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Abstract

We present the results from experiments with a new family
of random formulas for the satisfiability problem. Our pro-
posal is a generalisation of the randomk-SAT model that
introduces non-clausal formulas and exhibits interesting fea-
tures such as experimentally observed sharp phase transition
and the easy-hard-easy pattern. The experimental results pro-
vide some insights on how the use of different clausal trans-
lations can affect the performance of satisfiability solving al-
gorithms. We also expect our model to provide diverse and
challenging benchmarks for developers of SAT procedures
for non-clausal formulas.

Introduction
The problem of propositional satisfiability (SAT), that is to
decide whether there is a satisfying truth assignment for a
given propositional formula, is very interesting both from
theoretical and practical viewpoints. As the prime NP-
complete problem it plays a fundamental role in complexity
and computation theory. The feasibility of many applica-
tions, especially in artificial intelligence, relies on theexis-
tence of efficient procedures for solving this problem.

Randomly generated formulas have often been used as
benchmarks to evaluate the performance of satisfiability
solving procedures. It is important, as already pointed out
(Mitchell, Selman, & Levesque 1992; Mitchell & Levesque
1996), to have a clear understanding of the properties of such
formulas and avoid incorrect conclusions from deceiving ex-
perimental results. An algorithm may quickly solve several
thousands of problems not because it is clever or effective
but, unfortunately, because of a poor sampling mechanism
that has a tendency to produce easy problems.

A model that has been recognised as being able to produce
challenging benchmarks for the satisfiability problem is ran-
domk-SAT. Formulas are produced by randomly selecting
clauses of lengthk built from a set with a given number of
variables. For one parameter of the model, namely the ratio
between the number of clauses and the number of variables,
an interesting pattern has been observed: the sets of gener-
ated formulas exhibit a sharp transition between almost all
being satisfiable to almost none. Moreover, problems gen-
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erated near this critical region are hard to solve for all ex-
isting systems, while problems far from it are either easy or
only moderately hard. Researchers have shown a lot of in-
terest in the study of randomk-SAT and related problems
(such as determining bounds for the critical region) and, at
the same time, hard random 3-SAT formulas became a stan-
dard benchmark for testing satisfiability procedures.

The results of the SAT Competition (Berre & Simon
2004), where new and state-of-the-art solvers are tested
against several benchmarks, have shown that the best solvers
on random 3-SAT are not necessarily the most effective on
real life applications and vice versa. One of the possible ex-
planations is that such random formulas, which are just large
sets of short and independent clauses, are unable to simulate
problems with some kind of structure.

In this paper, we present a generalisation of the random
k-SAT model that can be used to produce test formulas
with non-trivial structure. Our proposedfixed shape model,
which is based on the idea of introducing non-clausal for-
mulas, has several interesting features. First it producesa
family of instances controlled by a number of parameters, al-
lowing to evaluate solvers under different settings including
critical conditions. Examples from real life applicationsusu-
ally do not allow this amount of control. At the same time,
our proposed model produces instances with some level of
structure. This makes our model interesting to evaluate solv-
ing techniques that try to exploit such structure information.
We would like to note that our main motivation is not to pro-
duce ‘harder’ problems, but to make available non-clausal
instances that could help to provide evaluation, benchmark
and test problems for emerging non-clausal solvers that are
currently under development.

The main purpose of this paper is to experimentally study
the probability distribution of the formulas generated ac-
cording to the proposed model. Characteristic features such
as sharp phase transition and the existence of hard problems
in a critical region are observed. We also perform some ex-
periments to compare the performance of different state-of-
the-art solvers in combination with two clausal form transla-
tions. We address the question of how the choice of a trans-
lation affects the properties of the generated problems and
the performance of the solvers when trying to solve them.
Our results point out that no translation can be found better
than the other, and more research in this direction is needed.
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Preliminaries
As usual, formulas are built from variables and propositional
logic connectives. Aliteral is either a variable or its nega-
tion. Given a set of variablesΣ we useΣ+ to denote the set
of literals that can be built using the variables inΣ. A clause
is a disjunction of literals. A conjunction of clauses, some-
times represented by a set of clauses, is a formula incon-
junctive normal form(CNF). We use the termnon-clausal
to emphasise that we are using arbitrary propositional for-
mulas, not necessarily in CNF. A propositional formula is
in negation normal form(NNF) if it consists only of nested
conjunctions and disjunctions of literals, i.e. the negation
connective only appears in front of variables.

