). Note that
model extension does not naturally capture II} levels, and
this is not just happenstance: If there are some ¢ and ¢ so
that MX(o, ¢) is 1T}, -complete, then PH collapses to the k-th
level. In particular, if there are o and ¢ such that MX(o, ¢)
is co-NP-complete, then NP=co-NP.

Inductive Definitions

Formally, FO model extension has the same expressive
power as 3SO, so expresses all problems in NP. However,
some properties that are important for modelling applica-
tions are not easy to express in this logic. The reader who
thinks otherwise is invited to express transitive closure as
FO model extension. That is, write a FO formula ¢ with vo-
cabulary {E, TC}, such that, given graph G = (V; E), in
any structure A which extends G and satisfies ¢, T' C4 is the
transitive closure of GG. (The related task of expressing in a
formula that one vertex is reachable from another is easy, but
does not do the job.) Our solution to this problem is to ex-
tend FO with inductive definitions. We shall see that such an
extension makes expressing properties like transitive closure
natural and trivial.

Inductive definitions are common in mathematics. For ex-
ample, in logic the set of well-formed formula and the sat-
isfaction relation |= are defined inductively. Inductive def-
initions can be monotone (i.e., formulas) or non-monotone
(i.e., =). Both monotone and non-monotone induction are
formalized in a natural way in the logic for non-monotone
inductive definitions (ID-logic), which is an extension of
classical logic (see (Denecker 2000; Denecker & Ternovska
2004b)). Inductive definition are useful in common-sense
reasoning, as well as mathematics. For instance, it was
shown (Denecker & Ternovska 2004a) that the situation
calculus can be formalized in a natural way as an (non-
monotone) iterated inductive definition in the well-ordered
set of situations. In general, inductive definitions are an im-
portant form of human knowledge, and ID-logic is a good
candidate for a modelling language.

A definition A is a set of rules of the form V & (X (') «
), where 7 is a tuple of variables, X is a relation symbol
of some arity r, ¢ is a tuple of terms of length 7 and ¢ is an
arbitrary first-order formula. The connective « is called the

AAAI-05/432

definitional implication, and is distinct from material impli-
cation, for which we use D. A rule VZ (X () + ¢) in a defi-
nition does not correspond to the disjunction VZ(X (£) V =)
although it implies it. Intuitively, definitional implication
should be understood as the “if”” found in rules in (informal)
inductive definitions, such as “—¢ is a formula if ¢ is”. In
the rule VZ (X (£) < ¢), X (#) is called the head and ¢ is the
body. A defined symbol of A is a relation symbol that occurs
in the head of a rule of A; other relation symbols are called
open. FO(ID) formulas are defined to be boolean combi-
nations of definitions and FO formulas. The semantics of
ID-logic extends the classical FO semantics with the well-
founded semantics of logic programming (Van Gelder 1993;
Fitting 2003; Denecker, Bruynooghe, & Marek 2001). For
precise details see (Denecker & Ternovska 2004b). For
an intuitive explanation of the well-founded semantics and
why it formalises different forms of inductive definitions see
(Denecker, Bruynooghe, & Marek 2001). Modularity con-
ditions for ID-logic have been given in (Denecker & Ter-
novska 2004b).

Example 4. We represent the problem of finding the transi-
tive closure of a graph as a model extension problem. The
input vocabulary o consists of a single symbol E, which rep-
resents the binary edge relation. The universe of the input
structure Ay is the set of verticies V. The formula consists
of a definition with two rules, defining the relation T'C.

VaVy [TC(z,y) « E(z,y)],
VaVy [TC(z,y) — 3z (E(z,2) ATC(2,y))]
The rules state that the transitive closure of the set E of
edges is the least relation containing all edges and closed
under reachability.

Example 5. The model of a definite logic program (i.e., one
without negation) is the minimal model of the corresponding
set of Horn clauses. In this example, we represent the task of
computing the least model of a definite program as a task of
model extension. Our input structure will represent the rules
of the program using two relations, one which identifies the
head atoms of rules and one which identifies body atoms. In
the vocabulary for this structure, we have:

e H(r, h) denotes that h is the head atom of rule r,
e B(r, a) denotes that atom a occurs in the body of r,

The extension vocabulary is the symbol M. The formula
@, represented by an inductive definition below, states the
relationship between the rules of the program and the set of
atoms M in essence, it gives a declarative specification of
the semantics of definite programs:

{ Va [M(a) «— 3r (H(r,a) }
A (—=3b B(r,b) V Vb(B(r,b) D M(b))))]

The formula says that an atom a is in the model if there is a
rule with a in the head, and where the body is either empty
or consists of atoms already in the model. In any extension
of Ay that satisfies ¢, M will list the atoms of the program
in the unique minimal model of the program.

