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Abstract

Recent research has focused on bridging the gap be-
tween the satisfiability (SAT) and constraint satisfaction
problem (CSP) formalisms. One approach has been to
develop a many-valued SAT formula (MV-SAT) as an
intermediate paradigm between SAT and CSP, and then
to translate existing highly efficient SAT solvers to the
MV-SAT domain. Experimental results have shown this
approach can achieve significant improvements in per-
formance compared with the traditional SAT and CSP
approaches.

In this paper, we follow a different route, developing
SAT solvers that can automatically recognise CSP struc-
ture hidden in SAT encodings. This allows us to look
more closely at how constraint weighting can be im-
plemented in the SAT and CSP domains. Our experi-
mental results show that a SAT-based approach to han-
dle weights, together with CSP-based approach to vari-
able instantiation, is superior to other combinations of
SAT and CSP-based approaches. A further experiment
on the round robin scheduling problem indicates that
this many-valued constraint weighting approach outper-
forms other state-of-the-art solvers.

Introduction
Constraint satisfaction is an intuitively simple but expres-
sively powerful concept. Over the last three decades, it has
emerged as a major research field within artificial intelli-

gence and computer science. Much of this research has fo-

cused on two areas: firstly thmodellingof complex prob-

lems as constraint satisfaction problems (CSPs), e.g. in plan-

ning and scheduling, scene analysis, combinatorial prob-

lems, etc., and secondly the development of search tech-

niques for efficientlysolving such problems. While mod-
elling hard real-world problems as CSPs remains an inter-
esting research challenge (e.g., in bioinformatics), it has re-

However, the encoding of CSPs as SAT problems raises
further issues: firstly, many real world problems are more
naturally formulated using non-Boolean variables, i.e. vari-
ables that can have more than two values. This means a SAT
encoding can result in exponential increases in problem size.
Secondly, the structure of a CSP, when reformulated as SAT,
is usually flattened out and remains hidden in the encoding.
This loss of structure can have negative impacts on solver
performance. These concerns have motivated the investiga-
tion of hybrid models of SAT and CSP representations. For
example, the automated theorem proving community has
studied many-valued clausal formulas that represent con-
junctive normal forms (CNF) of many-valued domain vari-
ables (Ansteguiet al. 2003). This representation enables
SAT solvers to exploit the highly compact and structured na-
ture of the CSP variables. More recent studies have looked
at bridging the gap between SAT and CSP formalisms, and
have produced a new generation of powerful many val-
ued (MV-SAT) solvers, such as Mv-Satz (Aneguiet al.
2003), a many-valued variant of Chaff (Astegui, Larrubia,

& Manya 2003), NB-WalkSAT (Frisch & Peugniez 2001)
and Regular-SAT (Bjar et al. 2001). These methods can
solve hard combinatorial problems, such as all interval se-
ries, round robin scheduling and quasigroup completion at a
level unmatched by existing standard SAT and CSP solvers.

On the other hand, stochastic local search (SLS) SAT
solvers have been significantly improved in recent years.
Within this group, dynamic local search (DLS) techniques
(Hoos & Stitzle 2005) have proved the most promising,
especially for larger and more difficult problems. The un-
derlying idea of a DLS approach is to dynamically adjust
the weights of false clauses during the search, thereby es-
caping local minima and moving quickly towards a solu-
tion. The superiority of such DLS algorithms over non-
weighting SLS solvers has been demonstrated on a wide

cently been recognised that many CSPs can be reformulatedrange of SAT benchmarks (Hutter, Tompkins, & Hoos 2002;

as satisfiability (SAT) problems and solved more efficiently
using modern SAT solvers (Hoos 1999b; Walsh 2000). Ex-
amples of such problem domains include planning (Kautz
& Selman 1996), scheduling éar & Manya 2000), hard-
ware verification (Velev & Bryant 2003) and combinatorial
problems (Kautzt al. 2001).

