
Superstabilizing, Fault-containing Distributed Combinatorial Optimization

Adrian Petcu and Boi Faltings∗
{adrian.petcu, boi.faltings}@epfl.ch

Artificial Intelligence Laboratory (http://liawww.epfl.ch/)
Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Abstract

Self stabilization in distributed systems is the ability of a
system to respond to transient failures by eventually reach-
ing a legal state, and maintaining it afterwards. This makes
such systems particularly interesting because they can toler-
ate faults, and are able to cope with dynamic environments.

We propose the first self stabilizing mechanism for multia-
gent combinatorial optimization, which works on general net-
works and stabilizes in a state corresponding to the optimal
solution of the optimization problem. Our algorithm is based
on dynamic programming, and requires a linear number of
messages to find the optimal solution in the absence of faults.

We show how our algorithm can be made super-stabilizing,
in the sense that while transiting from one stable state to the
next, our system preserves the assignments from the previ-
ous optimal state, until the new optimal solution is found. We
offer equal bounds for the stabilization and the superstabiliza-
tion time.

Furthermore, we describe a general scheme for fault contain-
ment and fast response time upon low impact failures. Multi-
ple, isolated failures are handled effectively.

To show the merits of our approach we report on experiments
with practically sized distributed meeting scheduling prob-
lems in a multiagent system.

Introduction
Self stabilization in distributed systems (Dijkstra 1974) is
the ability of a system to respond to transient failures by
eventually reaching a legal state, and maintaining it after-
wards. This property is useful in error-prone distributed
systems like distributed sensor networks, or in dynamic en-
vironments like control systems or distributed scheduling,
where convergence to legal states is ensured without user
intervention.

In general, self-stabilizing algorithms have been devel-
oped for relatively "low-level" tasks: leader election, span-
ning tree maintenance (e.g. (Collin & Dolev 1994)) and
mutual exclusion. A notable exception is the more recent

∗We thank Michael Schumacher and the reviewers for their use-
ful comments. This work has been funded by the Swiss National
Science Foundation under contract No. 200020-103421/1.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

work of (Collin, Dechter, & Katz 1999) for distributed self-
stabilizing constraint satisfaction.

There has also been an attempt at constraint optimization
using a distributed, self-stabilizing version of branch and
bound in (Yahfoufi & Dowaji 1996). This approach has the
drawback that it may be necessary to create an exponential
number of agents, because they represent processes corre-
sponding to subproblems.

We propose the first practical, self stabilizing mechanism
for multiagent combinatorial optimization, which stabilizes
in a state corresponding to the optimal solution of the prob-
lem. Unlike the previous approaches for constraint satisfac-
tion which are backtracking-based, our algorithm is based
on dynamic programming, and requires a linear number
of messages to find the optimal solution in the absence of
faults. The size of the largest message depends on the width
of the problem graph. This is an extension of the utility prop-
agation mechanism from (Petcu & Faltings 2005).

We show how our algorithm can be made super-
stabilizing (Dolev & Herman 1997), in the sense that while
transiting from one stable state to the next, the old assign-
ments from the previous optimal state are preserved (similar
to a "last-known-good" state), until the new optimal solu-
tion is found (without "random" changes to the variables).
Furthermore, we describe a general scheme for fault con-
tainment and fast response time upon low impact failures.
Multiple, isolated failures are handled effectively.

Finally, we present experimental results on distributed
meeting scheduling problems.

Definitions & notation
A discrete multiagent constraint optimization problem
(MCOP) is a tuple < X ,D,R > such that:
• X = {X1, ..., Xm} is the set of variables/agents;

• D = {d1, ..., dm} is a set of finite domains of the vari-
ables; we can assume equal sizes of the domains;

• R = {r1, ..., rp} is a set of relations, where a relation ri

is a function di1 × .. × dik → <
+ which denotes how

much utility is assigned to each possible combination of
values of the involved variables;
In this paper we consider unary and binary relations, be-

ing well-known that higher arity relations can also be ex-
pressed in these terms with little modifications. In a MCOP,

AAAI-05 / 449

Figure 1: A problem graph and a rooted DFS tree.
any value combination is allowed; the goal is to find an as-
signment X ∗ for the variables Xi that maximizes the aggre-
gate utility, i.e. the sum of utilities of individual relations.
For a node Xi, we define R

j
i = the relation(s) between Xi

and its neighbor Xj .

