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Abstract

We study challenges that are imposed to mathematical
domain reasoning in the context of natural language tu-
torial dialog on mathematical proofs. The focus is on
proof step evaluation:
(i) How can mathematical domain reasoning support
the resolution of ambiguities and underspecified parts
in proof steps uttered by a student?
(ii) How can mathematical domain reasoning support
the evaluation of a proof step with respect to the criteria
soundness, granularity, and relevance?

Introduction
The final goal of the DIALOG project1 is a natural tutorial
dialog on mathematical proofs between a student and an as-
sistance system for mathematics. Natural language (NL) tu-
torial dialog on mathematical proofs is a multi-disciplinary
scientific challenge situated between (i) advanced NL pro-
cessing, (ii) flexible tutorial dialog, and (iii) dynamic, ab-
stract level mathematical domain reasoning (MDR2). There
is still relatively few data available that can guide research
in this area. We, therefore, approached the project by using
a methodology with a strong initial emphasis on empirical
investigations and a top-down modeling of the over-all ar-
chitecture followed by refinements of the architecture, down
to implementation.

First a relevant corpus has been collected and analyzed in
the DIALOG project. The phenomena that have been iden-
tified through corpus analysis demonstrate, for instance, the
need for deep semantical analysis, the importance of a tight
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1The DIALOG project is a collaboration between the Com-
puter Science and Computational Linguistics departments of Saar-
land University as part of the Collaborative Research Center
on Resource-Adaptive Cognitive Processes, SFB 378 (http://
www.coli.uni-saarland.de/projects/sfb378/).

2We use ‘MDR’ in the remainder as an abbreviation for both
’mathematical domain reasoning’ and ’mathematical domain rea-
soner’; the precise meaning will be clear in each context.

integration of NL processing and MDR, and the relevancy
of dynamic, abstract-level proof development techniques
supporting human-oriented MDR. In particular, the explicit
abstract-level representation of proof steps (logically sound
or unsound) as uttered by the students is a crucial prerequi-
site for their subsequent analysis by MDR means in a tuto-
rial dialog setting. Additionally, from a logical point of view,
proof steps are highly underspecified (e.g. logically relevant
references are left implicit) causing an additional challenge
for bridging the gap between NL analysis and MDR.

In this paper we focus on the challenges imposed to MDR:
(i) How can MDR support the resolution of ambiguities

and underspecified parts in proof steps uttered by a student?
(ii) How can MDR support the evaluation of a student

proof step with respect to the criteria soundness, granularity,
and relevance?

In the next section we present an example dialog from our
DIALOG corpus and point to some revealed phenomena. We
then discuss the MDR challenges from a general viewpoint.
Subsequently we present our first concrete approach to solve
these challenges. Finally, we discuss some related work and
conclude the paper.

Phenomena and Challenges
A Wizard-of-Oz experiment (Dahlbäck, Jönsson, & Ahren-
berg 1993) has been performed in the DIALOG project in
order to obtain a corpus of tutorial dialogs on mathematical
proofs. Twenty four subjects with varying background in hu-
manities and sciences participated in this experiment. Their
prior mathematical knowledge ranged from little to fair. The
experiment employed typed user and tutor (wizard) input as
opposed to spoken language. This experiment and the corpus
obtained is discussed in more details in (Wolska et al. 2004).
The complete corpus comprises 66 recorded dialogs contain-
ing on average 12 turns and is available from the DIALOG
web-page3. It contains 1115 sentences in total, of which 393
are student sentences. An example dialog is shown in Fig. 1.

Investigation of the corpus resulted in an overwhelming
list of key phenomena raising interesting and novel research
challenges (Benzmüller et al. 2003). This was not expected,
in particular, because of the simplicity of the mathematical
domain (naive set theory) chosen for this experiment. Many

3http://www.ags.uni-sb.de/˜chris/dialog/
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T1: Bitte zeigen Sie: K((A∪B)∩ (C∪D)) = (K(A)∩K(B))∪
(K(C)∩K(D))! [Engl.: Please show: K((A∪ B)∩ (C ∪D)) =

(K(A) ∩ K(B)) ∪ (K(C) ∩ K(D))!]
S1: nach deMorgan-Regel-2 ist K((A∪B)∩ (C ∪D)) = (K(A∪

B) ∪ K(C ∪ D)). [Engl.: by deMorgan-Rule-2 K((A ∪ B) ∩ (C ∪

D)) = (K(A ∪ B) ∪ K(C ∪ D)) holds.]
T2: Das ist richtig! [Engl.: This is correct!]