Copyright © 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Thorntonet al. 2004), but as yet DLS has not been explic-
itly applied to the many valued SAT domain. From this,
two questions arise: firstly, will the superior performance of
DLS algorithms still be maintained in the MV-SAT domain?
And secondly, what is the most suitable way for an MV-SAT
DLS solver to handle clause weights?

In this paper, we aim to answer these questions through
an investigation of the behaviour and performance of PAWS
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(Thorntonet al. 2004) and SAPS (Hutter, Tompkins, &

Algorithm 1 DLS(F)

Hoos 2002) in the MV-SAT domain. We chose PAWS and
SAPS because they represent the state-of-the-art for DLS
SAT solving using additive and multiplicative weighting re-
spectively. We firstly extend the method of Arnegui, Lar-
rubia, & Manya (2003) to make these SAT solvers auto-
matically recognise the underlying structure of CSP vari-
ables and constraints hidden inside SAT formulas. Based
on this recovered knowledge, we modified the SAT versions
of PAWS and SAPS in small steps until they became CSP-
like DLS algorithms. This approach allows us to look more
closely at how constraint weighting should be handled in the
MV-SAT domain. Our experimental results show that a SAT-
based approach to handle weights, together with CSP-based
approach to variable selection, is superior to other combi-
nations of SAT and CSP-based approaches. Our empiri-
cal results on the round robin scheduling problem also in-
dicate that the proposed many-valued constraint weighting
approach outperforms other state-of-the-art SAT solvers.

The remainder of the paper is structured as follows: the
next section reviews and discusses how modern DLS al-
gorithms handle weights in the SAT domain. We then de-
scribe how to make SAT solvers automatically recognise
hidden CSP structure. Further, we describe how constraint
weighting should be handled in the many-valued domain by
comparing the effects of SAT and CSP-based approaches to
weight adjustment in combination with the SAT and CSP-
based variable instantiation methods. In the next section we
discuss our experimental study, describing the experimental
design and analysing the performance results. Finally, we
conclude the paper with some remarks on related and future
work.

Dynamic Local Search for SAT

Like other SLS techniques, DLS algorithms start with a ran-
dom truth assignment for each Boolean variable in a given
formula, and iteratively flip single literals that minimise the
objective function until a solution is found or a local min-
imum is encountered. The basics of DLS are sketched in
algorithm 1. The main idea is that weights are typically as-
sociated with the clauses of a given formula and the sum of
weights of unsatisfied clauses is used as the objective func-
tion to select the next move. During the search, DLS solvers
dynamically adjust the clause weights and hence modify the
search landscape to effectively avoid or escape from local
minima.

Since the introduction of the Breakout heuristic (Mor-
ris 1993), DLS algorithms have evolved into several vari-
ants which differ in which clause weights should be updated
(all clauses or only unsatisfied clauses), how these weights
should be adjusted (additively or multiplicatively), and when
weight updates should take place (deterministically or prob-
abilistically) (Hoos & Siitzle 2005). Despite these differ-
ences, the underlying strategy to escape from local min-
ima is based on two mechanismacreasingandreducing
weights?

Also known asscalingandsmoothingn multiplicative weight-
ing DLS algorithms.
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generate a random starting point;
set the weightv; of each clause; to 1;
while solution is not found and not timeodb
find a list £ of variables that minimis&w; if flipped;
if such list existsthen
randomly flip a variable irC;
else
update the weight of each false clause;
end if
end while

When a DLS search procedure encounters a local min-
imum, weights are increased on the currently unsatisfied
clauses, changing the surface of the search landscape. As a
result, the search is forced to move to a new neighbour that
can satisfy at least one of the currently unsatisfied clauses,
thus escaping from the original local minimum. However,
this increasing mechanism has side-effects: as it locally
modifies the search landscape to escape the current local
minimum, it possibly gives rise to other new local minima,
which may in some cases be even harder to avoid or escape
(Morris 1993). Therefore, the reducing mechanism was in-
troduced to counter these side-effects. After a certain period
of time, the weights of chosen clauses are reduced in order
to make the search forget the high costs of violating clauses
which are no longer helpful.

