
Anytime, Complete Algorithm for Finding Utilitarian Optimal Solutions to STPPs

Bart Peintner and Martha E. Pollack
Computer Science and Engineering

University of Michigan
Ann Arbor, MI 48109 USA

{bpeintne, pollackm}@eecs.umich.edu

Abstract

We present a simple greedy algorithm and a novel complete
algorithm for finding utilitarian optimal solutions to Simple
Temporal Problems with Preferences. Unlike previous algo-
rithms, ours does not restrict preference functions to be con-
vex. We present experimental results showing that (1) a sin-
gle iteration of the greedy algorithm produces high-quality
solutions, (2) multiple iterations, bounded by the square of
the number of constraints, produce near-optimal solutions,
and (3) our complete, memory-boundable algorithm has com-
pelling anytime properties and outperforms a branch-and-
bound algorithm.

Introduction
This paper presents a novel algorithm for finding utilitarian
optimal solutions to Simple Temporal Problems with Pref-
erences (STPPs). We show that the algorithm is complete,
memory-boundable, has compelling anytime properties, and
outperforms a branch-and-bound algorithm.

Recent planning and scheduling applications, e.g. (Pol-
lack et al. 2002; Muscettola et al. 1998), have used Tem-
poral Constraint Satisfaction Problems (TCSPs) (Dechter,
Meiri, & Pearl 1991) to model and reason about temporal
constraints that restrict when events are scheduled. Given
a set of events and temporal constraints, TCSP algorithms
find schedules: time assignments to each event that satisfy
the constraints. The difficulty of finding such assignments
depends on the expressive power of the constraints: the sim-
plest form is a tractable subclass called Simple Temporal
Problems (STPs).

STPs define only which assignments are acceptable; they
cannot express that some assignments may be more prefer-
able than others. For example, consider a Mars rover per-
forming experiments under tight power restrictions: for two
schedules that satisfy all constraints, the one requiring less
time, and thus consuming less power, may be preferable.

To address this limitation, recent work has extended TC-
SPs to represent preferences (Khatib et al. 2001; 2003;
Peintner & Pollack 2004; Morris et al. 2004). Preferences
are represented by adding a preference function to each con-
straint, which defines the value of each schedule with re-
spect to that constraint. Adding preferences changes the

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

task from finding any legal schedule to finding an optimal
schedule. Previous work focuses on two types of optimal-
ity, both defining a schedule’s value as an aggregation of
individual constraint values. The first type, called maximin
or Weakest Link Optimality, defines a schedule’s value as
the lowest value of all individual constraints. While this
aggregator allows efficient algorithms (Khatib et al. 2003;
Peintner & Pollack 2004), it is not always appropriate. A
second type, called utilitarian optimality, defines a sched-
ule’s value as the sumof all individual constraint values. To
date, algorithms for finding utilitarian optimal solutions to
STPs with Preferences (STPPs) have required convex pref-
erence functions (Morris et al. 2004).

In this paper, we describe the Greedy Anytime Partition
algorithm for STPPs (GAPS), an iterative algorithm that
does not restrict preference functions and exhibits appealing
properties that make it suitable for planning and scheduling:

Anytime Finds solutions that average over 80% of optimal
after a single iteration, and up to 99% of optimal after m2

iterations, where m is the number of constraints. Also
performs comparably to a previous algorithm for STPPs
that handles only convex preference functions.

Complete Finds optimal solution in time that compares fa-
vorably to a branch-and-bound algorithm.

Memory-boundable Allows caller to define trade-off be-
tween space and anytime performance.

We begin by presenting a small example and background
concepts. Then we describe our algorithms, report empirical
results, and conclude with future work.

Example
We describe a very simple example based on the Mars rover
domain (Morris et al. 2004) in which two events need to
be optimally scheduled: the start- and end-time of a single
experiment (events S and E). The experiment must begin
some time after the instrument it requires becomes available
(event A, set to time 0). Although the experiment can start
immediately once available, it is preferable that some time
separates A and S to allow the instrument to cool. This pref-
erence is expressed as C1 in Figure 1(a); the horizontal axis
represents the difference between A and S, while the vertical
axis represents the preference of each temporal difference.

