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Abstract

Recent research has focused on bridging the gap be-
tween the satisfiability (SAT) and constraint satisfaction
problem (CSP) formalisms. One approach has been to
develop a many-valued SAT formula (MV-SAT) as an
intermediate paradigm between SAT and CSP, and then
to translate existing highly efficient SAT solvers to the
MV-SAT domain. Experimental results have shown this
approach can achieve significant improvements in per-
formance compared with the traditional SAT and CSP
approaches.
In this paper, we follow a different route, developing
SAT solvers that can automatically recognise CSP struc-
ture hidden in SAT encodings. This allows us to look
more closely at how constraint weighting can be im-
plemented in the SAT and CSP domains. Our experi-
mental results show that a SAT-based approach to han-
dle weights, together with CSP-based approach to vari-
able instantiation, is superior to other combinations of
SAT and CSP-based approaches. A further experiment
on the round robin scheduling problem indicates that
this many-valued constraint weighting approach outper-
forms other state-of-the-art solvers.

Introduction
Constraint satisfaction is an intuitively simple but expres-
sively powerful concept. Over the last three decades, it has
emerged as a major research field within artificial intelli-
gence and computer science. Much of this research has fo-
cused on two areas: firstly themodellingof complex prob-
lems as constraint satisfaction problems (CSPs), e.g. in plan-
ning and scheduling, scene analysis, combinatorial prob-
lems, etc., and secondly the development of search tech-
niques for efficientlysolving such problems. While mod-
elling hard real-world problems as CSPs remains an inter-
esting research challenge (e.g., in bioinformatics), it has re-
cently been recognised that many CSPs can be reformulated
as satisfiability (SAT) problems and solved more efficiently
using modern SAT solvers (Hoos 1999b; Walsh 2000). Ex-
amples of such problem domains include planning (Kautz
& Selman 1996), scheduling (Béjar & Manỳa 2000), hard-
ware verification (Velev & Bryant 2003) and combinatorial
problems (Kautzet al. 2001).
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However, the encoding of CSPs as SAT problems raises
further issues: firstly, many real world problems are more
naturally formulated using non-Boolean variables, i.e. vari-
ables that can have more than two values. This means a SAT
encoding can result in exponential increases in problem size.
Secondly, the structure of a CSP, when reformulated as SAT,
is usually flattened out and remains hidden in the encoding.
This loss of structure can have negative impacts on solver
performance. These concerns have motivated the investiga-
tion of hybrid models of SAT and CSP representations. For
example, the automated theorem proving community has
studied many-valued clausal formulas that represent con-
junctive normal forms (CNF) of many-valued domain vari-
ables (Anśoteguiet al. 2003). This representation enables
SAT solvers to exploit the highly compact and structured na-
ture of the CSP variables. More recent studies have looked
at bridging the gap between SAT and CSP formalisms, and
have produced a new generation of powerful many val-
ued (MV-SAT) solvers, such as Mv-Satz (Ansóteguiet al.
2003), a many-valued variant of Chaff (Ansótegui, Larrubia,
& Manyà 2003), NB-WalkSAT (Frisch & Peugniez 2001)
and Regular-SAT (B́ejar et al. 2001). These methods can
solve hard combinatorial problems, such as all interval se-
ries, round robin scheduling and quasigroup completion at a
level unmatched by existing standard SAT and CSP solvers.

On the other hand, stochastic local search (SLS) SAT
solvers have been significantly improved in recent years.
Within this group, dynamic local search (DLS) techniques
(Hoos & Sẗutzle 2005) have proved the most promising,
especially for larger and more difficult problems. The un-
derlying idea of a DLS approach is to dynamically adjust
the weights of false clauses during the search, thereby es-
caping local minima and moving quickly towards a solu-
tion. The superiority of such DLS algorithms over non-
weighting SLS solvers has been demonstrated on a wide
range of SAT benchmarks (Hutter, Tompkins, & Hoos 2002;
Thorntonet al. 2004), but as yet DLS has not been explic-
itly applied to the many valued SAT domain. From this,
two questions arise: firstly, will the superior performance of
DLS algorithms still be maintained in the MV-SAT domain?
And secondly, what is the most suitable way for an MV-SAT
DLS solver to handle clause weights?