CSP-based Dynamic Local Search for SAT

In this section we describe the procedures used to integrate
the CSP-based variable instantiation heuristic and the CSP-
based weighting mechanism into SAPS and PAWS:

CSP Variable Extraction

In (2003), An$tegui, Larrubia, & Mang hypothesised that
SAT solvers could take advantage of the domain structure
of CSP variables. They embedded a detection mechanism
into Chaff to automatically identify the set of Boolean vari-
ables that model the same CSP variable. Their experi-
ments showed that the performance of Chaff is significantly
boosted by the integration of a CSP-based variable instanti-
ation heuristic.

In a direct SAT encoding, a CSP variablg with a do-
main D, = {1,2,...,m} is encoded using a set of
Boolean variables3; = {zf|s € [1..m]} so that the truth
value ofz{ represents the assignment of valu® X;. The
following clauses are also added to the SAT formula to en-
sure the exclusive-or relationship of CSP variable-value as-
signments, i.e. the attribute that, can be instantiated with
exactly one value oD;:

e Oneat-least-ongALO) clause,x} Vv ...V 2™, to ensure
that at least one domain value is assigned’tpand

e A set of at-most-ondAMO) clauses,~z$ V —z! where
1 < s <t < m, to ensure that at most one domain value
can be assigned t§;.
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By detecting these two types of clauses in a given SAT

It is still an open research question as to which weighting

formula, we can recognise the sets of Boolean variables that approach is superior for any given problem class.

model the underlying CSP variables. It is worth noting that

In order to answer this question, we integrated a CSP con-

several studies on SAT encodings of CSPs have reported anstraint extraction mechanism into SAPS and PAWS to auto-

improvement of performance when applying SLS solvers to
a direct SAT encoding without the AMO clauses (known as
a multivalued encoding (Prestwich 2004)A CSP solution
can then easily be extracted from a SAT solution by taking
any SAT-assigned value for each CSP variable.

CSP-based Variable Instantiation Scheme

We firstly integrated the CSP variable extraction mecha-
nism into SAPS and PAWS to automatically extract the un-
derlying CSP variable structures from the SAT encodings
(with or without the presence of AMO clauses). We then
modified the variable instantiation mechanism, which con-
trols how a Boolean variable is selected and flipped, so
that the exclusive-or relationship was built into the oper-
ation of the algorithms. This is related to the work on
NB-WalkSAT (Frisch & Peugniez 2001) and Regular-SAT
(Béjar et al. 2001), that similarly enforces the unique in-
stantiation of variables with non-binary domains within an
MV-SAT framework.

The new CSP-based variable instantiation heuristic en-
sures that for each underlying CSP variallgthere is ex-
actly one true Boolean variabié at any one time during the
search, while all related Boolean variablese B; — {z!}
remain false. Each time the search looks for a Boolean vari-
able to flip, all false variables; involved in false clauses,
and all associated variable$ € B; — {z!, 25} are consid-
ered for selection. This differs from the original SAT-based
variable instantiation heuristic which ignores these associ-
ated variables. When a false variabfgis flipped, the pre-
viously associated true variahig is set to false in one oper-
ation. Hence all ALO and AMO clauses become redundant
and can be removed from the problem.

CSP-based Weight Updating Scheme

In a binary CSP, a constraitt; between two CSP variables
X, and X; defines a set of paired domain valugst) that
X; and X; cannot take simultaneously. In the direct SAT
encoding of a binary CSP, such a constrdift is encoded
using a set o€onflict(CON) clauses. A CON clausﬁj, of
the form—z? v —|x§-, ensures that if{; is instantiated with
value s then X ; cannot be instantiated with valugor vice
versa.