AAAI-05 / 443

E-S

-1

0

1

2

3

4

5

0 1 2 3 4 5 6 7

S-A

-1

0

1

2

3

4

5

0 1 2 3 4 5 6 7

(d)

∞

E-A

-1

0

1

2

3

4

5

0 2 4 6 8 10 12

(f)

E-S

-1

0

1

2

3

4

5

0 1 2 3 4 5 6 7

(e)

S-A

-1

0

1

2

3

4

5

0 1 2 3 4 5 6 7∞

(a)

C1

C2

E-A

-1

0

1

2

3

4

5

0 2 4 6 8 10 12

(c)

C3

(b)

Figure 1: Example preference functions and their projections.

The scientific value of the experiment increases irregu-
larly with time spent running it (E-S), but is mitigated by the
significant power usage of the instrument. The net value is
expressed by the preference function in Figure 1(b). Finally,
since other experiments can begin once the current experi-
ment ends, it is preferred that the experiment finish as early
as possible. Figure 1(c) expresses this relationship.

A legal schedule in this example is one in which E < 12
and 1 ≤ E−S < 7; that is, one in which all preference
functions map to a nonnegative value. For a schedule {A=
0, S=3, E=6}, constraints C1, C2, and C3 have respective
preference values 3, 1, and 3, for a utilitarian value of 7. An
optimal schedule, of value 10, is {A=0, S=4, E=5}.

Background
An STP is a pair 〈X,C〉, where X is a set of events, and C
is a set of temporal constraints of the form: x−y ∈ [a, b],
x, y ∈ X and a, b ∈ �. An STP solution is a schedule
satisfying all constraints. An STP is consistentif at least one
solution exists. The worst-case complexity of consistency-
checking algorithms is O(|X|3) time.

Because STPs only include hard constraints, and not pref-
erences, they force the knowledge engineer to reason about
a trade-off when specifying constraints: specifying more
preferred values may yield better solutions but may instead
over-constrain the problem; specifying less narrow bounds
may reduce solution quality but makes it more likely that
a solution will be found. Allowing preference functions lets
the knowledge engineer avoid reasoning about this trade-off.

To extend an STP to an STPP, each constraint is assigned a
preference function that maps a temporal difference between
the constraint’s events to a preference value, a quantitative
measure of the value’s desirability. STPP constraints have
the form: 〈x− y ∈ [ak, bk], fk : t ∈ [ak, bk] → {0,�+}〉.

As noted above, once preference functions are added, the
challenge becomes that of finding an optimalschedule. We
evaluate a schedule with an objective function that aggre-

gates the values from each constraint’s preference function.
In this paper, we use the sumfunction, which results in util-
itarian optimal schedules.

The only previous algorithm for finding utilitarian solu-
tions to STPPs is that of Morris et al. (2004). They found
optimal solutions using linear programming and showed that
their algorithm, WLO+, found solutions averaging 90% of
optimal, and did so significantly faster than the LP approach,
despite having been designed for another type of optimality.
However, both WLO+ and the LP formulation restrict pref-
erence functions to be convex; thus it cannot handle prefer-
ences functions like that shown in Figure 1(b). Without this
restriction, the problem is NP-hard.

Algorithms
Our algorithms borrow the idea of projecting preference
functions onto hard STP constraints, allowing standard,
polynomial-time algorithms for solving STPs to be lever-
aged (Khatib et al. 2001). Rather than operating directly on
soft constraints, i.e., constraints with a preference function,
our algorithms first convert them into preference projections,
which represent each soft constraint using a set of hard STP
constraints, i.e., those without preference functions.

To obtain preference projections, we first discretize the
preference function range into a set of real values A, called
a preference value set({0, 1, 2, 3, 4} in our example). Then,
we project each constraint in the STPP to each level l∈A.