In this paper, we aim to answer these questions through
an investigation of the behaviour and performance of PAWS
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(Thornton et al. 2004) and SAPS (Hutter, Tompkins, &
Hoos 2002) in the MV-SAT domain. We chose PAWS and
SAPS because they represent the state-of-the-art for DLS
SAT solving using additive and multiplicative weighting re-
spectively. We firstly extend the method of Ansótegui, Lar-
rubia, & Manỳa (2003) to make these SAT solvers auto-
matically recognise the underlying structure of CSP vari-
ables and constraints hidden inside SAT formulas. Based
on this recovered knowledge, we modified the SAT versions
of PAWS and SAPS in small steps until they became CSP-
like DLS algorithms. This approach allows us to look more
closely at how constraint weighting should be handled in the
MV-SAT domain. Our experimental results show that a SAT-
based approach to handle weights, together with CSP-based
approach to variable selection, is superior to other combi-
nations of SAT and CSP-based approaches. Our empiri-
cal results on the round robin scheduling problem also in-
dicate that the proposed many-valued constraint weighting
approach outperforms other state-of-the-art SAT solvers.

The remainder of the paper is structured as follows: the
next section reviews and discusses how modern DLS al-
gorithms handle weights in the SAT domain. We then de-
scribe how to make SAT solvers automatically recognise
hidden CSP structure. Further, we describe how constraint
weighting should be handled in the many-valued domain by
comparing the effects of SAT and CSP-based approaches to
weight adjustment in combination with the SAT and CSP-
based variable instantiation methods. In the next section we
discuss our experimental study, describing the experimental
design and analysing the performance results. Finally, we
conclude the paper with some remarks on related and future
work.

Dynamic Local Search for SAT
Like other SLS techniques, DLS algorithms start with a ran-
dom truth assignment for each Boolean variable in a given
formula, and iteratively flip single literals that minimise the
objective function until a solution is found or a local min-
imum is encountered. The basics of DLS are sketched in
algorithm 1. The main idea is that weights are typically as-
sociated with the clauses of a given formula and the sum of
weights of unsatisfied clauses is used as the objective func-
tion to select the next move. During the search, DLS solvers
dynamically adjust the clause weights and hence modify the
search landscape to effectively avoid or escape from local
minima.

Since the introduction of the Breakout heuristic (Mor-
ris 1993), DLS algorithms have evolved into several vari-
ants which differ in which clause weights should be updated
(all clauses or only unsatisfied clauses), how these weights
should be adjusted (additively or multiplicatively), and when
weight updates should take place (deterministically or prob-
abilistically) (Hoos & Sẗutzle 2005). Despite these differ-
ences, the underlying strategy to escape from local min-
ima is based on two mechanisms:increasingandreducing
weights.1

1Also known asscalingandsmoothingin multiplicative weight-
ing DLS algorithms.

Algorithm 1 DLS(F)
generate a random starting point;
set the weightwi of each clauseci to 1;
while solution is not found and not timeoutdo

find a listL of variables that minimiseΣwi if flipped;
if such listL existsthen

randomly flip a variable inL;
else

update the weight of each false clause;
end if

end while

When a DLS search procedure encounters a local min-
imum, weights are increased on the currently unsatisfied
clauses, changing the surface of the search landscape. As a
result, the search is forced to move to a new neighbour that
can satisfy at least one of the currently unsatisfied clauses,
thus escaping from the original local minimum. However,
this increasing mechanism has side-effects: as it locally
modifies the search landscape to escape the current local
minimum, it possibly gives rise to other new local minima,
which may in some cases be even harder to avoid or escape
(Morris 1993). Therefore, the reducing mechanism was in-
troduced to counter these side-effects. After a certain period
of time, the weights of chosen clauses are reduced in order
to make the search forget the high costs of violating clauses
which are no longer helpful.