A truth assignmentis a function that maps the set of vari-
ables into{true, false}. An arbitrary formula can be eval-
uated under a truth assignment following the standard rules
of propositional calculus. A formula is said to besatisfiable
if there is at least one truth assignment that evaluates the
formula totrue, andunsatisfiableotherwise. A satisfying
truth assignment is sometimes called asolution.

A completeSAT procedure is one that takes a formula as
input and always terminates returning either‘yes’ or ‘no’
as answer to whether the formula is satisfiable or not. One
of the most widely used complete SAT procedures is DLL
due to Davis, Logemann and Loveland (1962). The proce-
dure performs a backtracking depth-first search in the space
of truth assignments, and is usually augmented with sev-
eral heuristics (unit propagation, learning). The number of
branchesor decisions that the procedure needs to perform in
order to solve a problem is usually taken as an indicator of
the difficulty of the problem.

On the other hand, anincompleteSAT procedure is one
that answers‘yes’, when a solution is found, or‘don’t know’,
when the search has run long enough without finding any so-
lution. Such procedures are usually based in stochastic local
search methods that, starting with an arbitrary truth assign-
ment, iterate selecting a variable toflip it’s value trying to
get closer to a solution. Since the algorithm does not keep
track of the assignments already tried it is not guaranteed
to find a solution, nor it is able to determine unsatisfiability.
Currently the most successful implementations are variants
of the WalkSAT algorithm (Selman, Kautz, & Cohen 1994).

The fixed clause-length model
In this section we present the fixed clause-length model, also
known in literature as randomk-SAT, that generates random
CNF formulas. This model has three parameters: the num-
ber of variablesn, the number of clausesm and the lengthk
of the clauses to be produced. The parameterr = m/n, the
ratio of clauses to variables, is often used instead ofm.

A formula is generated by selecting clauses uniformly at
random from the set of all clauses of lengthk. Slight va-
riations of the model can be found depending on whether
trivial clauses (with complementary or repeated literals)are
allowed or not. This, however, does not seem to affect the
general behaviour of the distribution. In extensive research
on randomk-SAT (Mitchell, Selman, & Levesque 1992;
Mitchell & Levesque 1996; Cook & Mitchell 1997) two

main features are frequently pointed out:
Sharp Phase Transition: For eachk andn, the probability

of a generated formula of being satisfiable changes, as the
value ofr increases, from almost1 to almost0 in a very nar-
row region. Moreover, as the value ofn increases, the tran-
sition seems to take place in a narrower area around some
crossoverpoint r∗. Friedgut (1999) was able to show that,
indeed, the size of the critical region shrinks asn increases.
His theoretical result, however, does not give any clues about
the value ofr∗, or even if such a value should actually exist.
For random 3-SAT, experimental evidence suggests a value
near4.25. Bounds for the crossover region are also known:
3.52 < r∗ < 4.506 (Kaporis, Kirousis, & Lalas 2003;
Dubois, Boufkhad, & Mandler 2000).

The Easy-Hard-Easy Pattern: The difficulty of the gener-
ated problems (usually measured as the number of branches
explored by a DLL-based algorithm) exhibits a pattern that
goes from very easy, for small values ofr, to very hard,
whenr enters the phase transition, to easy (or moderately
hard) whenr becomes large. This phenomena is usually ex-
plained by the fact that, for low values ofr, a formula with
few clauses is under-constrained and very easy to satisfy. On
the other hand, for larger, the formula is over-constrained
and a complete SAT procedure can quickly find contradic-
tions to finish the search. The hardest problems appear in
the transition region where there are just enough clauses to
make the problem potentially unsatisfiable, but not too many
to make it easy for a solver to determine. The difficulty of
a particular distribution of formulas clearly depends on the
procedure used to solve it, but several authors have conjec-
tured that this general pattern will hold for any reasonable
complete method (Cook & Mitchell 1997).