S2: K(A∪B) ist laut deMorgan-1 K(A)∩K(B) [Engl.: K(A∪

B) is K(A) ∩ K(B) according to deMorgan-1]
T3: Das stimmt auch. [Engl.: That is also right.]

S3: und K(C ∪ D) ist ebenfalls laut deMorgan-1 K(C) ∩ K(D)
[Engl.: and K(C ∪ D) is also K(C) ∩ K(D) according to deMorgan-1]

T4: Auch das stimmt. [Engl.: That also is right.]

S4: also folgt letztendlich: K((A ∪ B) ∩ (C ∪ D)) = (K(A) ∩
K(B)) ∪ (K(C) ∩ K(D)). [Engl.: hence follows finally: K((A ∪

B) ∩ (C ∪ D)) = (K(A) ∩ K(B)) ∪ (K(C) ∩ K(D)).]
T5: Das stimmt . . . [Engl.: This is correct . . . ]

Figure 1: An example dialog. T and S mark tutor (i.e. wizard)
and student turns respectively. ‘K’ refers to the ‘set complement’
relation. German has been the language of choice.

of the identified phenomena are relevant not only for the tu-
torial NL dialog context but have a much wider impact for
NL interactions in human-oriented theorem proving. This
paper focuses on phenomena that are relevant for MDR:

Notion of Proof. For analyzing the notion of human-
oriented mathematical proofs, primarily shaped-up textbook
proofs have been investigated in the deduction systems com-
munity (Zinn 2004). The DIALOG corpus provides an im-
portant alternative view on it, since textbook proofs neither
reveal the actual dynamics of proof construction nor do they
show the weaknesses and inaccuracies of the student’s ut-
terances, i.e., the student’s proof step directives. The corpus
also illustrates the style and logical granularity of human-
constructed proofs. The style is mainly declarative, for ex-
ample, the students declaratively described the conclusions
and some (or none) of the premises of their inferences. This
is in contrast to the procedural style employed in many proof
assistants where proof steps are invoked by calling rules, tac-
tics, or methods, i.e., some proof refinement procedures.

The hypothesis that assertion level reasoning (Huang
1994) plays an essential role in this context has been con-
firmed. The phenomenon that assertion level reasoning may
by highly underspecified in human-constructed proofs, how-
ever, is a novel finding (Autexier et al. 2003).

Underspecification is a well known phenomenon in lin-
guistic analysis. The corpus reveals that underspecifica-
tion also occurs in the content and precision of mathemat-
ical utterances (proof step specification) and thus carries
over to MDR. Interestingly underspecification also occurs in
shaped-up textbook proofs but has only very recently been
addressed (Zinn 2004). To illustrate the underspecification
aspect we use example utterance S4 in Fig. 1: Utterance S4
is logically strongly underspecified. Here, it is neither men-
tioned from what assertion(s) in the discourse this statement
exactly follows nor how these assertions are used. However,
such detailed information is typically required in proof as-
sistants to execute the student’s proof step directive, i.e., to
‘understand’ and ‘logically follow’ the student’s argumenta-
tion.

Proof Step Evaluation (PSE) is an interesting novel ap-
plication for theorem proving systems. A (next) proof step
uttered by a student within a tutorial context has to be ana-
lyzed with respect to the following criteria:

Soundness: Can the proof step be reconstructed by a formal
inference system and logically and tutorially verified?

Granularity: Is the ‘argumentative complexity’ or ’size’ of
the proof step logically and tutorially acceptable?

Relevance: Is the proof step logically and tutorially useful
for achieving the goal?

Resolution of underspecification and PSE motivate a spe-
cific module supporting these tasks in tutorial NL dialog on
proofs; in the remainder we call such a module proof man-
ager (PM).