CSP-based Dynamic Local Search for SAT
In this section we describe the procedures used to integrate
the CSP-based variable instantiation heuristic and the CSP-
based weighting mechanism into SAPS and PAWS:

CSP Variable Extraction

In (2003), Anśotegui, Larrubia, & Manỳa hypothesised that
SAT solvers could take advantage of the domain structure
of CSP variables. They embedded a detection mechanism
into Chaff to automatically identify the set of Boolean vari-
ables that model the same CSP variable. Their experi-
ments showed that the performance of Chaff is significantly
boosted by the integration of a CSP-based variable instanti-
ation heuristic.

In a direct SAT encoding, a CSP variableXi with a do-
main Di = {1, 2, . . . , m} is encoded using a set ofm
Boolean variablesBi = {xs

i |s ∈ [1..m]} so that the truth
value ofxs

i represents the assignment of values to Xi. The
following clauses are also added to the SAT formula to en-
sure the exclusive-or relationship of CSP variable-value as-
signments, i.e. the attribute thatXi can be instantiated with
exactly one value ofDi:

• Oneat-least-one(ALO) clause,x1
i ∨ . . . ∨ xm

i , to ensure
that at least one domain value is assigned toXi; and

• A set of at-most-one(AMO) clauses,¬xs
i ∨ ¬xt

i where
1 ≤ s ≤ t ≤ m, to ensure that at most one domain value
can be assigned toXi.
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By detecting these two types of clauses in a given SAT
formula, we can recognise the sets of Boolean variables that
model the underlying CSP variables. It is worth noting that
several studies on SAT encodings of CSPs have reported an
improvement of performance when applying SLS solvers to
a direct SAT encoding without the AMO clauses (known as
a multivalued encoding (Prestwich 2004)).2 A CSP solution
can then easily be extracted from a SAT solution by taking
any SAT-assigned value for each CSP variable.

CSP-based Variable Instantiation Scheme

We firstly integrated the CSP variable extraction mecha-
nism into SAPS and PAWS to automatically extract the un-
derlying CSP variable structures from the SAT encodings
(with or without the presence of AMO clauses). We then
modified the variable instantiation mechanism, which con-
trols how a Boolean variable is selected and flipped, so
that the exclusive-or relationship was built into the oper-
ation of the algorithms. This is related to the work on
NB-WalkSAT (Frisch & Peugniez 2001) and Regular-SAT
(Béjar et al. 2001), that similarly enforces the unique in-
stantiation of variables with non-binary domains within an
MV-SAT framework.

The new CSP-based variable instantiation heuristic en-
sures that for each underlying CSP variableXi there is ex-
actly one true Boolean variablext

i at any one time during the
search, while all related Boolean variablesxs

i ∈ Bi − {xt
i}

remain false. Each time the search looks for a Boolean vari-
able to flip, all false variablesxs

i involved in false clauses,
and all associated variablesxu

i ∈ Bi − {xt
i, x

s
i} are consid-

ered for selection. This differs from the original SAT-based
variable instantiation heuristic which ignores these associ-
ated variables. When a false variablexs

i is flipped, the pre-
viously associated true variablext

i is set to false in one oper-
ation. Hence all ALO and AMO clauses become redundant
and can be removed from the problem.

CSP-based Weight Updating Scheme

In a binary CSP, a constraintCij between two CSP variables
Xi andXj defines a set of paired domain values(s, t) that
Xi andXj cannot take simultaneously. In the direct SAT
encoding of a binary CSP, such a constraintCij is encoded
using a set ofconflict (CON) clauses. A CON clausecst

ij , of
the form¬xs

i ∨ ¬xt
j , ensures that ifXi is instantiated with

values thenXj cannot be instantiated with valuet, or vice
versa.