Pseudotrees
Our method works with a pseudotree arrangement of the
problem graph (this is possible for any graph).

Definition 1 A pseudo-tree arrangement of a graph G is
a rooted tree with the same nodes as G and the property
that adjacent nodes from the original graph fall in the same
branch of the tree (e.g. X0 and X11 in Figure 1).

As it is already known, a DFS (depth-first search) tree
is also a pseudotree, although the inverse does not always
hold. We thus use as pseudotree a DFS tree generated by a
self-stabilizing DFS algorithm as (Collin & Dolev 1994).

Figure 1 shows an example of a pseudotree that we shall
refer to in the rest of this paper. We distinguish between tree
edges, shown as solid lines (e.g. 8 − 3), and back edges,
shown as dashed lines, that are not part of the spanning tree
(e.g. 8 − 1, 12 − 2, 4 − 0). We call a path in the graph that
is entirely made of tree edges, a tree-path. A tree-path asso-
ciated with a back-edge is the tree-path connecting the two
nodes involved in the back-edge. Since our arrangement is
a pseudotree, such a tree path is always included in a branch
of the tree. For each back-edge, we call the higher node in-
volved in that back-edge its handler (e.g. 0, 1 and 2), and
the lower node its initiator (e.g. 8,4,11,12).

Definition 2 The parent P(X) of a node X is the single
node on a higher level of the pseudotree that is connected
to the node X directly through a tree edge (e.g. P (X4) =
X1). The children C(X) of a node X are the nodes lower
in the pseudotree that are connected to the node X di-
rectly through tree edges (e.g. C(X1) = {X3, X4}). The
pseudo-parents PP(X) of a node X are the nodes higher
in the pseudotree that are connected to the node X di-
rectly through back-edges (PP (X8) = {X1}). The pseudo-
children PC(X) of a node X are the nodes lower in the pseu-
dotree that are connected to the node X directly through
back-edges (e.g. PC(X0) = {X4, X11}).

SDPOP: a self-stabilizing protocol for MCOP
In a stable state, the system must satisfy the following legit-
imacy predicate: all variables are assigned values that max-
imize the aggregate utility. Our method is composed of 3
concurrent self-stabilizing protocols:

• self-stabilizing protocol for DFS tree generation: its
goal is to create and maintain (even upon faults/topology
changes) a DFS tree maintained in a distributed fashion

• self-stabilizing protocol for propagation of utility mes-
sages: bottom-up utility propagation along the DFS tree

• self-stabilizing protocol for propagation of value assign-
ments: based on the utility information obtained during
the previous protocol, each node picks its optimal value
and informs its children (top-down along the DFS tree).

The SDPOP algorithm is described in Algorithm 1. The
three protocols are initialized and then run concurrently. The
following subsections explain in detail the functioning of
each of the three subprotocols.

Algorithm 1: SDPOP - Self-stabilizing distributed pseu-
dotree optimization procedure for general networks.

1: SDPOP(X ,D,R): each agent Xi does:
2:
3: Self-stabilizing DFS protocol: run continuously
4: if changes in topology, reactivate
5: after stabilization, Xi knows P (i), PP (i), C(i), PC(i)
6:
7: UTIL propagation protocol: run continuously
8: get and store all new UTIL messages (Xk, UTILi

k)
9: if P(i), PP(i), C(i), PC(i), UTILi

k or Rk
i changed then

10: UTIL
P (i)
Xi

=
((

⊕

c∈C(i) UTILi
c

)

⊕
(
⊕

c∈{P (i)∪PP (i)} Rc
i

))