MDR Challenges from a General Viewpoint
Ambiguity and Underspecification Resolution The cor-
pus reveals that ambiguities may arise at different phases of
processing between the linguistic analysis and MDR. Con-
sider, for instance, the following student utterance:

S: A enthaelt B [Engl.: A contains B]

In this utterance ‘enthaelt’ (‘contains’) is ambiguous as it
may refer to the set relations ‘element-of’ and ‘subset-of’.
The ambiguity arises during linguistic analysis. It can be re-
solved, for instance, by type-checking provided that type in-
formation on A and B is available: if both symbols are of
the same ‘set type’ then ‘enthaelt’ means ‘subset-of’. How-
ever, type checking cannot differentiate between ‘⊂’ and
‘⊆’ as potential readings. The phenomenon is even better
illustrated by the following two utterances in which impor-
tant bracketing information is missing (‘K’ refers to the ‘set
complement’ operation and ‘P ’ to the ‘Power set’ opera-
tion):

S’: P ((A ∪ C) ∩ (B ∪ C)) = PC ∪ (A ∩B)

S”: K((A ∪ C) ∩ (B ∪ C)) = KC ∪ (A ∩B)

In S’ type information (if available) can be employed to rule
out the reading P (C) ∪ (A ∩ B) for the term to the right.
However, type information is not sufficient to differentiate
between the readings K(C)∪ (A∩B) and K(C ∪ (A∩B))
in S”. Here only MDR can detect that the first reading leads
to a logically wrong statement and the second reading to a
correct one. As we cannot assume that the domain model
statically represents all correct mathematical statements this
calls for dynamic MDR support in the resolution of ambigu-
ities that, as given here, may arise during linguistic analysis.
Now consider the following slight modification (wrt. refer-
ence to deMorgan rule) of utterances T1 and S1 from Fig. 1.

T1: Please show : K((A ∪ B) ∩ (C ∪ D)) = (K(A) ∩
K(B)) ∪ (K(C) ∩K(D))

S1’: by the deMorgan rule we haveK((A∪B)∩(C∪D)) =
(K(A ∪B) ∪K(C ∪D)).

S1’ does not lead to an ambiguity during linguistic analysis.
It nevertheless leads to an ambiguity in the domain reasoner
since the suggested proof step is highly underspecified from

AAAI-05 / 517



Proof State

(A1) A ∧ B.
(A2) A ⇒ C.
(A3) C ⇒ D.
(A4) F ⇒ B.

(G) D ∨ E.

Some Student Utterances

(a) From the assertions follows D.
(b) B holds.
(c) It is sufficient to show D.
(d) We show E.

Figure 2: PSE example scenario: (A1)-(A4) are assertions that
have been introduced in the discourse and that are available to
prove the proof goal (G). (a)-(d) are examples for possible proof
step directives of the student in this proof situation.

a proof construction viewpoint: S1’ can be obtained directly
from the deMorgan rule ∀X,Y.K(X∩Y ) = K(X)∪K(Y )
(denoted as deMorgan-2) by instantiating X with (A ∪
B) and Y with (C ∪ D). Alternatively it could be inferred
from T1 when applying deMorgan rule ∀X,Y.K(X ∪Y ) =
K(X)∩K(Y ) (denoted as deMorgan-1) from right to left
to the subterms of T1: K(A) ∩K(B) and K(C) ∩K(D).
Differentiating between such alternatives could be crucial in
tutoring mathematical proofs.

Proof Step Evaluation: PSE supports the dynamic step-
by-step analysis (with criteria soundness, granularity, rele-
vance) of the proof constructed by the student. All three cri-
teria have a pure logical dimension and additionally a tuto-
rial dimension. For instance, a proof step may be formally
relevant by pure logical means but it may be considered as
not relevant when additional tutorial aspects are taken into
account. On the other hand, a student utterance which is suf-
ficiently close to a valid next proof step may be considered
tutorially relevant while being logically irrelevant. In this pa-
per we mainly focus on the logical dimension; the hypoth-
esis is that their solution is one important prerequisite for
solving the general PSE problem involving also the tutorial
dimension. Much further research in this direction is clearly
needed. The PSE challenge will now be further illustrated
using the artificially simplified example in Fig. 2.

Soundness: Determining whether an uttered proof step is
sound requires that the MDR can represent, reconstruct and
validate the uttered proof step (including all the justifications
used by the student) within the MDR’s representation of the
proof state. Consider, for instance, utterance (a) in Fig. 2:
Verification of the soundness of this utterance boils down to
addingD as a new assertion to the proof state and to proving
that: (P1) (A ∧ B), (A ⇒ C), (C ⇒ D), (F ⇒ B) ` D.
Solving this proof task confirms the logical soundness of ut-
terance (a). If further explicit justifications are provided in
the student’s utterance (e.g. a proof rule) then we have to
take them into consideration and, for example, prove (P1)
modulo these additional constraints. Soundness is a fairly
tractable criterion for which different techniques are readily
available (Zinn 2004). PSE with respect to the criteria gran-
ularity and relevance, however, is novel and challenging.

