Generation of Hard Non-Clausal Random Satisfiability Problems ### Juan A. Navarro and Andrei Voronkov The University of Manchester School of Computer Science {navarroj,voronkov}@cs.manchester.ac.uk #### **Abstract** We present the results from experiments with a new family of random formulas for the satisfiability problem. Our proposal is a generalisation of the random k-SAT model that introduces non-clausal formulas and exhibits interesting features such as experimentally observed sharp phase transition and the easy-hard-easy pattern. The experimental results provide some insights on how the use of different clausal translations can affect the performance of satisfiability solving algorithms. We also expect our model to provide diverse and challenging benchmarks for developers of SAT procedures for non-clausal formulas. # Introduction The problem of propositional satisfiability (SAT), that is to decide whether there is a satisfying truth assignment for a given propositional formula, is very interesting both from theoretical and practical viewpoints. As the prime NP-complete problem it plays a fundamental role in complexity and computation theory. The feasibility of many applications, especially in artificial intelligence, relies on the existence of efficient procedures for solving this problem. Randomly generated formulas have often been used as benchmarks to evaluate the performance of satisfiability solving procedures. It is important, as already pointed out (Mitchell, Selman, & Levesque 1992; Mitchell & Levesque 1996), to have a clear understanding of the properties of such formulas and avoid incorrect conclusions from deceiving experimental results. An algorithm may quickly solve several thousands of problems not because it is clever or effective but, unfortunately, because of a poor sampling mechanism that has a tendency to produce easy problems. A model that has been recognised as being able to produce challenging benchmarks for the satisfiability problem is random k-SAT. Formulas are produced by randomly selecting clauses of length k built from a set with a given number of variables. For one parameter of the model, namely the ratio between the number of clauses and the number of variables, an interesting pattern has been observed: the sets of generated formulas exhibit a sharp transition between almost all being satisfiable to almost none. Moreover, problems gen- Copyright © 2005, American Association for Artificial Intelligence (www.aaai.org). All rights reserved. erated near this critical region are hard to solve for all existing systems, while problems far from it are either easy or only moderately hard. Researchers have shown a lot of interest in the study of random k-SAT and related problems (such as determining bounds for the critical region) and, at the same time, hard random 3-SAT formulas became a standard benchmark for testing satisfiability procedures. The results of the SAT Competition (Berre & Simon 2004), where new and state-of-the-art solvers are tested against several benchmarks, have shown that the best solvers on random 3-SAT are not necessarily the most effective on real life applications and vice versa. One of the possible explanations is that such random formulas, which are just large sets of short and independent clauses, are unable to simulate problems with some kind of structure. In this paper, we present a generalisation of the random k-SAT model that can be used to produce test formulas with non-trivial structure. Our proposed fixed shape model, which is based on the idea of introducing non-clausal formulas, has several interesting features. First it produces a family of instances controlled by a number of parameters, allowing to evaluate solvers under different settings including critical conditions. Examples from real life applications usually do not allow this amount of control. At the same time, our proposed model produces instances with some level of structure. This makes our model interesting to evaluate solving techniques that try to exploit such structure information. We would like to note that our main motivation is not to produce 'harder' problems, but to make available non-clausal instances that could help to provide evaluation, benchmark and test problems for emerging non-clausal solvers that are currently under development. The main purpose of this paper is to experimentally study the probability distribution of the formulas generated according to the proposed model. Characteristic features such as sharp phase transition and the existence of hard problems