In a binary CSP, weight is generally added to unsatis-
fied constraints, whereas in a direct SAT encoding weight is
added to particular pairs of values that violate the underlying

CSP constraint. Hence, in a CSP approach, all possible in-

matically recognise the set of CON clauses that represents
the underlying CSP constraint. We then modified the weight
updating mechanism in SAPS and PAWS so that, in both the
weightincreasing and reducing phases, either the weight of a
particular unsatisfied clausa%t. is updated or the weights of

all clauses that represent an unsatisfied CSP const@raint

are updated. With the new architecture, we are able to com-
pare different variants of weighting approaches based on the
combinations between SAT-based and CSP-based variable
instantiation and weighting mechanisms.

Experimental Results and Discussion

Based on this new architecture, we implemented four vari-
ants of SAPS and four variants of PAWS, using combina-
tions of the SAT and CSP-based heuristics described above:

e SVI+SWM (ss): SAT-based variable instantiation and
SAT-based weighting mechanism (the original DLS SAT
implementation);

e SVI+CWM (sc): SAT-based variable instantiation and
CSP-based weighting mechanism;

e CVI+SWM (c9: CSP-based variable instantiation and
SAT-based weighting mechanism;

e CVI+CWM (cc): CSP-based variable instantiation and
CSP-based weighting mechanism (a total CSP-like DLS
variant for SAT);

As one of the aims of this paper is to evaluate the impact
of SAT and CSP-based weighting heuristics on the perfor-
mance of DLS SAT solvers, but not to compare additive with
multiplicative weighting, we selected the reactive version of
SAPS (RSAPS) and used the default valuegf¢t.3) andp
(0.8) to avoid the time consuming parameter tuning required
for SAPS? Note also that Hutter, Tompkins, & Hoos (2002)
reported that the performance of RSAPS is comparable to
SAPS on a wide range of benchmark problems.

Problem Set

We selected all-interval-series, graph colouring, uniform
random binary CSPs and round robin problems as the bench-
marks to evaluate the performance of the eight DLS SAT
solver variants.

We obtained the graph colouring (flat100 and flat200) and
random binary CSPs from the authors of SAPS and PAWS.
To further evaluate the scalability of the DLS variants, we
generated 0 instances of the flat graph colouring problem

stantiations that violate a constraint are penalised, whereasusing Culberson’s generator wittb0 vertices, 3 colours

in a SAT approach, only the current violating instantiation
is penalised.
weighting scheme was employed in the GENET atrtificial
neural network CSP solver (Choi, Lee, & Stuckey 2000).

°This case was not considered in (Atsgui, Larrubia, &
Manya 2003).

and an edge density 6f018.* This is the same generator

In separate research, a similar fine-grained used for the flat100 and flat200 problems. We then trans-

lated thesel0 instances into direct SAT encodings and ran

3Three out of four parameters of SAPS require fine tuning to
achieve optimal performance of SAPS (Thornairal. 2004).
“http://web.cs.ualberta.cajoe/Coloring/
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RSAPS to determine the median and hardest problem in- xo’ _ PAWS Scalbily X107 SAPS Scalabilly

=)
o

stances. Other problems used in this study are available at ss / s ss

SATLIB.5 J - sc K Jl - sc )/
The results of the PAWS and SAPS variants on these 4 | | &2 / e | o J

benchmark problems are shown in Tables 1, 2 and 3. Each * / = )/

variant was runl, 000 times on each benchmark problem ’ ! ’ .

except the50v15d40¢ problems {00 runs) and the round ! o ! L

robin scheduling foil6, 18 and20 teams (WitthO, 50 and 180-m 100 200-m 200h 450-m 450-h 100-m 100-h 200-m 200-h /4507m 450-h

Problem (by difficulty) Problem (by difficulty)