The projection of soft (STPP) constraint Ck to preference
level l is a list of hard (STP) constraints representing the
intervals that satisfy Ck at preference level l or higher. The
right column of Figure 1 shows the preference projection for
each constraint in our example. Each horizontal line seg-
ment in Figure 1(d)-(f) is an element of the preference pro-
jection. For example, the line segment at preference level
3 in Figure 1(f) denotes that if 0 ≤ E − S ≤ 6, then the
preference value for constraint C3 will be 3 or greater.

We identify each projected constraint with the 3-tuple
〈k, l, i〉, where k is the soft constraint from which it is de-
rived, l is its preference level, and i is an index that distin-
guishes it from other projected constraints at the same level.
Definition 1 A preference projection for constraintCk =
〈x−y∈ [ak, bk], fk〉 over preference value setA, is the set
Pk = {Pk[l] : l ∈ A}, where the projection at levell is
Pk[l] = {C〈k,l,1〉, C〈k,l,2〉, . . . , C〈k,l,n〉}, and (1)C〈k,l,p〉 =
〈x−y∈ [ap, bp]〉, (2) bp < ap+1 for 1 ≤ p < n and (3)⋃n

p=1[ap, bp] = {t|fk(t)≥ l}.

In Figure 1(d)-(f), circles and arrows show how each pref-
erence projection forms a tree. The root of the tree is always
a single constraint at preference level 0. A constraint’s child
is always one level higher and represents an interval that is
a subset of the parent constraint’s interval. We refer to all
descendants of a constraint h as des(h).

Given a set of preference projections, a hard STP called
a component STPcan be formed by selecting one STP con-
straint from each STPP constraint’s preference projection.
Definition 2 A component STP is a set of STP constraints,
S = {C〈1,l1,i1〉, . . . , C〈m,lm,im〉}, wherem is the number of
STPP constraints.S’s utilitarian value isu(S) =

∑m
i=1 li.

AAAI-05 / 444

The component STP ROOT = {C〈1,0,1〉, . . . , C〈m,0,1〉}
contains the root of each constraint’s projection tree and is
the most relaxed component STP; if ROOT is inconsistent,
then the STPP has no solution. Conversely, the most re-
strictive and preferable component STP contains constraints
from the highest level of each tree; if consistent, no other
consistent schedule for that STPP will have a higher value.

Given these extremes, we can cast our search for an opti-
mal schedule as a search for the highest-valued component
STP H , with value u(H). Because the preference values are
discretized, u(H) may be up to m∗ δA less than the value of
the optimal schedule, where δA is the maximum distance be-
tween preference values in the preference value set A. When
the preference functions are step functions and A contains a
value for each step value, as in Figure 1(b), the error is 0.
However, for smooth functions, such as that in Figure 1(c),
the search may produce slightly suboptimal answers.

STPP Greedy

Figure 2 presents STPP Greedy, a simple algorithm for
quickly finding a high-quality solution to an STPP. The al-
gorithm searches the space of component STPs, starting
with the lowest-valued, ROOT , and repeatedly improving
its value by replacing a single constraint with one of its chil-
dren. The main function, replaceAConstraint, picks
a constraint, replaces it with one of its children, and returns
the child’s identifier (the 3-tuple 〈k, l, i〉) or a failure flag
(k = −1) if no replacement is possible. If the replacement
by a child leads to an inconsistent component STP, a greedy
decision is made: the constraint is restored, marked as “fin-
ished” and never again chosen. In our implementation, we
reduce the time spent on consistency checking (in line 5) by
using the AC-3cc solver (Cervoni, Cesta, & Oddi 1994).

STPP Greedy solution quality depends on the quality of
the heuristic that chooses which child will replace its parent.
We designed and studied several heuristics, but given space
limitations, we describe only the one that performed best:
the 1 step assignment window reduction(1AWR) heuristic.