in a critical region are observed. We also perform some experiments to compare the performance of different state-of-the-art solvers in combination with two clausal form translations. We address the question of how the choice of a translation affects the properties of the generated problems and the performance of the solvers when trying to solve them. Our results point out that no translation can be found better than the other, and more research in this direction is needed. # **Preliminaries** As usual, formulas are built from variables and propositional logic connectives. A *literal* is either a variable or its negation. Given a set of variables Σ we use Σ^+ to denote the set of literals that can be built using the variables in Σ . A *clause* is a disjunction of literals. A conjunction of clauses, sometimes represented by a set of clauses, is a formula in *conjunctive normal form* (CNF). We use the term *non-clausal* to emphasise that we are using arbitrary propositional formulas, not necessarily in CNF. A propositional formula is in *negation normal form* (NNF) if it consists only of nested conjunctions and disjunctions of literals, i.e. the negation connective only appears in front of variables. A *truth assignment* is a function that maps the set of variables into {true, false}. An arbitrary formula can be evaluated under a truth assignment following the standard rules of propositional calculus. A formula is said to be *satisfiable* if there is at least one truth assignment that evaluates the formula to true, and *unsatisfiable* otherwise. A satisfying truth assignment is sometimes called a *solution*. A complete SAT procedure is one that takes a formula as input and always terminates returning either 'yes' or 'no' as answer to whether the formula is satisfiable or not. One of the most widely used complete SAT procedures is DLL due to Davis, Logemann and Loveland (1962). The procedure performs a backtracking depth-first search in the space of truth assignments, and is usually augmented with several heuristics (unit propagation, learning). The number of branches or decisions that the procedure needs to perform in order to solve a problem is usually taken as an indicator of the difficulty of the problem. On the other hand, an *incomplete* SAT procedure is one that answers 'yes', when a solution is found, or 'don't know', when the search has run long enough without finding any solution. Such procedures are usually based in stochastic local search methods that, starting with an arbitrary truth assignment, iterate selecting a variable to *flip* it's value trying to get closer to a solution. Since the algorithm does not keep track of the assignments already tried it is not guaranteed to find a solution, nor it is able to determine unsatisfiability. Currently the most successful implementations are variants of the WalkSAT algorithm (Selman, Kautz, & Cohen 1994). # The fixed clause-length model In this section we present the fixed clause-length model, also known in literature as random k-SAT, that generates random CNF formulas. This model has three parameters: the number of variables n, the number of clauses m and the length k of the clauses to be produced. The parameter r=m/n, the ratio of clauses to variables, is often used instead of m. A formula is generated by selecting clauses uniformly at random from the set of all clauses of length k. Slight variations of the model can be found depending on whether trivial clauses (with complementary or repeated literals) are allowed or not. This, however, does not seem to affect the general behaviour of the distribution. In extensive research on random k-SAT (Mitchell, Selman, & Levesque 1992; Mitchell & Levesque 1996; Cook & Mitchell 1997) two main features are frequently pointed out: Sharp Phase Transition: For each k and n, the probability of a generated formula of being satisfiable changes, as the value of r increases, from almost 1 to almost 0 in a very narrow region. Moreover, as the value of n increases, the transition seems to take place in a narrower area around some crossover point r^* . Friedgut (1999) was able to show that, indeed, the size of the critical region shrinks as n increases. His theoretical result, however, does not give any clues about the value of r^* , or even if such a value should actually exist. For random 3-SAT, experimental evidence suggests a value near 4.25. Bounds for the crossover region are also known: $3.52 < r^* < 4.506$ (Kaporis, Kirousis, & Lalas 2003; Dubois, Boufkhad, & Mandler 2000). The Easy-Hard-Easy Pattern: The