10 runs, respectively). All the time results are in seconds un-
less otherwise stated, and all experiments were performed on _. . _
a Sun supercomputer withx Sun Fire V880 servers, each Figure 1: Scalability of PAWS and RSAPS variants on flat
with 8 x UltraSPARC-IIl 900MHz CPU and8GB memory ~ Problems. The problems are ordered by hardness. Nhe

m and N-h stand for the median and hard instances of the

er node. -
P flatNV series.
StrUCtured and Random Blnary CSPS PAWS Run-Time Distribution SAPS Run-Time Distribution
Table 1 presents the results of PAWS and RSAPS variants S el -
on the structured CSP benchmarks, consisting of the all- - gg

interval-series and graph colouring problems. These results
show the CVI+SWM combination consistently dominates
the other combinations, both within the PAWS and RSAPS
results and across problem classes.

By grouping the four variants into a CVI-based and an 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
SVI-based set, we can consider the impact of the different e (nseeonds) e tnseconds)
weighting mechanisms on the performance of RSAPS and
PAWS, and ignore the effects of the variable instantiation
heuristics. Such an analysis shows that in both sets the per-
formance of the SWM variants are up to order of magni-

tude better than the CWM variants both in terms of exe- gAT-weighting and CSP-weighting when using the SAT-

cution time and local search cost (the number of flips per- yariaple instantiation. Here, RSAPS prefers CSP-weighting

formed to find a solution). Hence, SWM emerges as the best gp, || the random binary problems, and PAWS prefers CSP-

weighting approach for all-interval-series and graph colour- \yeighting on the harder, larger problems. However, as the

ing problems. SAT-variable instantiation is not competitive, this result is of
We used the same approach to evaluate the impact of the minor interest.

different variable instantiation heuristics on the performance

of PAWS and RSAPS. In contrast to the weighting methods, Round Robin Scheduling Problems

the CSP-based variable instantiation heuristic emerges as

significantly better than the SAT-based heuristic. For PAWS,

the CSP-based variants performed alddutimes better than

the SAT-based variants on the flat450 series in terms of ex-

ecution time and aroun80 times better in terms of local

search cost. For RSAPS, the relative dominance of the CSP-

based variants was even more marked.

Percent successful runs
|
O
(@]
Percent successful runs

Figure 2: RTDs of PAWS and RSAPS variants on the
50v15d40c-hard instance.

The results in the first experiment indicate that a combined
application of CSP-based variable instantiation and a SAT-
based weighting mechanism can significantly boost the per-
formance of DLS SAT solvers. To further clarify the ef-
ficiency of this approach in comparison with other state-
of-the-art SAT solvers, we ran a second experiment on

. the round robin scheduling problem. In recent years, this
Figure 1 graphs the mean local search costs of the RSAPS g, 1+ 15 mament problem has become an important bench-

variants and PAWS variants on the flat graph colouring se- mark for the combinatorial search community (Goreeal.

ries. These two graphs clearly indicate that the performance 1998). In 2000, Bj > ; :
: . , Bjar & Manya translated this problem into
of the CVI-based variants scale better than the SVI-based 4 SAT domain and was able to find a solutiondoteams

variants as the problems become harder and larger. in an average of2.73 hours using the R-Novelty algorithm.

_ Inthe random binary CSP domain, the CVI+SWMvariant  gefore this work, the20 team instance was unsolvable by
is generally still the better of the four variants, although for  gjiner combinatorial, SAT or MV-SAT approach.

PAWS the performance of the CVI+CWM variant is close For this experiment, we ran the CVI+SWM variants of
to the CVI+SWM variant and even slightly better in terms  rgaps and PAWS, called MV-RSAPS and MV-PAWS, on
of the local search cost. However, the PAWS’ CVI+SWM = geven round robin problem instances frémeams t020
variant is still better in terms of execution time, as shown in = {aams (these problems were originally used irjé8 &

the run-time distributions (RTDs) (Hoos 19992) of Figure 2. \anya 20008). Table 3 shows the results of MV-PAWS