The fixed shape model
Our proposed model is closely related to the fixed clause-
length model introduced in the previous section. We follow
the same idea to go from under- to over-constrained areas
but, instead of clauses of a fixed length, we use formulas
generated according to a particular fixed shape.

Definition 1. A shapeis a propositional formulaS such that
(i) S is built using the conjunction and disjunction connec-
tives only; and (ii) every variable appearing inS has exactly
one occurrence in it. AΣ-instanceof a shape is any for-
mula obtained by replacing every variable in the shape by a
literal from the setΣ+. A randomly generatedΣ-instance
of a shapeS, is a formula obtained by independently and
uniformly choosing literals from the setΣ+ to replace each
variable occurring inS.

In the sequel we assume thatΣ is clear from the context
and simply use the term instances instead ofΣ-instances.
The formula(v1 ∧ v2) ∨ v3 is an example of a shape. Two
{x1, x2, x3, x4}-instances of this shape are(¬x3∧x2)∨¬x1

and (¬x4 ∧ x3) ∨ x4. Let us introduce a special kind of
shape, calledbalanced conjunctive-disjunctive shapes; in-
formally these are balanced trees of alternating conjunctions
and disjunctions.

Definition 2. Given d integersk1, k2, . . . , kd (with d ≥ 0
andki ≥ 2) we define two sets of formulasJk1, k2, . . . , kdK
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The shape〈2, 2, 2〉 Sample instances:

((¬x3 ∨ ¬x6) ∧ (¬x4 ∨ ¬x3))

∨(( x9 ∨ ¬x5) ∧ ( x3 ∨ x7))

((¬x6 ∨ x7) ∧ (¬x6 ∨ x2))

∨((¬x9 ∨ ¬x7) ∧ (¬x1 ∨ x4))

(( x4 ∨ ¬x4) ∧ ( x8 ∨ x6))

∨(( x7 ∨ x4) ∧ ( x4 ∨ x2))

Figure 1: Structure of the shape〈2, 2, 2〉 together with three
sample instances.

and〈k1, k2, . . . , kd〉 recursively as follows.

1. If d = 0, then the formulas in bothJ K and〈 〉 are literals.
2. If d ≥ 1 then every formula inJk1, k2, . . . , kdK is a con-

junction ofk1 formulas in〈k2, . . . , kd〉. Likewise, every
formula in〈k1, k2, . . . , kd〉 is a disjunction ofk1 formulas
in Jk2, . . . , kdK.

If we have a large enough set of variablesΣ, then every
set〈k1, . . . , kd〉 contains a shapeS; moreover〈k1, . . . , kd〉
is the set of all instances of this shape (and similar for
Jk1, . . . , kdK). For this reason we will sometimes refer
to 〈k1, . . . , kd〉 as a balanced disjunctive shapeand to
Jk1, . . . , kdK as abalanced conjunctive shape. The valued
is called thedepthof the shape.

Note that the balanced shapes and their instances are for-
mulas in negation normal form (NNF); Figure 1 presents one
example. Moreover every formula in NNF is an instance of
some shape. We now define then therandom〈k1, . . . , kd〉-
SAT model as follows. The parameters are the number of
variablesn and a real numberr. A formula is produced as
the conjunction of[rn] randomly generated{x1, . . . , xn}-
instances of〈k1, . . . , kd〉.1 Note that the case〈k〉 gives us
exactly the randomk-SAT model. Also there is no need
to consider randomJk1, . . . , kdK-SAT since this would be
equivalent tok1[rn] random instances of〈k2, . . . , kd〉.

Several properties of balanced shapes can be used to char-
acterise the hardness of the generated random formulas.

Theorem 1. Lett be an arbitrary but fixed truth assignment.
The probabilityp〈k1,...,kd〉 that t satisfies a random instance
of 〈k1, . . . , kd〉 can be calculated as follows.

p〈 〉 = 1/2 ,

p〈k1,...,kd〉 = 1 − (p〈k2,...,kd〉)
k1 .