1AWR uses the “event assignment windows” maintained
by AC-3cc to estimate which of all possible children will
constrain the network least when propagated. The assign-
ment windows indicate the lower and upper bound of possi-
ble assignments to each event. For example, after propagat-
ing all constraints in the ROOT component STP of our ex-

STPP Greedy(ROOT)
1. IF ROOT is inconsistent, RETURN Ø
2. cSTP← ROOT
3. DO
4. 〈k, l, i〉 ← replaceAConstraint(cSTP)
5. IF k �= -1 AND cSTP is inconsistent
6. markAsFinished(C〈k,l,i〉)
7. cSTP[k]← parentOf(C〈k,l,i〉)
8. END IF
9. WHILE k �= -1
RETURN cSTP

Figure 2: The STPP Greedy algorithm.

ample, AC-3cc would report the windows: {A= [0, 0], S =
[0, 11], E =[1, 12]}. For each child, 1AWR mimics the first
iteration of AC-3cc to determine how much the assignment
windows of the child’s two events will shrink. The child
with the minimal reduction is chosen. For example, if C3’s
child is chosen, the first step in the propagation would reduce
E’s interval from [1, 12] to [1, 10], an assignment window re-
duction of 2. We later show that with 1AWR, STPP Greedy
finds solutions that average above 80% of the optimal value.

GAPS
We now show how to use STPP Greedy to achieve an any-
time, complete, and memory-boundable algorithm for find-
ing the utilitarian-optimal solutions to unrestricted STPPs.
Our algorithm, called the Greedy Anytime Partition algo-
rithm for STPPs (GAPS), can be understood as combining
pruning, greedy search, and a “divide and conquer” strategy.

At a high level, GAPS is very simple: it starts by running
STPP Greedy to find a greedy solution G (i.e. a compo-
nent STP). Then, GAPS uses G to partition the entire STPP
search space into n+1 smaller subproblems, n of which will
be placed in a priority queue to be recursively solved later
with GAPS, and one of which will be pruned. After this
first iteration, GAPS repeats these steps on a subproblem re-
moved from the queue, keeping track of the best solution
found by each call to STPP Greedy. When the queue emp-
ties, the best solution will be the optimal solution.

The interesting element of GAPS is how it partitions the
STPP search space using the component STP G. The goal
of the partition is to isolate a part of the search space that
contains only component STPs of utilitarian values less than
or equal to G’s. Such a partition can be pruned from the
search, because no solution better than G exists in that space.

We will illustrate the partition operation, which we call
a Greedy Partition(GP), using Figure 3. Each large box in
Figure 3 represents a single STPP subproblem using a set of
projection trees — one for each preference projection in the
problem. The trees in problem (S0), which are labeled C1,
C2, and C3, are the same trees as in Figure 1(d)-(f), i.e., the
preference projections for our example problem. All other
large boxes represent subproblems of (S0) that are produced
during the GP: those on the bottom row are subproblems of
(S0) that will eventually be placed in the priority queue; (S3

1)
is a subproblem of (S0) that will be pruned; and the rest are
intermediate subproblems that arise during the partition.

An STPP subproblem is a subset of the component STPs
in the original STPP. In Figure 3, a component STP is not
included in a subproblem if at least one of its components is
grayed. For example, consider the boxed elements of (S0),
which represent the component STP G found by running
STPP Greedy on the original problem. G exists in all sub-
problems on the top row, but not in those in the bottom row,
where one of G’s components is grayed out in each.