Granularity evaluation requires analyzing the ‘complex-
ity’ or ‘size’ of proofs instead of asking for the mere exis-
tence of proofs. For instance, evaluating utterance (a) above

boils down to judging the complexity of the generated proof
task (P1). Let us, for example, use Gentzen’s natural deduc-
tion (ND) calculus as the proof system `. As a first and naive
logical granularity measure, we may determine the number
of `-steps in the smallest `-proof of the proof task for the
proof step utterance in question; this number is taken as the
argumentative complexity of the uttered proof step. For ex-
ample, the smallest ND proof for utterance (a) has ‘3’ proof
steps: we need one ‘Conjunction-Elimination’ step to extract
A from A ∧ B, one ‘Modus Ponens’ step to obtain C from
A and A ⇒ C, and another ‘Modus Ponens’ step to obtain
D from C and C ⇒ D. On the other hand, the smallest
ND proof for utterance (b) requires only ‘1’ step: B fol-
lows from assertion A ∧ B by ‘Conjunction-Elimination’.
If we now fix a threshold that tries to capture, in this sense,
the ‘maximally acceptable size of an argumentation’ then
we can distinguish between proof steps whose granularity
is acceptable and those which are not. This threshold may
be treated as a parameter determined by the tutorial setting.
However, the ND calculus together with naive proof step
counting doesn’t always provide a cognitively adequate ba-
sis for granularity analysis. The reason is that two intuitively
very similar student proof steps (such as (i) fromA = B and
B = C infer A = C and (ii) from A⇔ B and B ⇔ C infer
A ⇔ C) may actually expand into base-level ND proofs of
completely different size. Also related literature has pointed
out that standard ND calculus does not adequately reflect
human-reasoning (Rips 1994). This problem could become
even worse if we chose a machine-oriented calculus such as
resolution. Two important and cognitively interesting ques-
tions thus concern the appropriate choice of a proof system
` and ways to measure the ‘argumentative complexity’ of a
proof step.

Relevance. Relevance asks questions about the usefulness
and importance of a proof step with respect to the original
proof task. For instance, in utterance (c) the proof goalD∨E
is refined to the new proof goalD using backward reasoning,
i.e., the previously open goalD∨E is closed and justified by
a new goal. Answering the logical relevance question in this
case requires to check whether a proof can still be generated
in the new proof situation. In our case, the task is thus identi-
cal to proof task (P1). A backward proof step that is not rel-
evant according to this criterion is (d) since it reduces to the
proof task: (P2) (A∧B), (A⇒ C), (C ⇒ D), (F ⇒ B) `
E for which no proof can be generated. Thus, (d) is a sound
refinement step that is not relevant. This simple approach
appears plausible but needs to be refined. The challenge is
to exclude detours and to take tutorial aspects into account
(in a tutorial setting we are often interested in teaching par-
ticular styles of proofs, particular proof methods, etc.). This
also applies to the more challenging forward reasoning case
to identify that, for instance, utterance (b) describes a non-
relevant proof step.

Relevance and granularity are interesting, ambitious and
important challenges for tutoring of proofs. To address these
problems, it’s not sufficient to merely establish the existence
of proofs but the system has to construct proofs with par-
ticular properties. It may be the case that evaluating dif-
ferent criteria requires different ‘suitable’ theorem provers.
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Moreover, the system also needs to closely mirror and reflect
reasoning steps as they are typically performed by humans.
Generally, the system will need to adapt to the capabilities of
individual students and the requirements of varying tutorial
settings.

PSE in the DIALOG Demonstrator
We have implemented a demonstrator version of a PM which
provides dynamic support for resolution of underspecifica-
tion and PSE based on heuristically guided abstract-level
MDR realized on top of the ΩMEGA-CORE framework (Au-
texier 2003). The PM has been integrated into the overall
demonstrator of the DIALOG project in which it communi-
cates with other components of the system including the lin-
guistic analyzer, the dialog manager, the tutorial manager,
and the NL generator. More information on the role of the
PM in the DIALOG demonstrator system and on its inter-
play with other modules is given in (Buckley & Benzmüller
2005). Note that we do not address tutoring aspects directly
in the PM. Instead the result of the PM’s proof step anal-
ysis is passed to the tutorial manager which then proposes
a tutoring move to the dialog manager of the overall sys-
tem. Tutoring aspects of the DIALOG project are discussed
in (Fiedler & Tsovaltzi 2003).