In a binary CSP, weight is generally added to unsatis-
fied constraints, whereas in a direct SAT encoding weight is
added to particular pairs of values that violate the underlying
CSP constraint. Hence, in a CSP approach, all possible in-
stantiations that violate a constraint are penalised, whereas
in a SAT approach, only the current violating instantiation
is penalised. In separate research, a similar fine-grained
weighting scheme was employed in the GENET artificial
neural network CSP solver (Choi, Lee, & Stuckey 2000).

2This case was not considered in (Ansótegui, Larrubia, &
Manyà 2003).

It is still an open research question as to which weighting
approach is superior for any given problem class.

In order to answer this question, we integrated a CSP con-
straint extraction mechanism into SAPS and PAWS to auto-
matically recognise the set of CON clauses that represents
the underlying CSP constraint. We then modified the weight
updating mechanism in SAPS and PAWS so that, in both the
weight increasing and reducing phases, either the weight of a
particular unsatisfied clausecst

ij is updated or the weights of
all clauses that represent an unsatisfied CSP constraintCij

are updated. With the new architecture, we are able to com-
pare different variants of weighting approaches based on the
combinations between SAT-based and CSP-based variable
instantiation and weighting mechanisms.

Experimental Results and Discussion
Based on this new architecture, we implemented four vari-
ants of SAPS and four variants of PAWS, using combina-
tions of the SAT and CSP-based heuristics described above:

• SVI+SWM (ss): SAT-based variable instantiation and
SAT-based weighting mechanism (the original DLS SAT
implementation);

• SVI+CWM (sc): SAT-based variable instantiation and
CSP-based weighting mechanism;

• CVI+SWM (cs): CSP-based variable instantiation and
SAT-based weighting mechanism;

• CVI+CWM (cc): CSP-based variable instantiation and
CSP-based weighting mechanism (a total CSP-like DLS
variant for SAT);

As one of the aims of this paper is to evaluate the impact
of SAT and CSP-based weighting heuristics on the perfor-
mance of DLS SAT solvers, but not to compare additive with
multiplicative weighting, we selected the reactive version of
SAPS (RSAPS) and used the default values forα (1.3) andρ
(0.8) to avoid the time consuming parameter tuning required
for SAPS.3 Note also that Hutter, Tompkins, & Hoos (2002)
reported that the performance of RSAPS is comparable to
SAPS on a wide range of benchmark problems.

Problem Set
We selected all-interval-series, graph colouring, uniform
random binary CSPs and round robin problems as the bench-
marks to evaluate the performance of the eight DLS SAT
solver variants.

We obtained the graph colouring (flat100 and flat200) and
random binary CSPs from the authors of SAPS and PAWS.
To further evaluate the scalability of the DLS variants, we
generated10 instances of the flat graph colouring problem
using Culberson’s generator with450 vertices,3 colours
and an edge density of0.018.4 This is the same generator
used for the flat100 and flat200 problems. We then trans-
lated these10 instances into direct SAT encodings and ran

3Three out of four parameters of SAPS require fine tuning to
achieve optimal performance of SAPS (Thorntonet al. 2004).

4http://web.cs.ualberta.ca/∼joe/Coloring/
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RSAPS to determine the median and hardest problem in-
stances. Other problems used in this study are available at
SATLIB.5

The results of the PAWS and SAPS variants on these
benchmark problems are shown in Tables 1, 2 and 3. Each
variant was run1, 000 times on each benchmark problem
except the50v15d40c problems (100 runs) and the round
robin scheduling for16, 18 and20 teams (with100, 50 and
10 runs, respectively). All the time results are in seconds un-
less otherwise stated, and all experiments were performed on
a Sun supercomputer with8 × Sun Fire V880 servers, each
with 8 × UltraSPARC-III900MHz CPU and8GB memory
per node.