The GP operation consists of m single projection parti-
tions — one for each preference projection in the problem.
In our example, the first will partition (S0) into (S1

0) and (S1
1)

using the C1 projection. To achieve the split, it first copies
all preference projections other thanC1 (i.e., C2 and C3)
into the new subproblems (S1

0) and (S1
1). Then, projection C1

AAAI-05 / 445

1

4

3

0

2

1

4

3

0

2

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

(S1)
1(S0) (S2)

2

(S0)
1 (S0)

2 (S1)
2

(S1)
3

(S0)
3

Figure 3: Greedy Partition operation used in GAPS.

is split into two pieces: subproblem (S1
1) inherits nodes with

values less than or equal to G’s value in C1 (2 in our exam-
ple), while (S1

0) inherits nodes with values greater than G’s
value. The result is a partition in the mathematical sense: all
component STPs in (S0) that contain C1 constraints above
G’s value are in (S1

0), and all others are in (S1
1). Therefore,

the optimal solution will exist in either (S1
0) or (S1

1).
GP’s second single projection partition splits (S1

1) into
subproblems (S2

0), (S2
1), and (S2

2) using projection C2. Sub-
problem (S2

2) inherits the subtree consisting of constraints at
and below G’s level, while the rest is split into two parts,
(S2

0) and (S2
1), because the C2 constraints above the greedy

solution form two trees. Finally, the subproblem (S2
2) is split

into (S3
0) and (S3

1) based on constraint C3.
After the three steps, problem (S0) is partitioned into the

set of subproblems {(S1
0), (S2

0), (S2
1), (S3

0), (S3
1)}. The opti-

mal solution is guaranteed to reside in exactly one of these.
We can formalize this process with two definitions:

Definition 3 A single projection partition of a subproblem
S = {Pk : 0 ≤ k < m} with respect to a single con-
straint C〈k,l,p〉 is a set of subproblems,Υ(S|C〈k,l,p〉) =
{S0, S1, . . . , Sn}, wheren is the size ofH = {C〈k,r,p〉 ∈
Pk : r = l + 1}, Hi is theith element ofH and

• Sn = S\Pk ∪ {C〈k,r,p〉 ∈ Pk : r ≤ l}
• ∀i<nSi = S\Pk ∪Hi ∪ des(Hi).

The first bullet refers to the subproblem placed on the top
row of Figure 3, while the second bullet refers to those added
to the bottom row. Using set algebra, it can be easily proved
that single projection partitions are true partitions; hence, no
component STP is “lost” in the process.

Definition 4 A Greedy Partition of a subproblemS =
{Pk : 0 ≤ k < m} with respect to component STP
G[0,m] = {C〈k,l,p〉 : 0 ≤ k < m} is a set of subproblems
Ψ(S|G[0,m]), which is recursively defined asΨ(S|G[i,m]) =
Υ(S|Gi)\Sn ∪ Ψ(Sn|G[i+1,m]), where the base case is
Ψ(Sn|G[m,m]) = Sn.

Applying Definition 4 to our example, S refers to (S0) and
Ψ(S|G[0,m]) produces {(S1

0), (S2
0), (S2

1), (S3
0), (S3

1)}.

GAPS(STPP)
1. S← project(STPP)
2. ssQ← priority queue of subspaces, initially empty
3. best← Ø
4. REPEAT
5. G← STPP Greedy(S)
6. IF u(G) > u(best) best← G
7. addToQueue(ssQ, GreedyPartition(S, G))
8. S← getNextSS(ssQ);
9. WHILE (ssQ not empty)
RETURN best

Figure 4: The STPP algorithm GAPS.

Once the Greedy Partition is made, the last subproblem
created can be pruned. In our example, the search space
(S3

1) consists only of component STPs with value u(G)
(2+2+3=7) or less, since at each stage of its formation, we
kept only the projected constraints at or below G’s level.
Thus, because no component STP in the space can exceed
the value of G, (S3

1) can be pruned from the search. Only
subproblems (S1

0), (S2
0), (S2

1), and (S3
0) are inserted into the

queue to be fully searched in later iterations.
Figure 4 presents the core GAPS algorithm1. We have

discussed every part except for line 8, which retrieves the
next subproblem from the priority queue to prepare for the
next iteration. The choice of which subproblem to solve next
impacts both anytime performance and space requirements.
By default, we prioritize based on an upper bound, which is
the highest valued component STP (consistent or not) in the
subproblem. This priority function ensures that subproblems
with the most potential are explored first. Unfortunately, this
strategy allows the set of queued subproblems to grow quite
large. An alternative is to recursively explore each child of a
subproblem before moving on to the next (similar to a depth-
first search). Since the maximum number of recursive parti-
tions for a search space is m∗(|A|−1) and each partition can
produce at most m+(n−1) children (where m is the number
of constraints and n is the maximum i for any C〈k,l,i〉), the
maximum number of subproblems queued is m2 ∗ (|A|−1)
(n disappears because n � m).