Proof. The probability is easily obtained, using very simple
combinatorial arguments, as the number of instances of the
shape that are satisfied by the fixed truth assignment divided
by the total number of instances of the shape (with respect
to a setΣ with a fixed number of variables).

Intuitively shapes with a value ofp very close to0 are
very hard to satisfy, so a fewer number of them are suffi-
cient to make a randomly generated problem unsatisfiable.

1Here[rn] denotes the integer closest torn

Conversely a value ofp very close to1 would make a ran-
dom instance quite easy to satisfy, so only very large for-
mulas could have a chance of being unsatisfiable. The latter
effect has been experimentally observed on randomk-SAT
for large values ofk (Mitchell & Levesque 1996) and is con-
firmed by analytical lower bounds of the crossover region
(Achlioptas & Peres 2003).

Theorem 2. The probability that a random instance of
〈k1, . . . , kd〉-SAT, withn variables and densityr, is satis-
fiable tends to0 as n → ∞ for all r > log 2/ log(1/p).
With the value ofp calculated as in Theorem 1.

Proof. A fixed truth assignmentt satisfies a conjunction of
[rn] instances of〈k1, . . . , kd〉 with probability p[rn]. The
expected number of satisfying assignments is2np[rn]. This
value (and the probability of the instance of being satisfi-
able) tends to0 asn → ∞ whenr > log 2/ log(1/p).

This simple argument, useful to estimate the location of
the critical region, has also been used to give an easy up-
per bound of the randomk-SAT crossover point (Cook &
Mitchell 1997).

CNF Translations
While the formulas generated by our proposed model are
non-clausal in essence, modern SAT solvers and procedures
are designed under the assumption that their input is a CNF
formula. There is a recent interest on the design of non-
clausal satisfiability testing algorithms (Thiffault, Bacchus,
& Walsh 2004; Giunchiglia & Sebastiani 2000; Stachniak
2002), but mature implementations are not readily available
(see Related Work). In order to measure thehardnessof our
formulas we decided to translate them into CNF first and
then use a standard clausal solver. This raises the important
question on how the choice of a particular translation could
affect the performance of existing solving procedures.

To test our formulas we used two kinds of translations.
Thestandard translation(equivalence preserving) is simply
based on distributive properties of disjunction and conjunc-
tion. It is well known that such translation causes an expo-
nential increase in the size of the problem.

Theorem 3. The standard translation of the balanced shape
〈k1, . . . , kd〉 produces a CNF formula with clauses of the
same length. Moreover, the length is the product of all the
ki with i odd.

Table 1, the left column under the ‘length’ header, illus-
trates this theorem showing the clause lengths of several
shapes. The second translation we consider is anoptimised
translation(structure preserving). It uses the so callednam-
ing techniquethat, by introducing new variables, avoids the
exponential size increase (Plaisted & Greenbaum 1986). Let
F [G] be an NNF formula with a distinguished subformula
G. We assume thatG is not a literal, henceG occurs inF
positively. We can transformF [G] by (a conjunction of) two
formulasF [p] and¬p ∨ G, wherep is a fresh variable. It is
not hard to argue that this transformation preserves satisfi-
ability. The optimised translation takes a formula in NNF
and repeatedly applies this transformation until a formulain
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shape vars p ru weight length fresh
〈3, 2〉 6 0.578 1.26 7.59 3 2.14 3
〈3〉 3 0.875 5.19 15.57 3 3.00 0
〈2, 4, 2〉 16 0.533 1.10 17.61 4 2.89 2
〈6, 3〉 18 0.551 1.16 20.95 6 2.21 6
〈2, 2, 3, 2〉 24 0.557 1.18 28.41 6 2.27 14
〈4〉 4 0.938 10.83 43.32 4 4.00 0
〈3, 3, 2〉 18 0.807 3.23 58.11 6 3.00 3
〈2, 2, 4, 2〉 32 0.716 2.08 66.46 8 2.32 18
〈2, 5, 3〉 30 0.763 2.56 76.78 6 3.82 2
〈5〉 5 0.969 21.83 109.16 5 5.00 0
〈2, 2, 2, 2, 2〉 32 0.880 5.42 173.51 8 2.95 10

Table 1: Properties of some balanced shapes

CNF is obtained. We performed a careful implementation
that does not introduce new variables unnecessarily.