difficulty of the generated problems (usually measured as the number of branches explored by a DLL-based algorithm) exhibits a pattern that goes from very easy, for small values of r, to very hard, when r enters the phase transition, to easy (or moderately hard) when r becomes large. This phenomena is usually explained by the fact that, for low values of r, a formula with few clauses is under-constrained and very easy to satisfy. On the other hand, for large r, the formula is over-constrained and a complete SAT procedure can quickly find contradictions to finish the search. The hardest problems appear in the transition region where there are just enough clauses to make the problem potentially unsatisfiable, but not too many to make it easy for a solver to determine. The difficulty of a particular distribution of formulas clearly depends on the procedure used to solve it, but several authors have conjectured that this general pattern will hold for any reasonable complete method (Cook & Mitchell 1997). # The fixed shape model Our proposed model is closely related to the fixed clauselength model introduced in the previous section. We follow the same idea to go from under- to over-constrained areas but, instead of clauses of a fixed length, we use formulas generated according to a particular fixed shape. **Definition 1.** A *shape* is a propositional formula S such that (i) S is built using the conjunction and disjunction connectives only; and (ii) every variable appearing in S has exactly one occurrence in it. A Σ -instance of a shape is any formula obtained by replacing every variable in the shape by a literal from the set Σ^+ . A randomly generated Σ -instance of a shape S, is a formula obtained by independently and uniformly choosing literals from the set Σ^+ to replace each variable occurring in S. In the sequel we assume that Σ is clear from the context and simply use the term instances instead of Σ -instances. The formula $(v_1 \wedge v_2) \vee v_3$ is an example of a shape. Two $\{x_1, x_2, x_3, x_4\}$ -instances of this shape are $(\neg x_3 \wedge x_2) \vee \neg x_1$ and $(\neg x_4 \wedge x_3) \vee x_4$. Let us introduce a special kind of shape, called *balanced conjunctive-disjunctive shapes*; informally these are balanced trees of alternating conjunctions and disjunctions. **Definition 2.** Given d integers k_1, k_2, \ldots, k_d (with $d \ge 0$ and $k_i \ge 2$) we define two sets of formulas $[k_1, k_2, \ldots, k_d]$ The shape $\langle 2, 2, 2 \rangle$ Sample instances: Figure 1: Structure of the shape $\langle 2,2,2 \rangle$ together with three sample instances. and $\langle k_1, k_2, \dots, k_d \rangle$ recursively as follows. - 1. If d = 0, then the formulas in both $[\![]\!]$ and $\langle \rangle$ are literals. - 2. If $d \geq 1$ then every formula in $[\![k_1,k_2,\ldots,k_d]\!]$ is a conjunction of k_1 formulas in $\langle k_2,\ldots,k_d \rangle$. Likewise, every formula in $\langle k_1,k_2,\ldots,k_d \rangle$ is a disjunction of k_1 formulas in $[\![k_2,\ldots,k_d]\!]$. If we have a large enough set of variables Σ , then every set $\langle k_1,\ldots,k_d\rangle$ contains a shape S; moreover $\langle k_1,\ldots,k_d\rangle$ is the set of all instances of this shape (and similar for $\llbracket k_1,\ldots,k_d \rrbracket$). For this reason we will sometimes refer to $\langle k_1,\ldots,k_d \rangle$ as a balanced disjunctive shape and to $\llbracket k_1,\ldots,k_d \rrbracket$ as a balanced conjunctive shape. The value d is called the depth of the shape. Note that the balanced shapes and their instances are formulas in negation normal form (NNF); Figure 1 presents one example. Moreover every formula in NNF is an instance of some shape. We now define then the $random \ \langle k_1, \ldots, k_d \rangle$ - SAT model as follows. The parameters are the number of variables n and a real number r. A formula is produced as the conjunction of [rn] randomly generated $\{x_1, \ldots, x_n\}$ -instances of $\langle k_1, \ldots, k_d \rangle$. Note that the case $\langle k \rangle$ gives us exactly the random k-SAT model. Also there is no need to consider random $[k_1, \ldots, k_d]$ -SAT since this would be equivalent to $k_1[rn]$ random instances of $\langle k_2, \ldots, k_d \rangle$. Several properties of balanced shapes can be used to characterise the hardness of the generated random formulas. **Theorem 1.** Let t be an arbitrary but fixed truth assignment. The probability $p_{\langle k_1,...,k_d \rangle}$ that t satisfies a random instance of $\langle k_1,...,k_d \rangle$ can be calculated as follows. $$\begin{split} &p_{\langle\,\rangle} = 1/2\,,\\ &p_{\langle k_1,...,k_d\rangle} = 1 - (p_{\langle k_2,...,k_d\rangle})^{k_1}\,. \end{split}$$ *Proof.