Of course, the two strategies can be combined: given a
bound of M nodes, the first M−(m2∗(|A|−1)) nodes can be
inserted using the upper bound priority function. Anytime
the number of nodes in memory exceeds this threshold, new
subproblems are inserted using the depth-first priority func-
tion. Anytime the number of nodes drops below this thresh-
old, upper bound priority is resumed. Therefore, GAPS’s
caller can effectively manage a space/time trade-off.

GAPS is complete because of two properties. First, the set
of subproblems produced by GP is a true partition, meaning,
every component STP in the original problem exists in one
of the new subproblems. Second, every component STP that
is pruned is guaranteed to have value equal to or less than the
greedy solution. Thus, the optimal solution is never pruned.
A formal proof is omitted due to space restrictions.

1Figure 4 hides many details needed for practical implementa-
tion. For example, subproblems can be stored compactly in a tree.

AAAI-05 / 446

Empirical Evaluation
To test GAPS, we randomly generated STPPs and compared
the solution quality and running time of GAPS to a branch
and bound (BB) variant, called the Russian Doll algorithm
(Dechter 2003). We compared to BB because it is a pop-
ular approach for solving constraint optimization problems
and because it is complete, anytime, and handles non-convex
functions. We also tested GAPS against WLO+ on STPPs
with convex preference functions.

For the STPP problem, BB works by maintaining a partial
STP: it starts with the root of the first preference projection,
then adds the root from the next projection, and so on until
one of three possibilities occur: (1) the partial STP becomes
inconsistent; (2) an upper bound calculation proves that the
partial STP cannot extend to a STP with greater value than
the current best; or (3) the partial STP contains an element of
every projection (a full STP). In the third case, the full STP
is stored as “best”. In all cases, the algorithm backtracks by
removing the last element from the STP then trying a new
projected constraint from the previous STPP constraint.

The upper bound calculation after adding an element from
the ith projection is made by adding the value of the partial
STP (containing constraints 0 through i) to the upper bound
of constraints i+1 to m−1 (there are m constraints). The
naive upper bound calculation simply uses the level of the
highest-valued constraint for each projection. However, we
do better by modifying the well known Russian Doll tech-
nique, which first calculates the optimal solution for STPP
constraint m− 1, then calculates the optimal solution for
STPP constraints m−2 to m−1, and so on until the optimal
solution is found. This dynamic programming technique en-
sures that after assigning constraint i, the upper bound cal-
culation for constraints i+1 to m−1 is optimally tight.

Setup

We investigated three variations of the GAPS algorithm:
GAPS-1, which runs only a single greedy iteration; GAPS-
m2, which runs m2 iterations; and GAPS, which runs until
completion or until a 10-minute time threshold is reached.
The same threshold was applied to BB, which returns the
best solution found when the threshold is met.

We ran five tests: the first fixed the number of events to 10
and varied the constraint density from 1 to 3.5, where den-
sity is the ratio of constraints to events. The second test fixed
the constraint density at 2 and varied the number of events
from 5 to 12 (limited by the efficiency of the complete al-
gorithms). To measure how the algorithms fared with larger
problems, a third test varied the number of events from 10
to 90 but omitted BB.

The first three tests operated on networks restricted to
semi-convex preference functions. A semi-convex function
f is one in which the set {x : f(x) > l} forms at most a
single interval for any level l. This restriction ensured that
all preference projection trees were chains, as in constraints
C1 and C3 in our example. We made this restriction because
there is particular interest in this restriction in previous STPP
work (Khatib et al. 2001). To show GAPS performs well
without this restriction, our fourth test repeated the second,

but produced networks that contained, on average, about 1
branch in the projection tree for every 5 intervals.