The optimised translation has the main advantage of keep-
ing the size of the translated formula small (linear with re-
spect to the original), at the cost of introducing new vari-
ables. It was interesting to see how modern solvers cope
with this increase in the number of variables and to deter-
mine whether the introduced optimisations are useful or not.

Results
In order to experimentally observe the distribution of our
randomly generated formulas we started by running small
simulations with different shapes and parameter values on
a variety of solvers. Table 1 shows properties of formulas
tested at this stage. In this table, ‘vars’ is the number of
variables in the shape andp is the probability that a random
formula is satisfied by a truth assignment, see Theorem 1.
Thenru is an upper bound of the crossover region, see The-
orem 2. The ‘weight’ of each shape is the product of the
number of variables andru; it serves to compare the size of
the generated formulas (measured as an the number of liter-
als in them) in the hard region. Consider the〈2, 4, 2〉 shape
for example. Although it is bigger and more complex than
a simple clause of length 4, we only need a few instances of
them ([1.1n] instead of[10.8n]) to produce hard formulas.
Low weight shapes are interesting because they seem ap-
propriate to generate hard and short problems. The ‘length’
header has two columns; the left one shows the length of
the resulting clauses for the standard translation, as in The-
orem 3; while the right one shows the average clause length
for the optimised translation. Finally ‘fresh’ is the number
of fresh variables introduced by the optimised translationfor
each generated instance of the shape.

Using this information we designed several experiments
whose results we detail now. At this stage we considered
four solvers: zChaff (2004.5.13), a carefully engineered
implementation of the DLL procedure (Moskewiczet al.
2001); marcheq (2004.3.20, 100% lookahead), which inte-
grates equivalence reasoning techniques (Heuleet al. 2004);
kcnfs (2003.2.12), a solver with efficient heuristics to solve
randomk-SAT formulas (Dubois & Dequen 2001); and the
Adaptive Novelty+ stochastic local search algorithm (Hoos
2002) implemented in the UBCSAT (2004.07.27) experi-
mentation environment (Tompkins & Hoos 2004). These
solvers were selected using the results of the SAT Competi-
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Figure 2: Probability of satisfiability of 70-variable random
〈3, 3, 2〉-SAT formulas.
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Figure 3: Number of branches required by zChaff on 60, 65,
and 70-variable formulas of random〈3, 3, 2〉-SAT.

tion 2004 as a reference. Moreover, we wanted to use very
diverse solvers in order to observe how different strategies
and clausal translations perform in this setting with mixed
randomness and structure. The experiments were run in par-
allel on 45 computers, each having an Intel III 1GHz CPU
and 512Mb RAM.

In a first experiment we performed an analysis of random
〈3, 3, 2〉-SAT formulas generating 500 samples for each pa-
rameter value. The purpose of this experiment was to obtain
an accurate description of the probability distribution ofthis
shape. Figure 2 shows an already familiar picture: the prob-
ability that a generated formula is satisfiable changes from
almost 1 to almost 0 in a narrow region around the 0.5 prob-
ability point, in this case close tor = 3.07.

Figure 3 shows the median of the number of branches re-
quired by zChaff to solve these formulas. The easy-hard-
easy pattern is reproduced with the hardest problems near
the crossover point. The same basic pattern was found in all
our experiments with different solvers and shapes. Com-
pared to analogous results on random 3-SAT we can see
that the transition from easy to hard is much more sudden
(increasing from a few hundred to more than 1.3 million
branches in a region of length 0.3), while the decay after
leaving the critical region is gradual and slow. Figure 4,
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Figure 4: Number of branches of 60-variable formulas of
random〈3, 3, 2〉-SAT, factored according to satisfiability.
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Figure 5: Scaling0.1 and0.01-windows forn = 20, . . . , 50
on random〈3, 3, 2〉-SAT formulas.

which presents these results factored into satisfiable and un-
satisfiable groups, suggests that most of the satisfiable for-
mulas are rather easy to solve; while the unsatisfiable ones,
several order of magnitudes harder, dominate the behaviour
of the curve as soon as they appear. This figure also shows,
however, that the few satisfiable formulas to the right of the
crossover point can also have a significant difficulty.