⊥Xi

11: Store UTIL
P (i)
Xi

and send it to P(i)
12:
13: VALUE propagation protocol: run continuously
14: get and store all new VALUE messages (Xk, v(Xk))
15: if changes in v(P (i)), v(PP (i)) or UTIL

P (i)
Xi

then

16: v∗
i ← argmaxXi

(

UTIL
P (i)
Xi

[v(P (i)), v(PP (i))]
)

17: Send V ALUE(Xi, v
∗
i) to all C(i) and PC(i)

Self-stabilizing DFS tree generation
This protocol has as a goal to establish and maintain a depth-
first search tree in a distributed fashion. We use the self-
stabilizing DFS algorithm from (Collin & Dolev 1994). In
this algorithm, each node maintains a public register with its
shortest path from the root. Reading the neighbors’ registers
and comparing them allows each node to classify its links
as tree edges, forward edges and back edges, depending on
its own point of view. The node Xi who labeled an edge
as a forward edge is its handler, and the pseudoparent of
the other node. The other node Xj involved in that non-tree
edge is its initiator, and the pseudochild of Xi.

Apart from its initial execution, this protocol reactivates
whenever any node detects a change in the problem topology
(addition/removal of variables or relations).

Self-stabilizing UTIL propagation
This protocol reactivates whenever it detects a change ei-
ther in the previous protocol (DFS generation, meaning that

AAAI-05 / 450

the topology of the problem has changed), or in the val-
uation structure of the optimization problem (values are
added/removed, valuations of tuples change in relations).

The UTIL propagation starts bottom-up from the leaves
and propagates upwards only through tree edges. The agents
send UTIL messages to their parents. Intuitively, such a mes-
sage informs a parent node Xj how much utility u∗

Xi
(vk

j)

each one of its values vk
j gives in the optimal solution of the

whole subtree rooted at the sending child, Xi. If there is
no back-edge connecting a node from Xi’s subtree to a node
above Xj , then these valuations depend only on Xj’s values,
and the message from Xi to Xj is a vector with |dom(Xj)|
values. Otherwise, these back-edges have to be taken into
account, and their handlers are present as dimensions in the
message from Xi to Xj .

Definition 3 UTIL
j
i , the UTIL message sent by agent Xi to

agent Xj is a multidimensional matrix, with one dimension
for each variable present in the context. dim(UTIL

j
i) is the

set of individual variables in the message. Note that always
Xj ∈ dim(UTIL

j
i).

The semantics of such a message is similar to an n-ary re-
lation having as scope the variables in the context of this
message (its dimensions). The size of such a message is the
product of the domain sizes of the variables from the con-
text.

Definition 4 The ⊕ operator (join): UTIL
j
i ⊕ UTIL

j
k is

the join of two UTIL matrices. This is also a matrix with
dim(UTIL

j
i) ∪ dim(UTIL

j
k) as dimensions. The value of

each cell in the join is the sum of the corresponding cells in
the two source matrices.

Example: given 2 matrices UTIL
j
i and UTIL

j
k,

with dim(UTIL
j
i) = {X1, Xj} and dim(UTIL

j
k) =

{X2, Xj}, then the value corresponding to 〈X1 = v
p
1 , X2 =

v
q
2, Xj = vr

j 〉 is UTIL
j
i (X1 = v

p
1 , Xj = vr

j) +

UTIL
j
k(X2 = v

q
2, Xj = vr

j). Also, dim(UTIL
j
i ⊕

UTIL
j
k) = {X1, X2, Xj}.

Definition 5 The ⊥ operator (projection): if Xk ∈
dim(UTIL

j
i), UTIL

j
i ⊥Xk

is the projection through op-
timization of the UTIL

j
i matrix along the Xk axis: for each

tuple of variables in {dim(UTIL
j
i) \ Xk}, all the corre-

sponding values from UTIL
j
i (one for each value of Xk)

are tried, and the best one is chosen. The result is a matrix
with one less dimension (Xk).

Notice that a relation R
j
i (between Xi and Xj), is just

a special case of UTIL matrix, with 2 dimensions i and j.
Therefore, operators ⊕ and ⊥ apply to it as well.