* The probability is easily obtained, using very simple combinatorial arguments, as the number of instances of the shape that are satisfied by the fixed truth assignment divided by the total number of instances of the shape (with respect to a set Σ with a fixed number of variables). Intuitively shapes with a value of p very close to 0 are very hard to satisfy, so a fewer number of them are sufficient to make a randomly generated problem unsatisfiable. Conversely a value of p very close to 1 would make a random instance quite easy to satisfy, so only very large formulas could have a chance of being unsatisfiable. The latter effect has been experimentally observed on random k-SAT for large values of k (Mitchell & Levesque 1996) and is confirmed by analytical lower bounds of the crossover region (Achlioptas & Peres 2003). **Theorem 2.** The probability that a random instance of $\langle k_1, \ldots, k_d \rangle$ -SAT, with n variables and density r, is satisfiable tends to 0 as $n \to \infty$ for all $r > \log 2/\log(1/p)$. With the value of p calculated as in Theorem 1. *Proof.* A fixed truth assignment t satisfies a conjunction of [rn] instances of $\langle k_1, \ldots, k_d \rangle$ with probability $p^{[rn]}$. The expected number of satisfying assignments is $2^n p^{[rn]}$. This value (and the probability of the instance of being satisfiable) tends to 0 as $n \to \infty$ when $r > \log 2/\log(1/p)$. This simple argument, useful to estimate the location of the critical region, has also been used to give an easy upper bound of the random k-SAT crossover point (Cook & Mitchell 1997). ### **CNF Translations** While the formulas generated by our proposed model are non-clausal in essence, modern SAT solvers and procedures are designed under the assumption that their input is a CNF formula. There is a recent interest on the design of non-clausal satisfiability testing algorithms (Thiffault, Bacchus, & Walsh 2004; Giunchiglia & Sebastiani 2000; Stachniak 2002), but mature implementations are not readily available (see Related Work). In order to measure the *hardness* of our formulas we decided to translate them into CNF first and then use a standard clausal solver. This raises the important question on how the choice of a particular translation could affect the performance of existing solving procedures. To test our formulas we used two kinds of translations. The *standard translation* (equivalence preserving) is simply based on distributive properties of disjunction and conjunction. It is well known that such translation causes an exponential increase in the size of the problem. **Theorem 3.** The standard translation of the balanced shape $\langle k_1, \ldots, k_d \rangle$ produces a CNF formula with clauses of the same length. Moreover, the length is the product of all the k_i with i odd. Table 1, the left column under the 'length' header, illustrates this theorem showing the clause lengths of several shapes. The second translation we consider is an *optimised translation* (structure preserving). It uses the so called *naming technique* that, by introducing new variables, avoids the exponential size increase (Plaisted & Greenbaum 1986). Let F[G] be an NNF formula with a distinguished subformula G. We assume that G is not a literal, hence G occurs in F positively. We can transform F[G] by (a conjunction of) two formulas F[p] and $\neg p \lor G$, where p is a fresh variable. It is not hard to argue that this transformation preserves satisfiability. The optimised translation takes a formula in NNF and repeatedly applies this transformation until a formula in ¹Here [rn] denotes the integer closest to rn | shape | vars | p | r_u | weight | le | ength | fresh | |---------------------------------|------|-------|-------|--------|----|-------|-------| | $\langle 3, 2 \rangle$ | 6 | 0.578 | 1.26 | 7.59 | 3 | 2.14 | 3 | | $\langle 3 \rangle$ | 3 | 0.875 | 5.19 | 15.57 | 3 | 3.00 | 0 | | $\langle 2, 4, 2 \rangle$ | 16 | 0.533 | 1.10 | 17.61 | 4 | 2.89 | 2 | | $\langle 6, 3 \rangle$ | 18 | 0.551 | 1.16 | 20.95 | 6 | 2.21 | 6 | | $\langle 2, 2, 3, 2 \rangle$ | 24 | 0.557 | 1.18 | 28.41 | 6 | 2.27 | 14 | | $\langle 4 \rangle$ | 4 | 0.938 | 10.83 | 43.32 | 4 | 4.00 | 0 | | $\langle 3, 3, 2 \rangle$ | 18 | 0.807 | 3.23 | 58.11 | 6 | 3.00 | 3 | | $\langle 2, 2, 4, 2 \rangle$ | 32 | 0.716 | 2.08 | 66.46 | 8 | 2.32 | 18 | | $\langle 2, 5, 3 \rangle$ | 30 | 0.763 | 2.56 | 76.78 | 6 | 3.82 | 2 | | $\langle 5 \rangle$ | 5 | 0.969 | 21.83 | 109.16 | 5 | 5.00 | 0 | | $\langle 2, 2, 2, 2, 2 \rangle$ | 32 | 0.880 | 5.42 | 173.51 | 8 | 2.95 | 10 | Table 1: Properties of some balanced shapes CNF is obtained. We performed a careful implementation that does not introduce new variables unnecessarily. The optimised translation has the main advantage of keeping the size of the translated formula small (linear with respect to the original), at the cost of introducing new variables. It was interesting to see how modern solvers cope with this increase in the number of variables and to determine whether the introduced optimisations are useful or not. ### Results In order to experimentally observe the distribution of our randomly generated formulas we started by running small simulations with different shapes and parameter values on a variety of solvers. Table 1 shows properties of formulas tested at this stage. In this table, 'vars' is the number of variables in the shape and p is the probability that a random formula is satisfied by a truth assignment, see Theorem 1. Then r_u is an upper bound of the crossover region, see Theorem 2. The 'weight' of each shape is the product of the number of variables and r_u ; it serves to compare the size of the generated formulas (measured as an the number of literals in them) in the hard region. Consider the $\langle 2, 4, 2 \rangle$ shape for example. Although it is bigger and more complex than a simple clause of length 4, we only need a few instances of them ([1.1n] instead of [10.8n]) to produce hard formulas. Low weight shapes are interesting because they seem appropriate to generate hard and short problems. The 'length' header has two columns; the left one shows the length of the resulting clauses for the standard translation, as in Theorem 3; while the right one shows the average clause length for the optimised translation. Finally 'fresh' is the number of fresh variables introduced by the optimised translation for each generated instance of the shape. Using this information we designed several experiments whose results we detail now. At this stage we considered four solvers: zChaff (2004.5.13), a carefully engineered implementation of the DLL procedure (Moskewicz *et al.* 2001); march_eq (2004.3.20, 100% lookahead), which integrates equivalence reasoning techniques (Heule *et al.* 2004); kcnfs (2003.2.12), a solver with efficient heuristics to solve random *k*-SAT formulas (Dubois & Dequen 2001); and the Adaptive Novelty⁺ stochastic local search algorithm (Hoos 2002) implemented in the UBCSAT (2004.07.27) experimentation environment (Tompkins & Hoos 2004). These solvers were selected using the results of the SAT Competi- Figure 2: Probability of satisfiability of 70-variable random $\langle 3, 3, 2 \rangle$ -SAT formulas. Figure 3: Number of branches required by zChaff on 60, 65, and 70-variable formulas of random (3, 3, 2)-SAT. tion 2004 as a reference. Moreover, we wanted to use very diverse solvers in order to observe how different strategies and clausal translations perform in this setting with mixed randomness and structure. The experiments were run in parallel on 45 computers, each having an Intel III 1GHz CPU and 512Mb RAM. In a first experiment we performed an analysis of random $\langle 3,3,2\rangle$ -SAT formulas generating 500 samples for each parameter value. The purpose of this experiment was to obtain an accurate description of the probability distribution of this shape. Figure 2 shows an already familiar picture: the probability that a generated formula is satisfiable changes from almost 1 to almost 0 in a narrow region around the 0.5 probability point, in this case close to r=3.07. Figure 3 shows the median of the number of branches required by zChaff to solve these formulas. The easy-hard-easy pattern is reproduced with the hardest problems near the crossover point. The same basic pattern was found in all our experiments with different solvers and shapes. Compared to analogous results on random 3-SAT we can see that the transition from easy to hard is much more sudden (increasing from a few hundred to more than 1.3 million branches in a region of length 0.3), while the decay after leaving the critical region is gradual and slow. Figure 4, Figure 4: Number of branches of 60-variable formulas of random (3, 3, 2)-SAT, factored according to satisfiability. Figure 5: Scaling 0.1 and 0.01-windows for $n=20,\ldots,50$ on random $\langle 3,3,2\rangle$ -SAT formulas. which presents these results factored into satisfiable and unsatisfiable