The complete system has been applied to several exam-
ple dialogs from the DIALOG corpus and it has been demon-
strated in the course of the evaluation of the DIALOG project
that the system is particularly able to support variations of
the dialog presented in Fig.1 (which we will use for illustra-
tion purposes). However, our system is currently only appli-
cable to a very restricted subset of example proofs in naive
set theory. For these examples the PM’s computation costs
are acceptable. It remains to be seen whether this is still the
case when moving to less elementary mathematical problem
domains.

Proof Step Representation and Resolution of Underspec-
ification. The PM needs to “understand” the incoming stu-
dent proof step and to fit it into the current proof context.

In our implementation, the student proof step is first for-
matted into a tuple 〈 LABEL, TYPE, DIR, FORMULA,
JUSTIFICATION-LIST 〉: LABEL provides a reference to this
proof step. TYPE indicates whether the student proof step is,
for example, an inference step, a variable assignment, or a
local hypothesis introduction (these are the options we cur-
rently support). Given the proof step type inference, DIR in-
dicates the direction of this step as linguistically extracted
from the student’s utterance. The alternatives are forward,
backward, sideward, and closing. For instance, when the
student asserts that “φ follows from ψ and θ” and if we
know that ψ and θ are the two premises of the current proof
task, then the input analyzer should be able to assign for-
ward inference to DIR. FORMULA is the asserted formula
in this proof step, e.g., the φ from above. JUSTIFICATION-
LIST contains all the information the student uses to justify
FORMULA.

In our current approach, all of these fields except from
FORMULA can be left underspecified (i.e. empty). LABEL

can in general be easily generated by referring to FORMULA
or by NL references such as “the previous proof step”, “your
second proof step”, etc. The other fields are usually more
ambitious to determine. Before we proceed with describ-
ing our solution to underspecification resolution, we elab-
orate the JUSTIFICATION-LIST. JUSTIFICATION-LIST is a
list (J1, . . . , Jn) of justifications Ji (for 0 ≤ i ≤ n). When
n = 0 then JUSTIFICATION-LIST is underspecified. Each
justification Ji is a tuple 〈NAME, FORM, SUBST〉: NAME
refers to an assertion. It can be the label of a previous proof
step or of an assertion in a mathematical knowledge base,
for example, ‘deMorgan-2’. FORM is a formula used to jus-
tify the asserted proof step. For instance, instead of referring
to deMorgan-2, the student may say: “SinceA ∩ (B ∪ C) =

A∪B ∪ C, from Φ[A ∩ (B ∪ C)] we obtain Φ[A∪B ∪ C].”
SUBST is an explicitly mentioned instantiation of variables
the student has applied in the proof step.

All justifications fields can be left underspecified.
The field SUBST has been introduced mainly for the
purpose of exhaustively capturing the student input in
our representation. Given an underspecified justification
〈NAME, FORM, SUBST〉, FORM is generally equivalent to
dereference(NAME) + SUBST. Assume, for example, that
we already have information on FORM := A ∩ (B ∪ C) =
A ∪ B ∪ C. The PM can determine a possible assertion
which has been used (e.g. deMorgan-2) together with the
substitution the student has applied (here [A 7→ X, (B ∪
C) 7→ Y ]). In fact, in most proof step utterances in the DI-
ALOG corpus the student justifies her proof step with a ref-
erence to the employed assertion NAME and by specifying
the inferred formula FORMULA: For instance, a student may
say: “By deMorgan-2, we have Φ”. Unification and heuristi-
cally guided theorem proving is employed in the PM to sup-
port the analysis and completion of different combinations
of given and missing information in justifications. Problem-
atic cases typically arise when the student leaves the justifi-
cation for her proof step underspecified altogether.

The proof step representation language presented here is
the one that has been implemented in the PM. In the mean-
time this language has been further developed in theory (Au-
texier et al. 2003).
Example 1 The underspecified proof step S1 in the exam-
ple dialog (see Fig. 1) is represented in the PM as follows:4

(input (label 1_1)

(formula (= (C (N (U a b) (U c d)))

(U (C (U a b)) (C (U c d)))))

(type ?)

(direction ?)