Example 1: for a relation R
j
i , R

j
i ⊥Xi

is a vector UTIL
j
i

containing the best utilities for each value of Xj , when the
corresponding optimal value of Xi is chosen. Example 2:
for a vector UTIL

j
i , UTIL

j
i ⊥Xj

is the optimal value of
Xj . Example 3: in Figure 1, X4 computes its UTIL1

4 mes-
sage for X1 (see Equation 1, and Table 1 for an extended
form):

X4 → X1 X1 = v0
1 ... X1 = vm−1

1

X0 = v0
0 u∗

X4
(v0

0 , v0
1) ... u∗

X4
(v0

0 , vm−1
1)

...
X0 = vn−1

0 u∗
X4

(vn−1
0 , v0

1) ... u∗
X4

(vn−1
0 , vm−1

1)

Table 1: UTIL message sent from X4 to X1, in Figure 1

UTIL1
4 = (

dim={X4,X0,X1}
︷ ︸︸ ︷

dim={X4}
︷ ︸︸ ︷

UTIL4
9 ⊕ UTIL4

10⊕R0
4

︸ ︷︷ ︸

dim={X4,X0}

⊕R1
4) ⊥X4

︸ ︷︷ ︸

dim={X0,X1}

(1)

The leaf nodes initiate the process (e.g. UTIL3
7 =

R3
7 ⊥X7

). Then each node Xi relays these messages ac-
cording to the following process:

• Wait for UTIL messages from all children. Since all the
respective subtrees are disjoint, joining messages from all
children gives Xi exact information about how much util-
ity each of its values yields for the whole subtree rooted at
itself. In order to assemble a similar message for its parent
Xj , Xi has to take into account R

j
i and any back-edge re-

lation it may have with nodes above Xj . Performing the
join with these relations and projecting itself out of the
result (see line 10 in Algorithm 1) gives a matrix with all
the optimal utilities that can be achieved for each possi-
ble combination of values of Xj and the possible context
variables. Thus, Xi can send to Xj its UTIL

j
i message

(see Equation 1, and Table 1 for UTIL1
4).

• If root node, Xi receives all its UTIL messages as vectors
with a single dimension, itself. It can then compute the
optimal overall utility corresponding to each one of its
values (by joining all the incoming UTIL messages) and
pick the optimal value for itself (project itself out).

The back-edge handlers are present as extra dimensions
in the UTIL messages that travel through the system along
the tree-path associated with the respective back-edge. Ex-
ample: X3 gets UTIL3

8 from X8, with dim(UTIL3
8) =

{X3, X1}. X3 joins this message with UTIL3
7 and R1

3
and projects itself out, in order to compute the message
for its parent: UTIL1

3 =
(
UTIL3

8 ⊕ UTIL3
7 ⊕R1

3

)
⊥X3

.
dim(UTIL1

3) = {X1}. When UTIL1
3 reaches X1, it will

be joined with UTIL1
4 (dim(UTIL1

4) = {X1, X0}), and
X1 will project itself out, to obtain UTIL0

1. Thus, the prop-
agation of X1 as a dimension in the UTIL messages starts
from X8 (initiator of R1

8) to X3 and ends at X1(handler).

Self-stabilizing VALUE propagation
The root of the pseudotree initiates the top-down VALUE
propagation phase by sending a VALUE message to its chil-
dren and pseudochildren, informing them about its chosen
value. Then, each node Xi is able to pick the optimal value
for itself upon receiving all VALUE messages from its parent
and pseudoparents. This is the value which was determined

AAAI-05 / 451

in Xi’s UTIL computation to be optimal for this particu-
lar instantiation of the parent/pseudoparents variables. Xi

then passes its value on to its children and pseudochildren.
Thus, there is exactly one VALUE message for each edge,
totalling to |R| VALUE messages that travel from the root to
the leaves.