groups, suggests that most of the satisfiable formulas are rather easy to solve; while the unsatisfiable ones, several order of magnitudes harder, dominate the behaviour of the curve as soon as they appear. This figure also shows, however, that the few satisfiable formulas to the right of the crossover point can also have a significant difficulty. Using a more intense sampling near the critical region (1000 test cases per data point) we could observe the so called scaling window effect. Let ϵ be a real number (0 < $\epsilon < 0.5$), the $\epsilon\text{-window}$ is the interval of values of r where the probability of satisfiability lies within ϵ and $1-\epsilon$. Figure 5 shows how the length of the 0.1 and 0.01-windows (the former denoted with a thicker plot line) decreases as the value of n increases; the crossover point is also marked with a small circle. This serves to provide observable evidence that sharp phase transition can take place. ### **Local Search Methods** The Adaptive Novelty⁺ algorithm was considered to evaluate the effectiveness of local search methods for solving this class of formulas. Recall that this is an incomplete procedure and thus it can only be used to find solutions of satisfiable instances. This imposes some limitations on the kind of | r | std. | opt. | r | std. | opt. | |-----|--------|--------|-----|-------|-------| | 2.0 | 100.0% | 100.0% | 3.0 | 80.4% | 41.0% | | | | | 3.1 | 32.4% | 12.2% | | 2.8 | 100.0% | 99.6% | 3.2 | 8.6% | 3.2% | | 2.9 | 99.6% | 91.6% | 3.3 | 0.2% | 0.2% | Table 2: Success rate of Adaptive Novelty⁺ on random (3, 3, 2)-SAT with 140 variables. Figure 6: Average CPU time for Adaptive Novelty⁺ solving $\langle 3, 3, 2 \rangle$ -SAT with two different translations. experiments we can perform since, for example, it can solve *all* the satisfiable instances of the previous experiment in just a few minutes. The number of variables had to be increased in order to obtain more significant data to be analysed. But this, in turn, makes it impossible the use of complete solvers to filter out unsatisfiable instances in a reasonable amount of time. We decided to generate 500 formulas with 140 variables for each parameter value where, according to Figure 2, some satisfiable instances could be expected. One of the first observations that we made is that the choice of a clausal form translation has a direct impact on the raw efficiency of the solver. It performs about 1 million flips per second on formulas obtained with the standard translation. While the shorter formulas produced by the optimised translation allow up to 11.9 million flips per second. Taking this into account, the cutoff parameter was set giving each of the two translations roughly the same amount of CPU time to solve each problem. Table 2 shows the percentage of satisfiable formulas found with each translation at several settings for the parameter r. It shows that the standard translation, despite of it's inferior raw performance, is far more effective in finding solutions than the optimised one. Moreover, as Figure 6 shows, the CPU time required to find these solutions is also considerably smaller. This results show how the reductions achieved by the optimised translation, at the cost of the introduction of many new variables, can adversely affect the overall effectiveness of the solver. ## **Complete Methods** We also wanted to compare the performance of the complete solvers with respect to the clausal form translation ap- | Translation | clauses | length | variables | |-------------|---------|--------|-----------| | standard | 2240 | 4 | 140 | | optimised | 1260 | 2.89 | 420 | Table 3: Statistics of clausal transformations for random (2, 4, 2)-SAT with 140 variables at r = 1.0. | Translation | zChaff | march_eq | kenfs | |-------------|-----------|----------|----------| | standard | 431.5 min | 58.3 min | 14.8 min | | optimised | 722.8 min | 31.9 min | 19.1 min | Table 4: CPU time for each solver and translation to solve (2, 4, 2)-SAT with 140 variables. plied. For this test we generated a smaller set of problems (50 samples per point) with instances of random $\langle 2,4,2\rangle$ -SAT. In this case the crossover point was found near the r=1.0 sample. Table 3 shows some statistics that compare the clausal representations provided by the two translations. In Table 4 the total CPU time usage of the solvers on each translation is shown. Figure 7 shows the relation between the two translations for several values for r. The symbol branch(x, y) denotes the total number of branches used to solve 50 