Using a more intense sampling near the critical region
(1000 test cases per data point) we could observe the so
called scaling window effect. Letǫ be a real number (0 <
ǫ < 0.5), theǫ-window is the interval of values ofr where
the probability of satisfiability lies withinǫ and1 − ǫ. Fig-
ure 5 shows how the length of the0.1 and 0.01-windows
(the former denoted with a thicker plot line) decreases as the
value ofn increases; the crossover point is also marked with
a small circle. This serves to provide observable evidence
that sharp phase transition can take place.

Local Search Methods
The Adaptive Novelty+ algorithm was considered to evalu-
ate the effectiveness of local search methods for solving this
class of formulas. Recall that this is an incomplete proce-
dure and thus it can only be used to find solutions of satisfi-
able instances. This imposes some limitations on the kind of

r std. opt.
2.0 100.0% 100.0%
· · · · · · · · ·
2.8 100.0% 99.6%
2.9 99.6% 91.6%

r std. opt.
3.0 80.4% 41.0%
3.1 32.4% 12.2%
3.2 8.6% 3.2%
3.3 0.2% 0.2%

Table 2: Success rate of Adaptive Novelty+ on random
〈3, 3, 2〉-SAT with 140 variables.
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Figure 6: Average CPU time for Adaptive Novelty+ solving
〈3, 3, 2〉-SAT with two different translations.

experiments we can perform since, for example, it can solve
all the satisfiable instances of the previous experiment in just
a few minutes. The number of variables had to be increased
in order to obtain more significant data to be analysed. But
this, in turn, makes it impossible the use of complete solvers
to filter out unsatisfiable instances in a reasonable amount of
time. We decided to generate 500 formulas with 140 vari-
ables for each parameter value where, according to Figure 2,
some satisfiable instances could be expected.

One of the first observations that we made is that the
choice of a clausal form translation has a direct impact on
the raw efficiency of the solver. It performs about 1 mil-
lion flips per second on formulas obtained with the standard
translation. While the shorter formulas produced by the op-
timised translation allow up to 11.9 million flips per second.
Taking this into account, the cutoff parameter was set giv-
ing each of the two translations roughly the same amount of
CPU time to solve each problem.

Table 2 shows the percentage of satisfiable formulas
found with each translation at several settings for the pa-
rameterr. It shows that the standard translation, despite of
it’s inferior raw performance, is far more effective in find-
ing solutions than the optimised one. Moreover, as Figure 6
shows, the CPU time required to find these solutions is also
considerably smaller. This results show how the reductions
achieved by the optimised translation, at the cost of the in-
troduction of many new variables, can adversely affect the
overall effectiveness of the solver.

Complete Methods
We also wanted to compare the performance of the com-
plete solvers with respect to the clausal form translation ap-
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Translation clauses length variables
standard 2240 4 140
optimised 1260 2.89 420

Table 3: Statistics of clausal transformations for random
〈2, 4, 2〉-SAT with 140 variables atr = 1.0.

Translation zChaff marcheq kcnfs
standard 431.5 min 58.3 min 14.8 min
optimised 722.8 min 31.9 min 19.1 min

Table 4: CPU time for each solver and translation to solve
〈2, 4, 2〉-SAT with 140 variables.

plied. For this test we generated a smaller set of problems
(50 samples per point) with instances of random〈2, 4, 2〉-
SAT. In this case the crossover point was found near the
r = 1.0 sample. Table 3 shows some statistics that compare
the clausal representations provided by the two translations.
In Table 4 the total CPU time usage of the solvers on each
translation is shown.