Algorithm complexity
By construction, in the absence of faults, the number of
messages our algorithm produces is linear: there are n − 1
UTIL messages - one through each tree-edge (n is the num-
ber of nodes in the problem), and m VALUE messages -
one through each edge (m is the number of edges). The
DFS construction also produces a linear number of messages
(good algorithms require 2×m messages).

The complexity of this algorithm lies in the size of the
UTIL messages (the VALUE messages have constant size).

Theorem 1 The largest UTIL message produced by Algo-
rithm 1 is space-exponential in the width of the pseudotree
induced by the DFS ordering used.

PROOF. Dechter ((Dechter 2003), chapter 4, pages 86-88)
describes the fill-up method for obtaining the induced width.
First, we build the induced graph: we take the DFS traversal
of the pseudotree as an ordering of the graph and process
the nodes recursively (bottom up) along this order. When
a node is processed, all its parents are connected (if not al-
ready connected). The induced width is the maximum num-
ber of parents of any node in the induced graph.

It is shown in (Dechter 2003) that the width of a tree (no
back-edges) is 1. Actually the back-edges are the ones that
influence the width: a single backedge produces an induced
width of 2. From the construction of the induced tree, it
is easy to see that several backedges produce increases in
the width only when their tree-paths overlap on at least one
edge, and their respective handlers are different; otherwise
their effects on the width do not combine. Thus, the width
is given by the size of the maximal set of back-edges which
have overlapping tree-paths and distinct handlers.

During the UTIL propagation, the message size varies;
the largest message is the one with the most dimensions.
We have seen that a dimension Xi is added to a message
when a back-edge with Xi as a handler is first encountered
in the propagation, and travels through the tree-path associ-
ated with the back-edge. It is then eliminated by projection
when the message arrives at Xi. The maximal dimensional-
ity is therefore given by the maximal number of overlaps of
tree-paths associated with back-edges with distinct handlers.

We have shown that both the induced width and the max-
imal dimensionality are equal to the same amount. 2

In problems with high induced width, the UTIL messages
can be big. If this is the case, they can be "compressed"
by sending a mixture of UTIL messages and unprocessed
relations. This saves bandwidth by reducing the maximal
message size from |dom|w to a sum of |dom|max (max is a
bound on maximal dimensionality). However, the computa-
tional effort remains the same.

Self stabilization of SDPOP
Theorem 2 SDPOP is self-stabilizing: even upon transient
perturbations/failures, it will always reach a stable state
where all variables have the assignments corresponding to
the optimal solution of the optimization problem.

PROOF. We use a chaining technique and the fair compo-
sition principle (Dolev 2000) to prove the self-stabilization
of SDPOP. Firstly, the self-stabilizing DFS algorithm is
guaranteed to eventually build a valid DFS tree if no more
changes are made to the topology of the problem.

Thus, the utility propagation will eventually start with a
correct DFS tree. By design, this protocol reaches after at
most n− 1 messages a stable state where all the nodes have
correct UTIL messages from all their children (if there are
no more changes in topology or valuation structure).

Thirdly, the VALUE propagation protocol is guaranteed to
finally start from a stable state, where each node has correct
UTIL information. Based on that, this protocol reaches after
at most |R| VALUE messages a stable state where all vari-
ables are assigned their optimal values. 2

Theorem 3 Upon single faults, SDPOP stabilizes after at
most k UTIL messsages and at most |R| VALUE messages
(k is the length of the longest branch in the pseudotree). In
a synchronous implementation, stabilization is reached in at
most 2× k steps.