problems, with a fixed value of r, for each combination of a solver x and a translation y. The proportion branch(x, opt)/branch(x, std)helps to provide a fair comparison indicating how the use of the optimised instead of the standard translation improved (< 1) or deteriorated (> 1) the performance of the solver. It is quite surprising that no translation can be found better than the other. The solvers zChaff and kcnfs showed a better performance with the standard translation and, conversely, march_eq found more useful the optimised one. We suspect that, since march_eq incorporates equivalence reasoning, the use of the optimised translation helps the solver to figure out the structure of the problem. While, for the other two solvers, the introduction of new variables by the optimised translation has the undesirable effect of increasing the total space searched. We performed similar experiments with other shapes and parameter values. Due to lack Figure 7: Effectiveness of the optimised translation for solving $\langle 2, 4, 2 \rangle$ -SAT with zChaff, march_eq and kcnfs. of space it is not possible to include more details, but the general observations already discussed were also found in the other experiments. ### **Related Work** The study and development of non-clausal procedures for the satisfiability problem is quite recent. Some authors have initiated a search for tractable classes of non-clausal problems (Altamirano & Escalada-Imaz 2000), while others look for possible ways to generalise the DLL method (Thiffault, Bacchus, & Walsh 2004; Giunchiglia & Sebastiani 2000; Stachniak 2002). It would have been interesting to test our formulas with the system NoClause described in (Thiffault, Bacchus, & Walsh 2004). However we encountered some portability issues with the current version that prevented us from doing some experimentation. In the work of Stachniak (2002) a first attempt to build hard non-clausal formulas is made, they are instances of [2, 2, [rn], 3], however no evidence of sharp phase or difficulty patterns were reported. Although most of the research on randomly generated SAT problems is focused on the random k-SAT model, other variants can also be found in literature. Monasson and Zecchina (1997) proposed a random (2+p)-SAT model that, based on insights from statistical mechanics, mixes 2- and 3-SAT clauses. Other variable length models have also been considered (constant probability, or expected length) but they were found unsuitable for the production of hard problems (Mitchell, Selman, & Levesque 1992; Mitchell & Levesque 1996). Generation of structured hard instances for the SAT problem has usually been done by translating problems from other domains (graphs, combinatorics, optimisation, ...) into propositional boolean formulas. Other generators, such as XOR-SAT (Barthel *et al.* 2002), are particularly designed to produce only satisfiable instances. There has also been a lot of interest in the more general setting of random constraint satisfaction problems (Gent *et al.* 2001), and generalised satisfiability problems (Creignou & Daude 2002). ### **Conclusions** Extensive research on the satisfiability problem has lead to a deeper understanding of this and many other important problems in AI and related fields. Very efficient implementations of solving procedures are now easily available, and the performance of state-of-the-art solvers keeps improving each year. We believe that, in the near future, the research in this area will focus on the development of new theories and procedures that, extending current known approaches, will be able to handle general classes of formulas that encode information in a more succinct and efficient way. In this paper we have presented a model that generates hard non-clausal random formulas. We expect this procedure to provide diverse and challenging material to evaluate the performance of current and next generation solvers that have started to introduce non-clausal features. We have carried out a careful experimental observation of the properties exhibited by these formula distributions where the sharp phase phenomenon and easy-hard-easy patterns were found. A second contribution of this paper, not done before to the best of our knowledge, is a first study on how the use of a particular clausal translation affects the performance of existing CNF solving procedures. We believe that the results obtained will motivate researchers to experiment with these translations and discover new approaches to efficiently deal with problems containing non-clausal information. # References - Achlioptas, D., and Peres, Y. 2003. The threshold for random k-SAT is $2^k(\ln 2 O(k))$. In STOC '03: Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, 223–231. San Diego, CA, USA: ACM Press. - Altamirano, E., and Escalada-Imaz, G. 2000. An efficient proof method for non-clausal reasoning. In *ISMIS '00: Proceedings of the 12th International Symposium on Foundations of Intelligent Systems*, 534–542. Springer-Verlag. - Barthel, W.; Hartmann, A.; Leone, M.; Ricci-Tersenghi, F.; Weigt, M.; and Zecchina, R. 2002. Hiding solutions in random satisfiability problems: a statistical mechanics approach. *Phys. Rev. Lett.