Extending FO with inductive definitions in this way
makes many properties easier to express, but the expressive
power of model extension is unchanged.

Theorem 3. Let o be a vocabulary, K a class of finite o-
structures. Then K is in NP iff for some FO(ID) formula ¢,
K is expressed by MX (o, ¢).

Proof. Clearly, any problem in NP can be expressed as
FO(ID) MX(o,). Membership is shown by replacing FO
with FO(ID) in the proof of Theorem 2, and adding the ob-
servation that model checking for FO(ID) is of the same
complexity as for FO. O

This might seem surprising at first. The reason no power
is added is that, once relations have been chosen for the
open relation symbols in a definition, relations for the de-
fined symbols can be computed in polynomial time.

ASP, SAT and CSP as Model Extension

In this section, we encode SAT, ASP and CSP as parameter-
ized model extension MX(o, ¢).

ASP as Model Extension An answer set program P is a
set of function-free ground clauses in the syntax of logic pro-
gramming. The input structure will represent these rules us-
ing three relations. H(r, h) and B(r,a) are as in example
5, above. Neg(r,a) denotes that the occurrence of atom a
in the body of r is negated. The extension vocabulary is
{SM?}, and we will write our formula ¢ so that if A |= ¢,
then SM“ consists of the atoms which are in a stable model
of P. The formula ¢, which gives a declarative specification
of the stable model semantics, is:

Vr [-R(r) < Ja (B(r,a) A Neg(r,a) A SM(a))]

Va [SM(a) — 3r (R(r) A H(r,a)

A =3b B(r,b))],
Va [SM(a) «— 3r (R(r) A H(r,a)

AV (B(r,b) D Neg(r,b) Vv SM(b))]
The first conjunct is a formula which specifies the condi-
tions under which a rule is in the reduct of the program P
with respect to the model SM. The second conjunct is an
inductive definition which says the model SM must be the
least model of that reduct. The first rule in the definition
handles the case of rules with empty bodies. In the second
rule, which handles the general case, the disjunct Neg(r, b)
says that we ignore negated atoms, as they do not appear in
the reduct of P.

A

3-SAT as Model Extension For a given set of clauses
r = {Cy,...Cy}, the input structure A; has universe
{a,—~ala € atoms(T')} and relations Complements™! and
Clause. Let ¢ be

VavyVz (Clause(z, y, 2)

D True(x) V True(y) V True(z))
A VzVy (Complements(x,y)

D (True(z) = —True(y)))

A solution is the extension of the structure A; by the relation
True®’, which specifies which literals are mapped to true
by a satisfying assignment.

AAAI-05/433

It is interesting to observe what happens when we ground
such instances. Assume a 3-CNF formula ~ is represented as
just described. Applying the most straightforward ground-
ing procedure for ¢ given A; produces a propositional
formula ¢/, which contains a number of pairs of clauses
of the form (True(a) V True(—a)) and (—-True(a) V
—True(—a)). If these are deleted, and all remaining occur-
rences of literals of the form True(—a) replaced by literals
of the form —T'rue(a) (a process which can be carried out
efficiently as a restricted application of resolution), the re-
sulting formula is isomorphic to the original formula I'.

CSP as Model Extension A CSP Instance is usually de-
fined to be a tuple (X, D, C'), where X is a set of variables,
each of which ranges over the domain D(x), and C' is a set
C ={C1,...,Cp} of constraints. Each constraint is a pair
C; = (Si, R;), where S; = (z;1,...x;) is a tuple of vari-
ables, called the scope, and R; C D(x;1) X ... x D(z; 1)
is a relation of arity k, called the constraint relation. A
solution, if there is one, is function « such that for every
variable x, a(x) € D(z), and for each constraint C;,
<Oé($i,1), e Oé(l‘i7k)> € R;.