In contrast to the results for the structured CSPs, Ta- and ‘MV-RSAPS in comparison with the original PAWS
ble 2 shows a reversal in the relative performance between 3ng RSAPS and two of the best complete SAT solvers

Shttp://www.satlib.org Shttp://web.udl.es/usuaris/d4372149/
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PAWS RSAPS PAWS RSAPS
Problem  Variant % Time[ Flips % Time[ Flips Problem| Variant % Time[ Flips % Time[ Flips
ais10 |SVI+CWM || 100%| 0.14 37,704 || 100%| 0.14 34, 842 v=30 SVI+CWM || 100%| 0.06 9,490 || 100% 0.14 23, 649
SVI+SWM || 100% 0.08 24,684 || 100% 0.07 20, 393 d=10 SVI+SWM || 100% 0.04 6,845 (| 100% 0.21 43,459
CVI+CWM || 100%| 0.05 5,316 || 100%| 0.04 4,630 =80 CVI+CWM || 100%| 0.02 1,522|| 100% 0.03 2,379
CVI+SWM || 100% 0.04 5,040 || 100% 0.03 3,063 median | CVI+SWM || 100% 0.02 1,584 || 100% 0.03 2,216
aisl2 SVI+CWM || 100% 2.34 435,026 || 100% 1.95 394,003 v=30 SVI+CWM || 100% 0.08 14, 160 || 100% 0.20 38, 798
SVI+SWM || 100% 1.17 250, 188 || 100% 0.67 157,082 d=10 SVI+SWM || 100% 0.07 10, 298 || 100% 0.41 77,230
CVI+CWM || 100% 0.37 34,830 || 100% 0.36 27,989 =80 CVI+CWM || 100% 0.03 2,592 (| 100% 0.05 4,116
CVI+SWM || 100% 0.35 33,000 || 100% 0.16 14,794 hard CVI+SWM || 100% 0.03 2,447 || 100% 0.04 2,994
flat100- | SVI+CWM || 100%) 0.01 9,170 || 100% 0.02 8,663 v=30 SVI+CWM || 100% 0.14 23,813 || 100% 0.27 45,249
median | SVI+SWM (| 100%| 0.01 8,348]| 100%| 0.01 7,677 d=10 SVI+SWM || 100%| 0.07 14,998 || 100% 0.40 84,141
CVI+CWM || 100% 0.01 1,644 || 100% 0.01 2,134 c=40 CVI+CWM || 100% 0.05 3,882 (| 100% 0.09 6,844
CVI+SWM || 100% 0.00 1,606 || 100%| 0.00 1,890 median | CVI+SWM || 100% 0.04 3,811 || 100% 0.05 5,094
flat100- | SVI+CWM || 100%) 0.05 35,614 || 100% 0.05 30,025 v=30 SVI+CWM || 100% 0.14 23,171 || 100% 0.31 50,710
hard SVI+SWM || 100% 0.05 37,311 || 100% 0.06 30,063 d=10 SVI+SWM || 100% 0.11 23, 266 || 100% 0.48 98, 759
CVI+CWM || 100%| 0.02 7,894 || 100%| 0.02 8,229 c=40 CVI+CWM || 100%| 0.05 4,176 || 100% 0.09 6,723
CVI+SWM || 100% 0.02 7,736 || 100% 0.02 8,169 hard CVI+SWM || 100% 0.04 3,729 (| 100% 0.06 5,063
flat200- | SVI+CWM || 100%, 0.29 181, 566 || 100% 0.64 361, 786 v=50 SVI+CWM || 100% 1.49 134,128 (|99.8%) 76.04| 5,631,474
median | SVI+SWM || 100% 0.19 162, 398 || 100%| 0.49 296, 697 d=10 SVI+SWM || 100% 1.37 132,363((99.1%| 130.43|11, 586, 967
CVI+CWM || 100% 0.12 31, 786 || 100% 0.24 60, 235 =80 CVI+CWM || 100% 0.62 25,575 || 100% 2.49 87,653
CVI+SWM || 100% 0.08 25,200 || 100% 0.20 48,278 median | CVI+SWM || 100% 0.60 29, 590 || 100% 1.47 59, 583
flat200- | SVI+CWM || 100%| 10.03| 6,819, 680 || 100% 9.05| 4,807,225 v=50 SVI+CWM || 100% 1.90 159,213 || 99.8% 92.65| 6,892,970
hard SVI+SWM || 100%| 4.39| 3,153,438 || 100%| 6.06| 4,148,664 d=10 |SVI+SWM || 100%| 1.62 155,124 ((98.9%| 152.19 |13, 704, 204