(justifications

(just (reference deMorgan-2)

(formula ?)

(substitution ?))))

Our PM employs the ΩMEGA-CORE calculus (Autexier
2003) as a sound and complete base framework (for classical
higher-order reasoning) to support resolution of underspec-
ification and PSE. The internal proof representation of the

4C, N, and U stand for complement, intersection, and
union, respectively. ? denotes underspecification.
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PM is based on task structures which are defined on top of
the ΩMEGA-CORE calculus; for more details on this proof
representation framework we refer to (Hübner et al. 2004).

In some sense, tasks resemble and generalize sequents in
sequent calculi. Proof construction in this “ΩMEGA-CORE
+ tasks”-framework employs and generalizes well-known
techniques in tableau-based theorem proving (cf. (Hähnle
2001) and the references therein) and the matrix method
(Andrews 1981; Bibel 1983). See also (Vo, Benzmüller, &
Autexier 2003) for further details.

We present two example strategies employed by the PM
to relate the student proof step to the PM’s internal represen-
tation of the current proof state and to formally reconstruct
it in order to determine missing information.

Justify by a unifiable premise: The system looks for sub-
terms of the premises of the present task and for subterms
of the available assertions in a knowledge base which are
unifiable to the student proof step. Such a justification may
require further conditions to be discharged. These conditions
are extracted with the help of the ΩMEGA-CORE framework
and they form additional proof obligations which are ana-
lyzed by an automated theorem prover.

Justify by equivalence transformation and equality rea-
soning: This case is a generalization of the above one in
the sense that the asserted formula does only follow via
equivalence transformation and equality reasoning from the
premises and assertions available in the proof state. For this
strategy we employ a specifically adapted tableau-based rea-
soner implemented within the ΩMEGA-CORE framework.

Example 1 (contd.) Our simple example illustrates the
above strategies:

1. The asserted formula in the student proof step is unifiable
at top-level with the deMorgan-2 rule. Thus, we recom-
pute a forward proof step:

(A ∪B) ∩ (C ∪D) = (A ∪B) ∪ (C ∪D)

is obtained by deMorgan-2 using the substitution:

[X 7→ (A ∪B);Y 7→ (C ∪D)]

2. On the other hand, our system is able to identify the
discrepancies between the asserted formula and the goal
formula of the current proof task. Identifying a possible
backward reasoning step the system thus carries out the
following transformation:

(A ∪B) ∩ (C ∪D) = (A ∩B) ∪ (C ∩D)

is reduced to the new goal formula

(A ∪B) ∩ (C ∪D) = (A ∪B) ∪ (C ∪D)

by rewriting the subterms: (A∩B) and (C ∩D) with the
subterms (A ∪B) and (C ∪D), respectively, using the
rule deMorgan-1.

For the initially underspecified input proof step represen-
tation we have thus computed two possible fully specified
logical interpretations.

Proof Step Evaluation The PM is now facing the problem
of evaluating both identified proof step interpretations along
the PSE criteria. Note that soundness has already been partly
addressed during the above phase, since we were able to re-
construct the underspecified proof step in at least one way in
the current proof state.

Employing heuristically guided theorem proving tech-
niques, our PM finally identifies the following ratings and
annotations for our two proof step interpretations:5

1. (evaluation

(reference ...)

(formula (= (C (N (U a b) (U c d)))

(U (C (U a b)) (C (U c d)))))

(substitution ((x (U a b) y (U c d))))

(direction FORWARD)

(justification DeMorgan-2)

(soundness 1)

(relevance 0.9)

(granularity 1))

2. (evaluation

(reference ...)

(formula (= (C (N (U a b) (U c d)))

(U (C (U a b)) (C (U c d)))))

(substitution ...)

(direction BACKWARD)

(justification (((C (U c d)) . (N (C c) (C d)))

((C (U a b)) . (N (C a) (C b)))))

(soundness 1)

(relevance 0.9)

(granularity 0.5))

The overall system then determines a preference for inter-
pretation (1.) since it shares the justification used by the stu-
dent, viz. the rule deMorgan-2. Furthermore, the former
inference is considered to be granularly more appropriate
than the latter. This is because the former employs only one
application of the rule deMorgan-2while the latter applies
the rule deMorgan-1 twice. As discussed in the previous
section, this is generally an over-simplified way to determine
the relative granularity of a proof step. A more precise, sep-
arate soundness investigation in the PSE phase would also
rule out interpretation (2.), provided that the students explicit
reference to deMorgan-2 is taken into account.