For brevity, we will assume that the domain of each vari-
able x is exactly the set of values which at least one con-
straint permits x to take. Our instance vocabulary o will
have two relation symbols, S for constraint scopes, and R
for constraint relations. S(c, k,) will denote that the k'"
variable in the scope of constraint ¢ is x. R(c,t, k,a) will
denote that the k*" element of the t*" tuple in the constraint
relation of constraint c is the value a. Given a o-structure
Ay, we want to find a mapping of variables to values that sat-
isfies the constraints. The vocabulary for ¢ is {S, R, C,V},
where C, which is for convenience only, will be the set of
constraint names and V' the value assignment. ¢ is:

Ve (C(e) = IyIzS(e, y, 2))
AVe |[C(e) D
WVEV2Va(S(c, k,x) ANV (x,a) D R(e, t, k, a))]

Discussion

Our framework is similar in several respects to ASP, in that
the underlying task in both cases is the extension of a par-
tial structure to a model. The most obvious difference is
that we use classical logic, which we consider to provide
many advantages. Another important difference is that in
our framework problem instances are given as a finite struc-
ture, whereas in ASP the instance is specified as a set of
ground atoms. In ASP, separation of problem and instance
descriptions are considered important (Marek & Truszczyn-
ski 1999), but maintained only at the level of convention.
Since formally the ground atoms describing the instance are
logic programming rules, the actual structure must be in-
ferred from them. This requires restricting interest to Her-
brand models, which in turn requires the language to be es-
sentially function-free to avoid undecidability. (Actual ASP
modelling languages do allow use of function symbols, but
this use must be carefully restricted.) In model extension,
the instance is defined to be a structure, and thus no such
mechanics are required to invoke closure on the universe.

The formal distinction between problem description and
instance description that we make has additional conse-
quences. One is that both modeler and solver can, when de-
sired, reason separately about the two descriptions. Another
is that the modelling language for instances can, if desired,
be different than the modelling language for problems. This
makes sense because the instance description must specify a
single finite structure, whereas the problem description must
specify an infinite set of structures. Moreover, in many ap-
plications the problem description may be formulated just
once, with great care, whereas many instance descriptions
may be formulated, perhaps by many users.

The idea of providing programming environments for
specifying exactly the problems in NP (or their search vari-
ants), is certainly not new. Some recent examples include the
proposal of Cadoli and Mancini (Cadoli & Mancini 2002),
who propose a constraint language based on 350, but syn-
tactically composed of extensions to SQL. ESRA (Flener,
Pearson, & Agren 2003) is similarly motivated, and conve-
niently represents many problems, but the authors explicitly
choose not to use recursion and negation, which we con-
sider essential. There are several modelling languages for
optimization problems, but these address a different need.
One example that is also often used for search problems is
OPL (Hentenryck 1999), but it aims at modelling generality,
rather than targeting just the problems in NP.

The proposal that is most like ours is that of East and
Truszczynski (East & Truszczynski 2004), which is an ASP-
style system based on classical logic. The input is a pair en-
coding the problem as a formula and the instance as a set of
ground atoms. The semantics is based on the set of Herbrand
Models which satisfy the closed world assumption. The syn-
tax is a restricted family of function-free FO formulas, but
extended with definite Horn clauses to provide inductive de-
finitions. Thus, in several respects it is more restricted than
our framework.

Solver Construction

There remains the crucial question of whether or not the ap-
proach can be made to work well in practice. To a large ex-
tent, this depends on being able to produce effective solvers.
An easy way to obtain a solver is to construct a translation
to another language for which solvers already exist. For ex-
ample, a translation of a restricted family of ID-Logic for-
mulas to ASP is given in (Marien, Gilis, & Denecker 2004).
Another approach, developed in our lab, is to construct a re-
duction to SAT and use SAT solvers. Such a reduction is de-
scribed in (Pelov & Ternovska 2005). A prototype solver has
also been constructed, for formulas specified in the language
of the ASP input processor LPARSE, and demonstrates fea-
sibility of the approach.

Native solvers for FO(ID) are now being developed in
more than one lab. The best reason to believe such solvers
can be effective is that they may be based on the same ap-
proach as ASP solvers, namely smart grounding followed by
application of an engine for the propositional case. These
propositional solvers may be based on the same technology
that makes the best current SAT solvers effective.

AAAI-05/ 434

Future Work

e Adding aggregates and interpreted functions relation sym-
bols to the formal foundation. Interpreted functions should
include some arithmetic. We believe this can be done based
largely on existing work in classical logic and database the-
ory. Some care is required, as adding arbitrary aggregates or
arithmetic would change the complexity.

e Development of practical modelling languages, based on
experiments and experience with solving a variety of appli-
cation problems.

e Theoretical work on tractable cases and on cases which
admit efficient grounding, especially cases which amount to
elimination of sub-problems during grounding.

o Further work on solver design and implementation.