The shapes of the preference functions in Tests 1-4 were
determined by a reduction factorchosen from an interval
[redLB, redUB]. This factor represents the fraction of a pro-
jected constraint’s interval that is covered by its child con-
straints. A factor close to 1 results in functions with steep
slopes; one close to 0 results in shallow slopes and fewer lev-
els. All tests used the interval [.5, .9] for the reduction factor
during generation. We arrived at this value by performing
a set of experiments that compared the solution quality of
STPP Greedy using several different reduction factor inter-
vals. For the interval [.5,.9], STPP Greedy fared the worst.
The maximum number of preference levels was 10.

The fifth test compared WLO+ solution quality to the so-
lution quality produced by GAPS when run for an equal
amount of time. The preference functions in the randomly
generated STPPs were convex (as required by WLO+) and
piece-wise linear; the number of linear segments ranged
from 3 to 6. We tested STPPs with 100 events and constraint
density ranging from 1 to 7.

The third test averaged the results from 100 trials, while
the others averaged 200 trials. All algorithms were written
in Java and run on a Pentium 4 3Ghz WindowsXP machine.

Results
Figure 5 shows the results of Tests 1-4. The plots show the
average normalized utilitarian value for the solutions from
each algorithm (the left axis) and the running times in sec-
onds for some of the algorithms (the right axis of tests 1 and
3). The normalized utilitarian value is computed by divid-
ing the utilitarian value by the number of constraints. The
value itself (shown on the left axis) has little significance;
the relative values among algorithms interest us most.

First we discuss the relative performance of GAPS and
BB. In Test 1, both had equal solution quality for small
problems, but GAPS finished more quickly. As density in-
creased, both required similar time, but BB’s solution qual-
ity fell quickly relative to GAPS. Thus, for problems in
which both found the optimal solution, GAPS found it faster,
and for harder problems GAPS finds better solutions than
BB in a given amount of time. These trends also hold in
Tests 2 and 4, although we omit run-times for readability.

Comparing Tests 2 and 4, we can see that although allow-
ing unrestricted functions increased the variance, the general
relationship between GAPS and BB changes only slightly,
with BB faring slightly worse in the unrestricted case. In
summary, GAPS exceeded BB in both optimal solution time
and anytime performance.

Next, we discuss the anytime performance of GAPS us-
ing GAPS-1 and GAPS-m2. All four tests show that GAPS
achieves most of its gains in the initial iterations. GAPS-1
found solutions averaging > 80% of GAPS’s value, while
GAPS-m2 averaged between 96.5% and 99%. Not shown is
the result that running m iterations averaged >90%.

Test 3 shows the running time for GAPS-1 and GAPS-
m2. GAPS-1 needed about one second for STPPs with 50
events and 100 constraints, while GAPS-m2 required 100
seconds. This shows running time does not scale directly

AAAI-05 / 447

Test 1: Density Variation

2.4

2.8

3.2

3.6

4

4.4

4.8

5.2

1.0 1.5 2.0 2.5 3.0 3.5
Density (# Constraints / # Events)

Ti
m

e
(s

ec
on

ds
)

0.001

0.01

0.1

1

10

100

1000

GAPS Score
BB Score
GAPS-C^2 Score
GAPS-1 Score
BB Time
GAPS Time

N
or

m
al

iz
ed

 V
al

ue
Test 2: Size Variation

2.8

3

3.2

3.4

3.6

3.8

5 6 7 8 9 10 11 12
Number of Events

GAPS Score

BB Score

GAPS-C^2 Score

GAPS-1 Score

N
or

m
al

iz
ed

 V
al

ue

Test 3: Size Variation for Large Problems

3

3.1
3.2

3.3
3.4

3.5

3.6
3.7

3.8
3.9

4

10 20 30 40 50 60 70 80 90
Number of Events

0.01

0.1

1

10

100

1000

Ti
m

e
(s

ec
on

dS
)