Structured and Random Binary CSPs

Table 1 presents the results of PAWS and RSAPS variants
on the structured CSP benchmarks, consisting of the all-
interval-series and graph colouring problems. These results
show the CVI+SWM combination consistently dominates
the other combinations, both within the PAWS and RSAPS
results and across problem classes.

By grouping the four variants into a CVI-based and an
SVI-based set, we can consider the impact of the different
weighting mechanisms on the performance of RSAPS and
PAWS, and ignore the effects of the variable instantiation
heuristics. Such an analysis shows that in both sets the per-
formance of the SWM variants are up to order of magni-
tude better than the CWM variants both in terms of exe-
cution time and local search cost (the number of flips per-
formed to find a solution). Hence, SWM emerges as the best
weighting approach for all-interval-series and graph colour-
ing problems.

We used the same approach to evaluate the impact of the
different variable instantiation heuristics on the performance
of PAWS and RSAPS. In contrast to the weighting methods,
the CSP-based variable instantiation heuristic emerges as
significantly better than the SAT-based heuristic. For PAWS,
the CSP-based variants performed about10 times better than
the SAT-based variants on the flat450 series in terms of ex-
ecution time and around30 times better in terms of local
search cost. For RSAPS, the relative dominance of the CSP-
based variants was even more marked.

Figure 1 graphs the mean local search costs of the RSAPS
variants and PAWS variants on the flat graph colouring se-
ries. These two graphs clearly indicate that the performance
of the CVI-based variants scale better than the SVI-based
variants as the problems become harder and larger.

In the random binary CSP domain, the CVI+SWM variant
is generally still the better of the four variants, although for
PAWS the performance of the CVI+CWM variant is close
to the CVI+SWM variant and even slightly better in terms
of the local search cost. However, the PAWS’ CVI+SWM
variant is still better in terms of execution time, as shown in
the run-time distributions (RTDs) (Hoos 1999a) of Figure 2.

In contrast to the results for the structured CSPs, Ta-
ble 2 shows a reversal in the relative performance between

5http://www.satlib.org
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Figure 1: Scalability of PAWS and RSAPS variants on flat
problems. The problems are ordered by hardness. TheN -
m andN -h stand for the median and hard instances of the
flatN series.
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Figure 2: RTDs of PAWS and RSAPS variants on the
50v15d40c-hard instance.

SAT-weighting and CSP-weighting when using the SAT-
variable instantiation. Here, RSAPS prefers CSP-weighting
on all the random binary problems, and PAWS prefers CSP-
weighting on the harder, larger problems. However, as the
SAT-variable instantiation is not competitive, this result is of
minor interest.

Round Robin Scheduling Problems
The results in the first experiment indicate that a combined
application of CSP-based variable instantiation and a SAT-
based weighting mechanism can significantly boost the per-
formance of DLS SAT solvers. To further clarify the ef-
ficiency of this approach in comparison with other state-
of-the-art SAT solvers, we ran a second experiment on
the round robin scheduling problem. In recent years, this
sport tournament problem has become an important bench-
mark for the combinatorial search community (Gomeset al.
1998). In 2000, B́ejar & Manỳa translated this problem into
the SAT domain and was able to find a solution for20 teams
in an average of12.73 hours using the R-Novelty algorithm.
Before this work, the20 team instance was unsolvable by
either combinatorial, SAT or MV-SAT approach.