CVI+CWM || 100% 1.73 573,207 || 100% 2.74 676,973 c=80 CVI+CWM || 100% 0.74 30, 196 || 100% 3.17 110,510
CVI+SWM || 100% 1.18 426,136 || 100% 1.62 461, 815 hard CVI+SWM || 100% 0.67 33,221 || 100% 1.71 68, 682
flat450- | SVI+CWM || 100%| 54.05|15,407,113 || 100%| 99.42|28,004, 978 v=50 SVI+CWM || 100%| 169.42| 11, 878, 897 54%| 729.61|58, 600,553
median | SVI+SWM || 100%| 24.25| 7,902,070 || 100%| 56.56|15, 966, 332 d=10 SVI+SWM || 100%| 192.58 |17, 196, 220 44%| 889.19|78, 820,237
CVI+CWM || 100% 2.72 341,017 || 100%| 33.00| 3,135,384 c=40 CVI+CWM || 100%| 47.12| 1,593,711 99% 84.20| 2,722,482
CVI+SWM || 100% 2.22 317,243 || 100%| 12.11| 1,203,609 median | CVI+SWM || 100%| 35.04| 1,542,803 100%! 38.32| 1,442,271
flat450- | SVI+CWM || 100%| 190.24 | 55, 363, 281 || 93.2%| 192.16 | 54, 140, 275 v=50 SVI+CWM || 100%| 226.70| 15, 813, 749 37%| 954.80|75, 526,227
hard SVI+SWM || 100%| 107.65 | 34,479,371 (| 99.4%| 111.74 | 31, 867, 483 d=10 SVI+SWM 99%]|214.15| 19, 248, 169 28%|1047.34|91, 501, 564
CVI+CWM || 100%| 13.29| 1,643,087 || 100%| 73.29| 6,838,029 c=40 CVI+CWM || 100%| 72.99| 2,522,204 93%| 225.51| 8&,200,102
CVI+SWM || 100%| 12.36| 1,672,053 100%| 36.78| 3,574,930 hard CVI+SWM || 100%| 58.75| 2,664,852 || 100% 90.90| 3,455,520
9125.17| SVI+CWM || 100%| 22.56| 1,348, 325 0%]| 600.00 n/a
svi+swM |[100%| 9.82]  744,124|] o0%|600.00 n/a Table 2: Random binary CSP problems
CVI+CWM || 100% 5.24 166, 449 || 100%| 371.78| 8, 829, 445
CVI+SWM || 100% 4.53 159,275|| 100%| 60.85| 1,718,548
4250.29] SVI+CWM || 100%| 69.23| 579,887 0%]600.00 n/a las. Based on this new architecture, we are able to explore
SVITSWM |[100%| 28.71| 359,073 0%]|600.00 n/a and evaluate the impact of different SAT and CSP-based
cvi+cwM || 100%| 13.86 79,135 0% 600.00 n/a heuristics for instantiating variables and handling weights on
cvi+swM |[100%| 12.36 75,718|| 94%|215.40| 1,174,523 the performance of DLS SAT solvers. Our experimental re-
sults show that a SAT-based weighting mechanism together
Table 1: Structured CSP problems with a CSP-based variable instantiation is the most suit-

able DLS approach to solve direct SAT-encodings of CSPs.
) A further comparison on the round robin scheduling prob-
zChaff.2004.11.15 and Satz215. We also include the results jem shows that this approach significantly outperforms other
of R-Novelty reported in (Bjar & Manya 2000), in which  methods. In particular, using the MV-PAWS variant with the
the top numbers are the original results and the bottom num- cv| and SWM heuristics, we can find solutions for t2@
bers are the approximated results if run on our test machine. team round robin scheduling problem within one hour, while

These results show MV-PAWS is a clear winner, particularly - the previous state-of-the-art approach required several hours
on the larger problems where it can find a solution for the o solve the same problem.