GAPS Score
GAPS-m^2 Score
GAPS-1 Score
GAPS-m^2 Time
GAPS-1 Time

N
or

m
al

iz
ed

 V
al

ue

Test 4: Size Variation with Split

2.8

3

3.2

3.4

3.6

3.8

5 6 7 8 9 10 11 12
Number of Events

GAPS Score
BB Score

GAPS-m^2 Score
GAPS-1 ScoreN

or
m

al
iz

ed
 V

al
ue

Figure 5: Solution quality and running times for the first four tests.

with the number of iterations: as expected, running time of
each iteration decreases with the size of the subproblem.

The fifth test showed that GAPS found slightly better so-
lutions than WLO+ when run for equal time. The following
table shows average solution quality as the number of con-
straints increases:

Constraints 100 200 300 400 500 600 700
WLO+ 89 142 195 251 310 371 430
GAPS 87 147 203 260 319 379 437

The most important result lies in the anytime performance
of the GAPS algorithm. That solutions 80-99% of opti-
mal can be found so quickly is important for planning and
scheduling applications that use STPPs.

Acknowledgments
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Con-
tract No. NBCHD030010 and the Air Force Office of Sci-
entific Research under Contract No. FA9550-04-1-0043.
Any opinions, findings, conclusions or recommendations are
those of the authors and do not necessarily reflect the view of
DARPA, the Department of Interior-National Business Cen-
ter, or the United States Air Force.

Conclusion
This paper presented a novel algorithm for finding utilitarian
optimal solutions to Simple Temporal Problems with Prefer-
ences (STPPs). We showed that the algorithm is complete,
memory-boundable, has compelling anytime properties, and
outperforms WLO+ and a branch-and-bound algorithm.

In the near future, we plan to use GAPS as the core of an
algorithm for finding the optimal utilitarian solutions to Dis-
junctive Temporal Problems with Preferences, a more ex-
pressive model than STPPs. We are also working to incor-
porate non-temporal constraints into the STPP model.

References
Cervoni, R.; Cesta, A.; and Oddi, A. 1994. Managing
dynamic temporal constraint networks. In Proceedings of
the 2nd International Conference on Artificial Intelligence
Planning Systems, 13–18.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence49:61–95.
Dechter, R. 2003. Constraint Processing. San Francisco,
CA 94104: Morgan Kaufmann.
Khatib, L.; Morris, P.; Morris, R.; and Rossi, F. 2001. Tem-
poral constraint reasoning with preferences. 17th Interna-
tional Joint Conf. on Artificial Intelligence1:322–327.
Khatib, L.; Morris, P.; Morris, R.; and Venable, K. B. 2003.
Tractable pareto optimal optimization of temporal prefer-
ences. 18th International Joint Conference on Artificial
Intelligence1:1289–1294.
Morris, P.; Morris, R.; Khatib, L.; Ramakrishnan, S.; and
Bachmann, A. 2004. Strategies for global optimization of
temporal preferences. In 10th International Conf. on Prin-
ciples and Practice of Constraint Programming, 408–422.
Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B. C.
1998. Remote agent: To boldly go where no AI system has
gone before. Artificial Intelligence103(1-2):5–47.
Peintner, B., and Pollack, M. E. 2004. Low-cost addition
of preferences to DTPs and TCSPs. In 19th National Con-
ference on Artificial Intelligence, 723–728.
Pollack, M. E.; McCarthy, C. E.; Ramakrishnan, S.;
Tsamardinos, I.; Brown, L.; Carrion, S.; Colbry, D.; Orosz,
C.; and Peintner, B. 2002. Autominder: A planning, mon-
itoring, and reminding assistive agent. 7th International
Conf. on Intelligent Autonomous Systems7.

AAAI-05 / 448