For this experiment, we ran the CVI+SWM variants of
RSAPS and PAWS, called MV-RSAPS and MV-PAWS, on
seven round robin problem instances from8 teams to20
teams (these problems were originally used in (Béjar &
Manyà 2000)6). Table 3 shows the results of MV-PAWS
and MV-RSAPS in comparison with the original PAWS
and RSAPS and two of the best complete SAT solvers,

6http://web.udl.es/usuaris/d4372149/
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PAWS RSAPS

Problem Variant % Time Flips % Time Flips

ais10 SVI+CWM 100% 0.14 37, 704 100% 0.14 34, 842

SVI+SWM 100% 0.08 24, 684 100% 0.07 20, 393

CVI+CWM 100% 0.05 5, 316 100% 0.04 4, 630

CVI+SWM 100% 0.04 5, 040 100% 0.03 3, 063

ais12 SVI+CWM 100% 2.34 435, 026 100% 1.95 394, 003

SVI+SWM 100% 1.17 250, 188 100% 0.67 157, 082

CVI+CWM 100% 0.37 34, 830 100% 0.36 27, 989

CVI+SWM 100% 0.35 33, 000 100% 0.16 14, 794

flat100- SVI+CWM 100% 0.01 9, 170 100% 0.02 8, 663

median SVI+SWM 100% 0.01 8, 348 100% 0.01 7, 677

CVI+CWM 100% 0.01 1, 644 100% 0.01 2, 134

CVI+SWM 100% 0.00 1, 606 100% 0.00 1, 890

flat100- SVI+CWM 100% 0.05 35, 614 100% 0.05 30, 025

hard SVI+SWM 100% 0.05 37, 311 100% 0.06 30, 063

CVI+CWM 100% 0.02 7, 894 100% 0.02 8, 229

CVI+SWM 100% 0.02 7, 736 100% 0.02 8, 169

flat200- SVI+CWM 100% 0.29 181, 566 100% 0.64 361, 786

median SVI+SWM 100% 0.19 162, 398 100% 0.49 296, 697

CVI+CWM 100% 0.12 31, 786 100% 0.24 60, 235

CVI+SWM 100% 0.08 25, 200 100% 0.20 48, 278

flat200- SVI+CWM 100% 10.03 6, 819, 680 100% 9.05 4, 807, 225

hard SVI+SWM 100% 4.39 3, 153, 438 100% 6.06 4, 148, 664

CVI+CWM 100% 1.73 573, 207 100% 2.74 676, 973

CVI+SWM 100% 1.18 426, 136 100% 1.62 461, 815

flat450- SVI+CWM 100% 54.05 15, 407, 113 100% 99.42 28, 004, 978

median SVI+SWM 100% 24.25 7, 902, 070 100% 56.56 15, 966, 332

CVI+CWM 100% 2.72 341, 017 100% 33.00 3, 135, 384

CVI+SWM 100% 2.22 317, 243 100% 12.11 1, 203, 609

flat450- SVI+CWM 100% 190.24 55, 363, 281 93.2% 192.16 54, 140, 275

hard SVI+SWM 100% 107.65 34, 479, 371 99.4% 111.74 31, 867, 483

CVI+CWM 100% 13.29 1, 643, 087 100% 73.29 6, 838, 029

CVI+SWM 100% 12.36 1, 672, 053 100% 36.78 3, 574, 930

g125.17 SVI+CWM 100% 22.56 1, 348, 325 0% 600.00 n/a

SVI+SWM 100% 9.82 744, 124 0% 600.00 n/a

CVI+CWM 100% 5.24 166, 449 100% 371.78 8, 829, 445

CVI+SWM 100% 4.53 159, 275 100% 60.85 1, 718, 548

g250.29 SVI+CWM 100% 69.23 579, 887 0% 600.00 n/a

SVI+SWM 100% 28.71 359, 073 0% 600.00 n/a

CVI+CWM 100% 13.86 79, 135 0% 600.00 n/a

CVI+SWM 100% 12.36 75, 718 94% 215.40 1, 174, 523

Table 1: Structured CSP problems

zChaff.2004.11.15 and Satz215. We also include the results
of R-Novelty reported in (B́ejar & Manỳa 2000), in which
the top numbers are the original results and the bottom num-
bers are the approximated results if run on our test machine.
These results show MV-PAWS is a clear winner, particularly
on the larger problems where it can find a solution for the
20 team instance within one hour, whereas R-Novelty takes
more than 3 hours.