20 team instance within one hour, whereas R-Novelty takes |4 2002, Ostrowskét al. produced a pioneering paper

more than 3 hours. on recognising the variable dependencies in SAT formu-
. las through logic gates of the forfa=, A, V}. Within this
Conclusions and Future Work framework, the unique instantiation attribute of CSP vari-

We have integrated a structure extraction mechanism into ables discussed in this paper can be seen as an exclusive-or
SAPS and PAWS that automatically recovers the underlying gate. In future work, we intend to further integrate the use
CSP variable and constraint structure hidden in SAT formu- of gates into SLS SAT solvers, especially DLS techniques.
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Succ. Time Flips Time Time
Problem‘ Variant lParam % mean| mean| zg;jfl?f R-Novelty
n =8 |MV-PAWS 35 || 100%: 0.01 610 1.85 n/a
MV-RSAPS| n/a || 100% 0.01 627 0.14
PAWS 3 || 100% 0.02 2,879
RSAPS n/a || 100% 0.16 18,428
n = 10 | MV-PAWS 12 || 100% 0.16 5,057 17.24 n/a
MV-RSAPS| n/a || 100% 0.35 9,694 3190.37
PAWS 3| 100% 0.39 24,177
RSAPS n/a || 100% 70.85| 4,236,607
n = 12 | MV-PAWS 11 || 100% 2.29 36,912 115.27 16.20
MV-RSAPS| n/a || 100% 7.41 90,947 || > 24hrs 4.50
PAWS 3| 100% 9.01 258, 507
RSAPS n/a 11%| 3419.69|90, 818, 167
n = 14 | MV-PAWS 8 || 100% 26.66 242,734 || > 24hrs 104.40
MV-RSAPS| n/a ||89.8%) 253.71| 1,528,434 || > 24hrs 29.00
PAWS 3 58% 423.70| 5,481,201
RSAPS n/a 0%| > 24hrs n/a
n = 16 | MV-PAWS 6 || 100% 209.71| 1,352,252 > 24hrs| 1008.00
MV-RSAPS| n/a 60%| 16535.46 | 74, 040, 590 || > 24hrs 280.00
PAWS 3 0%| > 24hrs n/a
RSAPS n/a 0%| > 24hrs n/a
n = 18 | MV-PAWS 5| 100%| 1652.95| 6,985,404 ([ > 24hrs| 7128.00
MV-RSAPS| n/a 0%| > 24hrs n/a|| > 24hrs| 1980.00
PAWS 3| 0%| > 24hrs n/a
RSAPS n/a 0%| > 24hrs n/a
n = 20 [ MV-PAWS 41| 100%| 3177.17( 9,079,655|| > 24hrs|45828.00
MV-RSAPS| n/a 0%| > 24hrs n/a || > 24hrs|12730.00
PAWS 3 0%| > 24hrs n/a
RSAPS n/a 0%| > 24hrs n/a

Table 3: Round robin results

Another interesting direction is to extend this work to dif-
ferent SAT encodings of CSPs. Gent (2002) looked at the
SAT support encoding, which allows complete SAT solvers
to maintain the arc consistency of CSP problems by using
unit propagation. He reported that local search techniques
such as WalkSAT can also benefit from this encoding. It
would therefore be interesting to investigate the behaviour
and performance of SAT and CSP-based variants of DLS
SAT solvers using the support encoding.
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