PROOF. By construction, the UTIL propagation initiated by
any node travels only bottom-up towards the root; therefore,
in the worst case, when a fault occurs at the leaf which is
farthermost from the root, there are as many UTIL messages
as nodes on that longest branch. Furthermore, in the worst
case, where the fault changes every value assignment, there
occurs a full-blown VALUE propagation of |R| linear mes-
sages. In the synchronous implementation, there are at most
k steps for bottom-up UTIL propagation and at most k steps
for top-down VALUE assignments. 2

Experimental evaluation
We experimented with distributed meeting scheduling in an
organization with a hierarchical structure (a tree with de-
partments as nodes, and a set of agents working in each de-
partment). The CSP model is the PEAV model from (Ma-
heswaran et al. 2004). Each agent has multiple variables:
one for the start time of each meeting it participates in, with
8 timeslots as values. Mutual exclusion constraints are im-
posed on the variables of an agent, and equality constraints
are imposed on the corresponding variables of all agents
involved in the same meeting. Private, unary constraints
placed by an agent on its own variables show how much it
values each meeting/start time. Random meetings are gener-
ated, each with a certain utility for each agent. The objective
is to find the schedule that maximizes the overall utility.

Table 2 shows how our algorithm scales up with the size
of the problems. All experiments are run on a 1.6Ghz lap-
top. Notice that the total number of messages includes the

AAAI-05 / 452

Agents 30 40 70 100 200
Meetings 14 15 34 50 101
Variables 44 50 112 160 270

Constraints 52 60 156 214 341
Messages 95 109 267 373 610

Max message size 512 4096 32k 256k 256k
Solving time (s) 2.1 7.2 21.6 43.4 72.3

∆-changes 5 5 12 16 27
∆-repair-steps 15 16 35 43 48

Table 2: SDPOP tests on meeting scheduling.

VALUE messages (constant size), and that due to the fact
that intra-agent subproblems are denser than the rest of the
problem, high-dimensional messages are likely to be vir-
tual, intra-agent messages (not actually transmitted). To our
knowledge, these are by far the largest optimization prob-
lems solved with a complete, distributed algorithm (200
agents, 101 meetings, 270 variables, 341 constraints). Pre-
viously, (Maheswaran et al. 2004) reported on experiments
with 33 agents, 12 meetings, 47 variables, 123 constraints.
The algorithm used there is ADOPT, which is not a self-
stabilizing algorithm.

Additionally, once the solutions are found, we apply si-
multaneous perturbations amounting to 10% of the agents,
to simulate change of preferences. ∆-changes shows how
many preferences changed, and ∆-repair-steps shows how
many synchronous steps are required for stabilization in the
new optimal solution. To our knowledge there are no other
results on self-stabilizing distributed optimization as yet.

Protocol Extensions
Self stabilizing algorithms generally do not provide any
guarantees about the way the system transits from a valid
state to the next, upon perturbations. Superstabilization and
fault containment are two features addressing this issue.

Super-stabilization
Super-stabilization is a guarantee that the protocol satisfies
a passage predicate at all times, transitional states included
(Dolev 2000). Typically, this is a safety property, weaker
than the legitimacy predicate, but nevertheless useful.

Assuming that the occasional perturbations of the system
are not so drastic that they completely change the old so-
lution, we define the passage predicate as maintaining the
previous optimal assignment while the new one is recom-
puted. This aspect can be vital (e.g. while controlling an
industrial process in real-time, random settings applied to
various installations during the search for the optimal so-
lution can be dangerous). This poses a problem for back-
tracking algorithms, since they produce "random" variable
assignments in their search for the optimal solution, as in-
stantiations are made in order to try them out and compute
their costs. Keeping this predicate true in transitional states
thus requires extra effort.

In contrast, this "stability" is very natural to our algo-
rithm, since first all the UTIL information is propagated and
then the value assignment phase begins, with already sta-
ble/optimal values. This requirement is briefly broken by

SDPOP after the new stabilization of the UTIL protocol,
where the VALUE propagation begins. Typically, this is a
short process, since a linear number of linear size messages
is used. Complete atomicity of the switch to the new solu-
tion is also possible, provided the messages are transmitted
synchronously. The VALUE propagation proceeds as before,
but the nodes change their value only after a number of clock
ticks, not immediately as before. The number of ticks is
given for each node as the difference between the length of
the longest branch in the pseudotree and its level in the pseu-
dotree (this is easy to obtain from the DFS protocol). This
ensures that the switch to the new optimum happens atomi-
cally, when the VALUE propagation reached all leaves. No-
tice that the superstabilization time is the same as in normal
SDPOP, just that the assignments are made all at the end.