Conclusions and Future Work
We have integrated a structure extraction mechanism into
SAPS and PAWS that automatically recovers the underlying
CSP variable and constraint structure hidden in SAT formu-

PAWS RSAPS

Problem Variant % Time Flips % Time Flips

v=30 SVI+CWM 100% 0.06 9, 490 100% 0.14 23, 649

d=10 SVI+SWM 100% 0.04 6, 845 100% 0.21 43, 459

c=80 CVI+CWM 100% 0.02 1, 522 100% 0.03 2, 379

median CVI+SWM 100% 0.02 1, 584 100% 0.03 2, 216

v=30 SVI+CWM 100% 0.08 14, 160 100% 0.20 38, 798

d=10 SVI+SWM 100% 0.07 10, 298 100% 0.41 77, 230

c=80 CVI+CWM 100% 0.03 2, 592 100% 0.05 4, 116

hard CVI+SWM 100% 0.03 2, 447 100% 0.04 2, 994

v=30 SVI+CWM 100% 0.14 23, 813 100% 0.27 45, 249

d=10 SVI+SWM 100% 0.07 14, 998 100% 0.40 84, 141

c=40 CVI+CWM 100% 0.05 3, 882 100% 0.09 6, 844

median CVI+SWM 100% 0.04 3, 811 100% 0.05 5, 094

v=30 SVI+CWM 100% 0.14 23, 171 100% 0.31 50, 710

d=10 SVI+SWM 100% 0.11 23, 266 100% 0.48 98, 759

c=40 CVI+CWM 100% 0.05 4, 176 100% 0.09 6, 723

hard CVI+SWM 100% 0.04 3, 729 100% 0.06 5, 063

v=50 SVI+CWM 100% 1.49 134, 128 99.8% 76.04 5, 631, 474

d=10 SVI+SWM 100% 1.37 132, 363 99.1% 130.43 11, 586, 967

c=80 CVI+CWM 100% 0.62 25, 575 100% 2.49 87, 653

median CVI+SWM 100% 0.60 29, 590 100% 1.47 59, 583

v=50 SVI+CWM 100% 1.90 159, 213 99.8% 92.65 6, 892, 970

d=10 SVI+SWM 100% 1.62 155, 124 98.9% 152.19 13, 704, 204

c=80 CVI+CWM 100% 0.74 30, 196 100% 3.17 110, 510

hard CVI+SWM 100% 0.67 33, 221 100% 1.71 68, 682

v=50 SVI+CWM 100% 169.42 11, 878, 897 54% 729.61 58, 600, 553

d=10 SVI+SWM 100% 192.58 17, 196, 220 44% 889.19 78, 820, 237

c=40 CVI+CWM 100% 47.12 1, 593, 711 99% 84.20 2, 722, 482

median CVI+SWM 100% 35.04 1, 542, 803 100% 38.32 1, 442, 271

v=50 SVI+CWM 100% 226.70 15, 813, 749 37% 954.80 75, 526, 227

d=10 SVI+SWM 99% 214.15 19, 248, 169 28% 1047.34 91, 501, 564

c=40 CVI+CWM 100% 72.99 2, 522, 204 93% 225.51 8, 200, 102

hard CVI+SWM 100% 58.75 2, 664, 852 100% 90.90 3, 455, 520

Table 2: Random binary CSP problems

las. Based on this new architecture, we are able to explore
and evaluate the impact of different SAT and CSP-based
heuristics for instantiating variables and handling weights on
the performance of DLS SAT solvers. Our experimental re-
sults show that a SAT-based weighting mechanism together
with a CSP-based variable instantiation is the most suit-
able DLS approach to solve direct SAT-encodings of CSPs.
A further comparison on the round robin scheduling prob-
lem shows that this approach significantly outperforms other
methods. In particular, using the MV-PAWS variant with the
CVI and SWM heuristics, we can find solutions for the20
team round robin scheduling problem within one hour, while
the previous state-of-the-art approach required several hours
to solve the same problem.