Appendix

Proof (Theorem 1): Let n = |¢|+size(Ar) be the total size
of the input. To show membership in NEXPTIME, we must
show we can guess an extension structure A, and then check
that A = ¢ in TIME(2") for ¢ € N. The extension structure
A can have total size at most |A;|!¢l < n™ = O(2™°9"), so
we can guess this structure as required. There is an algo-
rithm that checks if A = ¢ in time O(|¢| + Size(A)*),
where k is the width of ¢. £k is certainly bounded by
|§|, so we can check this in time O(|¢| + Size(A)I?) =
O(n+(n™)") = O((2™e9m)") = 0(2”2109”). To show com-
pleteness, we reduce the NEXPTIME-complete problem
of Bernays-Schoenfinkel (B-S) satisfiability to FO model
extension. Formula v is a B-S formula if it is of the
form Jzq ... 3z, Vy1 ... Vymt)', where 1)’ is function-free,
quantifier-free FO. For the reduction, given B-S formula 1,
we construct in polynomial time a FO formula ¢ and a struc-
ture A so that v has a model iff some extension A of A is
a model of ¢. It is known that if 1) has a model, then it has
a model with universe size at most n. (Intuitively, we only
need one element in the universe to witness each existential
quantifier.) We take our structure A; to have a universe of
size n, in particular {1,...n}, and no relations. Unfortu-
nately, we don’t know the exact size of any model of . For
example, 1) may say “all my models are of size k", for some
k < n. So, we will make our formula do two jobs. The first
is to select a suitable sized subset of {1,...n} to simulate
the universe of a model of). The second is to verify that,
treating this subset as if it were the universe, the formula
is satisfied. Taking a disjunction over all possible universe
sizes from 1 to n, our formula ¢ is:

\/ (3% (B}EAYG (B D)]

1<i<n

where the formula B 7 says that each of the variables in Z
have a value from the set {1, ... k}. It is defined to be

/\ \/ zj =1

1<j<k1<I<i

The size of ¢ is O(]y|?). B

References

Cadoli, M., and Mancini, T. 2002. Combining Relational
Algebra, SQL, and constraint programming. In Proc.,
FroCos-02, 147-161.

Denecker, M., and Ternovska, E. 2004a. Inductive situation
calculus. In Proc., KR-04.

Denecker, M., and Ternovska, E. 2004b. A logic of non-
monotone inductive definitions and its modularity proper-
ties. In Proc., LPNMR-04.

Denecker, M.; Bruynooghe, M.; and Marek, V. 2001.
Logic programming revisited: Logic programs as inductive
definitions. ACM Transactions on Computational Logic
(TOCL) 4(2).

Denecker, M. 2000. Extending classical logic with induc-
tive definitions. In Proc. CL’2000.

East, D., and Truszczynski, M. 2004. Predicate-calculus
based logics for modeling and solving search problems.
ACM TOCL. To appear.

Fagin, R. 1974. Generalized first-order spectra and
polynomial-time recognizable sets. In Karp, R., ed., Com-
plexity and Computation,SIAM-AMS Proc., 7, 43-73.

Fitting, M. 2003. Fixpoint semantics for logic program-
ming - a survey. Theoretical Computer Science. To appear.

Flener, P.; Pearson, J.; and Agren, M. 2003. Introducing
ESRA, a relational language for modelling combinatorial
problems. In Proc., LOPSTR’03.

Graedel, E. 1992. Capturing complexity classes by frag-
ments of second order logic. Theoretical Computer Science
101:35-57.

Hentenryck, P. V. 1999. The OPL Optimization Program-
ming Language. MIT Press.

Jones, N., and Selman, A. 1974. Turing machines and the
spectra of first-order formulas. Journal of Symbolic Logic
39:139-150.

Libkin, L. 2004. Elements of Finite Model Theory.
Springer.

Marek, V. W., and Truszczynski, M. 1999. Stable logic pro-
gramming - an alternative logic programming paradigm.
Springer-Verlag. In: The Logic Programming Paradigm: A
25-Year Perspective, K.R. Apt, V.W. Marek, M. Truszczyn-
ski, D.S. Warren, Eds.

Marien, M.; Gilis, D.; and Denecker, M. 2004. On the
relation between ID-Logic and Answer Set Programming.
In Proc., 9th European Conference on Logics in Artificial
Intelligence, 108—120. Springer. LNCS Volume 3229.
Mitchell, D. 2005. A SAT solver primer. EATCS Bulletin
85:112-133. Columns: Logic in Computer Science.
Niemela, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence 25(3,4):241-273.
Pelov, N., and Ternovska, E. 2005. Reducing ID-Logic to
propositional satisfiability. Submitted.

Van Gelder, A. 1993. An alternating fixpoint of logic pro-
grams with negation. Journal of computer and system sci-
ences 47:185-221.

AAAI-05/435