Fault-containment

Other aspects of self-stabilization are the quick response
time in case of "minor" changes and the containment of their
effects to confined areas in their vicinity (Ghosh et al. 1996).

Fault-containment in the DFS construction It is obvious
that changes in the DFS structure will adversely affect the
performance of our algorithm, since some of the UTIL mes-
sages will have to be recomputed and retransmitted. There-
fore, it is desirable to maintain as much as possible the cur-
rent DFS tree. Describing such a protocol is beyond the
scope of this paper. We use techniques similar to (Dolev
& Herman 1997; Ghosh et al. 1996).

Fault-containment in the UTIL/VALUE protocols In the
previous UTIL protocol, upon a perturbation all UTIL mes-
sages on the tree-path from the fault to the root are recom-
puted and retransmitted. This is sometimes wasteful, since
some of the faults have limited, localized effects, which need
not propagate through the whole problem. To limit this, we
change the UTIL propagation in two respects.

Firstly, when a change occurs, and an UTIL message
needs to be retransmitted, it is compared to the one which
was previously sent; in case there are no differences, it is
simply discarded. Thus, the influences of a change in terms
of utility variations diminish from one hop to the next, until
the propagation stops altogether.

Secondly, we rescale all UTIL matrices by subtracting
from each element the lowest utility value present in that ma-
trix. This is a sound operation because in such a propagation
algorithm the relative differences in valuation are important,
and not the absolute valuations. Intuitively, if a node Xi has
3 values, then receiving 0,1 and 2 as valuations for these val-
ues is no different than receiving 10,11 and 12. This makes
more irrelevant changes not trigger a propagation anymore.

Similarly, VALUE messages propagate only as long as
there is a change in assignment performed; thus, low magni-
tude changes in the problem are likely to even go unnoticed
by nodes which are relatively far away.

Fast response time upon low-impact faults In any real-
time system, optimal decisions have to be made as quickly
as possible. In some cases, we want to respond to a per-
turbation by immediately assigning the new optimal value

AAAI-05 / 453

to the "touched" variable, and then gradually re-assigning
the neighboring ones to their new optimal values, until all
the system is again stabilized. For example, when a truck
breaks down, we want to immediately re-route the closest
one to take its load, and then gradually re-route the other
trucks to the new optimum. We also want to deal effectively
with multiple simultaneous faults which are unrelated (their
effects are localized in different parts of the problem).

To achieve this, each node needs global utility informa-
tion. Then it is easy to immediately assess locally the global
effect of a perturbation on any node. In the previous proto-
col, the root had global information, but all other nodes had
accurate UTIL information only about their subtrees. We ex-
tend the UTIL propagation by making it uniform: now it also
goes top-down, from each node to its children. A message
from a parent to its child summarizes the utility informa-
tion from all the problem except the subtree of that child.
Joining this message with the ones received from its chil-
dren gives each node a global view of the system, logically
making each node in the system equivalent to the root.

The process is initiated by the root. Each Xi (root in-
cluded) computes for each of its children Xj a UTIL

j
i

message. Xi first builds the join: JOIN
j
i = R

j
i ⊕(

⊕

c∈{TN(i)\Xj}
UTILi

c

)

(TN(i) is the set of tree-

neighbors of Xi). e.g.: JOIN5
2 = R5

2⊕UTIL2
0⊕UTIL2

6).