In 2002, Ostrowskiet al. produced a pioneering paper
on recognising the variable dependencies in SAT formu-
las through logic gates of the form{⇔,∧,∨}. Within this
framework, the unique instantiation attribute of CSP vari-
ables discussed in this paper can be seen as an exclusive-or
gate. In future work, we intend to further integrate the use
of gates into SLS SAT solvers, especially DLS techniques.
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Succ. Time Flips Time Time

Problem Variant Param % mean mean Satz
zChaff

R-Novelty

n = 8 MV-PAWS 35 100% 0.01 610 1.85 n/a

MV-RSAPS n/a 100% 0.01 627 0.14

PAWS 3 100% 0.02 2, 879

RSAPS n/a 100% 0.16 18, 428

n = 10 MV-PAWS 12 100% 0.16 5, 057 17.24 n/a

MV-RSAPS n/a 100% 0.35 9, 694 3190.37

PAWS 3 100% 0.39 24, 177

RSAPS n/a 100% 70.85 4, 236, 607

n = 12 MV-PAWS 11 100% 2.29 36, 912 115.27 16.20

MV-RSAPS n/a 100% 7.41 90, 947 > 24hrs 4.50

PAWS 3 100% 9.01 258, 507

RSAPS n/a 11% 3419.69 90, 818, 167

n = 14 MV-PAWS 8 100% 26.66 242, 734 > 24hrs 104.40

MV-RSAPS n/a 89.8% 253.71 1, 528, 434 > 24hrs 29.00

PAWS 3 58% 423.70 5, 481, 201

RSAPS n/a 0% > 24hrs n/a

n = 16 MV-PAWS 6 100% 209.71 1, 352, 252 > 24hrs 1008.00

MV-RSAPS n/a 60% 16535.46 74, 040, 590 > 24hrs 280.00

PAWS 3 0% > 24hrs n/a

RSAPS n/a 0% > 24hrs n/a

n = 18 MV-PAWS 5 100% 1652.95 6, 985, 404 > 24hrs 7128.00

MV-RSAPS n/a 0% > 24hrs n/a > 24hrs 1980.00

PAWS 3 0% > 24hrs n/a

RSAPS n/a 0% > 24hrs n/a

n = 20 MV-PAWS 4 100% 3177.17 9, 079, 655 > 24hrs 45828.00

MV-RSAPS n/a 0% > 24hrs n/a > 24hrs 12730.00

PAWS 3 0% > 24hrs n/a

RSAPS n/a 0% > 24hrs n/a

Table 3: Round robin results

Another interesting direction is to extend this work to dif-
ferent SAT encodings of CSPs. Gent (2002) looked at the
SAT support encoding, which allows complete SAT solvers
to maintain the arc consistency of CSP problems by using
unit propagation. He reported that local search techniques
such as WalkSAT can also benefit from this encoding. It
would therefore be interesting to investigate the behaviour
and performance of SAT and CSP-based variants of DLS
SAT solvers using the support encoding.
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Ostrowski, R.; Gŕegoire, E.; Mazure, B.; and Saı̈s, L. 2002.
Recovering and exploiting strutural knowledge from CNF
formulas. InProceedings of CP-2002, 185–199.
Prestwich, S. 2004. Full dynamic substitutability by SAT
encoding. InProceedings of CP-2004, 512–526.
Thornton, J.; Pham, D. N.; Bain, S.; and Ferreira Jr., V.
2004. Additive versus multiplicative clause weighting for
SAT. In Proceedings of AAAI-2004, 191–196.
Velev, M. N., and Bryant, R. E. 2003. Effective use of
Boolean satisfiability procedures in the formal verification
of superscalar and VLIW microprocessors.Journal of Sym-
bolic Computation35(2):73–106.
Walsh, T. 2000. SAT v CSP. InProceedings of CP-2000,
441–456.

AAAI-05 / 460