* 88. - Berre, L., and Simon. 2004. Fifty-five solvers in Vancouver: the SAT 2004 competition. In *Theory and Applications of Satisfiability Testing: 7th International Conference, SAT 2004*, Lecture Notes in Computer Sciences. - Cook, S. A., and Mitchell, D. G. 1997. Finding hard instances of the satisfiability problem: A survey. In *Discrete Mathematics and Theoretical Computer Science*, volume 5 of *DIMACS*. American Mathematical Society. - Creignou, N., and Daude, H. 2002. Random generalized satisfiability problems. In SAT 2002: Fifth International Symposium on the Theory and Applications of Satisfiability Testing. - Davis, M.; Logemann, G.; and Loveland, D. 1962. A machine program for theorem-proving. *Communications of the ACM* 5:394–397. - Dubois, O., and Dequen, G. 2001. A backbone-search heuristic for efficient solving of hard 3-SAT formulae. In *Proc. of the 17th International Joint Conference on Artificial Intelligence (IJCAI' 01)*. - Dubois, O.; Boufkhad, Y.; and Mandler, J. 2000. Typical random 3-SAT formulae and the satisfiability threshold. In *SODA'00: Proc. of the eleventh annual ACM-SIAM symposium on Discrete algorithms*, 126–127. San Francisco, CA: Society for Industrial and Applied Mathematics. - Friedgut, E. 1999. Sharp thresholds of graph properties and the k-SAT problem. *Journal of the American Mathematical Society* 12(4):1017–1054. - Gent, I. P.; Macintyre, E.; Prosser, P.; Smith, B. M.; and Walsh, T. 2001. Random constraint satisfaction: Flaws and structure. *Constraints* 6(4):345–372. - Giunchiglia, E., and Sebastiani, R. 2000. Applying the Davis-Putnam procedure to non-clausal formulas. In AI*IA '99: Proceedings of the 6th Congress of the Italian Association for Artificial Intelligence on Advances in Artificial Intelligence, 84–94. Springer-Verlag. - Heule, M.; van Zwieten, J.; Dufour, M.; and van Maaren, H. 2004. March_eq: Implementing additional reasoning into an efficient lookahead SAT solver. In *Theory and Applications of Satisfiability Testing: 7th International Conference, SAT 2004*, Lecture Notes in Computer Sciences. - Hoos, H. H. 2002. An adaptive noise mechanism for Walk-SAT. In *Proceedings of the 18th National Conference on Artificial Intelligence (AAAI-02)*, 655–660. - Kaporis, A. C.; Kirousis, L. M.; and Lalas, E. 2003. Selecting complementary pairs of literals. In *Proc. LICS'03 Workshop on Typical Case Complexity and Phase Transitions* - Mitchell, D. G., and Levesque, H. J. 1996. Some pitfalls for experiments with random SAT. *Artificial Intelligence* 81:111–125. - Mitchell, D. G.; Selman, B.; and Levesque, H. 1992. Hard and easy distributions of SAT problems. In *Proceedings* of the Tenth National Conference on Artificial Intelligence (AAAI-92), 459–465. - Monasson, R., and Zecchina, R. 1997. Satistical mechanics of the random *k*-SAT model. *Phys. Rev. E* 56:1357–1370. - Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and Malik, S. 2001. Chaff: Engineering an efficient SAT solver. In *39th Design Automation Conference (DAC 2001)*. - Plaisted, D. A., and Greenbaum, S. 1986. A structure-preserving clause form translation. *J. Symb. Comput.* 2(3):293–304. - Selman, B.; Kautz, H. A.; and Cohen, B. 1994. Noise strategies for improving local search. In *Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94)*. - Stachniak, Z. 2002. Going non-clausal. In SAT 2002: Fifth International Symposium on the Theory and Applications of Satisfiability Testing. - Thiffault, C.; Bacchus, F.; and Walsh, T. 2004. Solving non-clausal formulas with DPLL search. In *Theory and Applications of Satisfiability Testing: 7th International Conference, SAT 2004*, number 3258 in Lecture Notes in Computer Sciences, 663–678. - Tompkins, D. A., and Hoos, H. H. 2004. UBCSAT: An implementation and experimentation environment for SLS algorithms for SAT and MAX-SAT. In *Seventh Int'l Conf. on Theory and Applications of Satisfiability Testing (SAT2004)*.