Then, appropriate projections have to be applied, and the
message is sent to the child. Intuitively, UTIL

j
i (Xi → Xj)

has to match the dimensions of UTILi
j (Xj → Xi), except

that Xj has to be added (taken care of by the join of R
j
i) and

Xi may need to be projected out (unless there is any back-
edge connecting Xi with a node in Xj’s subtree). When
the DFS algorithm from (Collin & Dolev 1994) is used, it is
possible for a node Xi to determine which is the tree-path
associated with each one if its back-edges by comparing the
suffix/prefix of the root-paths of its neighbors with their ids.
If there is no back-edge Rk

i s.t. its associated tree-path goes
through Xj , then Xi projects itself out of the brute message;
otherwise not. Once Xi has determined the relevant dimen-
sions, it projects out everything else:

UTIL
j
i = JOIN

j
i ⊥Xk∈{dim(JOIN

j

i
)\dim(UTIL

j

i
)}

Examples: dim(UTIL2
0) = {X0, X2}, dim(UTIL5

2) =
{X0, X2, X5}, dim(UTIL11

5) = {X0, X11}. When com-
puting UTIL2

0, X0 sees that the tree-path of R0
11 goes

through X2, therefore, it does not project itself out of
JOIN2

0 . Similarly, X2 keeps itself in UTIL5
2, but projects

itself out of JOIN6
2 ; UTIL11

5 = JOIN11
5 ⊥{X5,X2}.

Upon a change a node can now immediately locally com-
pute its new globally optimal value. In case the perturbation
implies a change in utility for several other variables, the
propagation spreads, but only as far as necessary. Thus, low
impact perturbations require just a few messages to reach the
new optimal state. In case their impact areas do not overlap,
they are effectively dealt with: in the best case, n simultane-
ous perturbations are dealt with in O(1) time. Obviously, in
the worst case the propagation spreads to all nodes.

Concluding Remarks
We propose the first self stabilizing mechanism for dis-
tributed combinatorial optimization, which works for gen-
eral constraint networks and stabilizes in an optimal solution
of the optimization problem. We offer equal bounds for the
stabilization and the superstabilization time.

Closest in spirit with our work is the self stabilizing con-
straint satisfaction approach from (Collin, Dechter, & Katz
1999). Our contributions beyond this work are: first, we ex-
tend the framework for optimization, not just satisfaction.
Second, our algorithm is based on dynamic programming
and requires a linear number of messages to find the op-
timal solution in the absence of faults. Our algorithm is
thus well suited for distributed systems, where many small
messages produce big overheads. Third, we presented in-
teresting extensions of the basic algorithm, achieving super-
stabilization, fault-containment and fast response time.

The contributions beyond the protocol from (Petcu &
Faltings 2005) are manyfold: self stabilization, superstabi-
lization, fault containment, uniform utility propagation.

Experiments on distributed meeting scheduling problems
show that our approach gives good results when the prob-
lems have low induced width.

Future work includes application to several problem do-
mains and tuning the fault-containment scheme to common
kinds of failures.

References
Collin, Z., and Dolev, S. 1994. Self-stabilizing depth-first
search. Information Processing Letters 49(6):297–301.
Collin, Z.; Dechter, R.; and Katz, S. 1999. Self-stabilizing
distributed constraint satisfaction. Chicago Journal of The-
oretical Computer Science.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann.
Dijkstra, E. W. 1974. Self stabilizing systems in
spite of distributed control. Communication of the ACM
17(11):643–644.
Dolev, S., and Herman, T. 1997. Superstabilizing proto-
cols for dynamic distributed systems. Chicago Journal of
Theoretical Computer Science.
Dolev, S. 2000. Self-Stabilization. MIT Press.
Ghosh, S.; Gupta, A.; Herman, T.; and Pemmaraju, S. V.
1996. Fault-containing self-stabilizing algorithms. In Sym-
posium on Principles of Distributed Computing, 45–54.
Maheswaran, R. T.; Tambe, M.; Bowring, E.; Pearce, J. P.;
and Varakantham, P. 2004. Taking DCOP to the real-
world: Efficient complete solutions for distributed multi-
event scheduling. In AAMAS-04.
Petcu, A., and Faltings, B. 2005. A scalable method for
multiagent constraint optimization. In Proceedings of the
19th International Joint Conference on Artificial Intelli-
gence, IJCAI-05.
Yahfoufi, N., and Dowaji, S. 1996. A self-stabilizing dis-
tributed branch-and-bound algorithm. In Computers and
Communications, 246–252.

AAAI-05 / 454