Figure 7 shows the relation between the two translations
for several values forr. The symbolbranch(x, y) denotes
the total number of branches used to solve 50 problems, with
a fixed value ofr, for each combination of a solverx and a
translationy. The proportionbranch(x, opt)/branch(x, std)
helps to provide a fair comparison indicating how the use of
the optimised instead of the standard translation improved
(< 1) or deteriorated (> 1) the performance of the solver.
It is quite surprising that no translation can be found bet-
ter than the other. The solvers zChaff and kcnfs showed a
better performance with the standard translation and, con-
versely, marcheq found more useful the optimised one. We
suspect that, since marcheq incorporates equivalence rea-
soning, the use of the optimised translation helps the solver
to figure out the structure of the problem. While, for the
other two solvers, the introduction of new variables by the
optimised translation has the undesirable effect of increas-
ing the total space searched. We performed similar experi-
ments with other shapes and parameter values. Due to lack

kcnfs
marcheq

zChaff

Ratio of formulas-to-variables

b
ra

n
ch

(x
,o

p
t)

/b
ra

n
ch

(x
,s

td
)

1.41.31.21.110.90.80.7

3

2.5

2

1.5

1

0.5

0

Figure 7: Effectiveness of the optimised translation for solv-
ing 〈2, 4, 2〉-SAT with zChaff, marcheq and kcnfs.

of space it is not possible to include more details, but the
general observations already discussed were also found in
the other experiments.

Related Work
The study and development of non-clausal procedures for
the satisfiability problem is quite recent. Some authors have
initiated a search for tractable classes of non-clausal prob-
lems (Altamirano & Escalada-Imaz 2000), while others look
for possible ways to generalise the DLL method (Thiffault,
Bacchus, & Walsh 2004; Giunchiglia & Sebastiani 2000;
Stachniak 2002). It would have been interesting to test our
formulas with the system NoClause described in (Thiffault,
Bacchus, & Walsh 2004). However we encountered some
portability issues with the current version that preventedus
from doing some experimentation. In the work of Stachniak
(2002) a first attempt to build hard non-clausal formulas is
made, they are instances ofJ2, 2, [rn], 3K, however no evi-
dence of sharp phase or difficulty patterns were reported.

Although most of the research on randomly generated
SAT problems is focused on the randomk-SAT model,
other variants can also be found in literature. Monas-
son and Zecchina (1997) proposed a random(2 + p)-SAT
model that, based on insights from statistical mechanics,
mixes 2- and 3-SAT clauses. Other variable length models
have also been considered (constant probability, or expected
length) but they were found unsuitable for the production
of hard problems (Mitchell, Selman, & Levesque 1992;
Mitchell & Levesque 1996).

Generation of structured hard instances for the SAT prob-
lem has usually been done by translating problems from
other domains (graphs, combinatorics, optimisation, . . . )
into propositional boolean formulas. Other generators, such
as XOR-SAT (Barthelet al. 2002), are particularly designed
to produce only satisfiable instances. There has also been
a lot of interest in the more general setting of random con-
straint satisfaction problems (Gentet al. 2001), and gener-
alised satisfiability problems (Creignou & Daude 2002).

Conclusions
Extensive research on the satisfiability problem has lead toa
deeper understanding of this and many other important prob-
lems in AI and related fields. Very efficient implementations
of solving procedures are now easily available, and the per-
formance of state-of-the-art solvers keeps improving each
year. We believe that, in the near future, the research in this
area will focus on the development of new theories and pro-
cedures that, extending current known approaches, will be
able to handle general classes of formulas that encode infor-
mation in a more succinct and efficient way.

In this paper we have presented a model that generates
hard non-clausal random formulas. We expect this proce-
dure to provide diverse and challenging material to evalu-
ate the performance of current and next generation solvers
that have started to introduce non-clausal features. We have
carried out a careful experimental observation of the proper-
ties exhibited by these formula distributions where the sharp
phase phenomenon and easy-hard-easy patterns were found.
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A second contribution of this paper, not done before to
the best of our knowledge, is a first study on how the use
of a particular clausal translation affects the performance of
existing CNF solving procedures. We believe that the results
obtained will motivate researchers to experiment with these
translations and discover new approaches to efficiently deal
with problems containing non-clausal information.
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