Further Proof Management Tasks It is important that
the system and the student share a mutual understanding
about the situation they are confronting. And we have al-
ready motivated that the system should be capable of ade-
quately representing the context and the situation in which
the student is currently operating and reasoning about. Gen-
erally, we consider different classes of situations. Two ex-
amples are:

Problem-solving situations: In these situations, alterna-
tive problem solving strategies are considered to tackle the
problem, e.g. looking for similar problems whose solutions

5The ellipses indicate that the field refers to some internal rep-
resentation which is left out to save space. Note also that the rel-
evance rating for both interpretations is 0.9 to allow a margin for
error unless the proof step is found to be used in every possible
proofs in which case the relevance rating will be 1.
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are known, finding a lemma whose application could bridge
the gap between the premises and the goal, searching for
applicable proving methods such as proof by induction, di-
agonalization proof, etc.

Proof situations: Once a student proof step has been
identified as related to an available proof situation in the
maintained proof history, a new current proof situation is
computed and updated into the proof history. The current
proof situation consists of the “relevant” proof fragments
which have been identified up to this point.

The tasks of reconstructing theorem prover-oriented proof
fragments from the student proof steps, organizing the rele-
vant proof fragments into (partial) proofs, keeping track of
the proof history and other relevant information for future
backtracking, etc. are all handled by the PM. It’s also impor-
tant to note that while the problems of resolving underspec-
ification and PSE have been discussed separately, they are
solved in combination since they are mutually dependent.

In general, judging the student’s utterances in a mathemat-
ics tutoring scenario is a very complex task addressing many
AI problems including NL understanding, plan recognition,
ambiguity resolution, step-wise proof construction, manage-
ment of proofs, etc. In our first implementation of the PM,
we clearly had to make several simplifications which can
later be generalized if future experiments indicate the need
for this. We give some examples:
Granularity and the Direction of Inference: If the direction
of an inference is not made explicit by the student, the PM
tries to determine it by considering the granularity of the
proof justifying a forward reasoning step and the granularity
of the proof justifying a backward directed goal reduction
step; cf. our example from before. If the former is consid-
ered to be more difficult than the latter, the system conjec-
tures that this proof step is a forward proof step; otherwise,
it is considered to be a backward proof step.
Student Modeling: The granularity of a proof step is relative
to the student’s knowledge and expertise in the domain un-
der consideration. In the present implementation, the student
model and other relevant information have not been taken
into account when appraising the student proof step.

Related Work
Empirical findings in the area of intelligent tutoring show
that flexible natural language dialog supports active learn-
ing (Moore 1993). In the DIALOG project, therefore, the
focus has been on the development of solutions allowing
flexible dialog. However, little is known about the use of
natural language in dialog settings in formal domains, such
as mathematics, due to the lack of empirical data.

Input analysis in dialog systems is for most domains com-
monly performed using shallow syntactic analysis combined
with keyword spotting; slot-filling templates, however, are
not suitable in our case. Moreover, tight interleaving of nat-
ural and symbolic language makes key-phrase spotting dif-
ficult because of the variety of possible verbalizations. Sta-
tistical methods are employed in tutorial systems to com-
pare student responses with a domain-model built from pre-
constructed gold-standard answers (Graesser et al. 2000).

In our context, such a static domain-modeling solution is
impossible because of the wide quantitative and qualitative
range of acceptable proofs, i.e., generally, our set of gold-
standard answers is even infinite.

Related work with regard to interpreting mathematical
texts is (Zinn 2004) which analyzes comparably complete,
carefully structured textbook proofs, and relies on given
text-structure, typesetting and additional information that
identifies mathematical symbols, formulae, and proof steps.
With respect to our goal of ambiguity and underspecification
resolution, (Bos 2003) provides an algorithm for efficient
presupposition and anaphora resolution which uses state-of-
the-art traditional automated theorem provers for checking
consistency and informativeness conditions.

Recent research into dialog modeling has delivered a va-
riety of approaches more or less suitable for the tutorial di-
alog setting. For instance, scripting is employed in Autotu-
tor (Person et al. 2000) and knowledge construction dialogs
are implemented in Geometry Tutor (Matsuda & VanLehn
2003). Outside the tutorial domain, the framework of Infor-
mation State Update (ISU) has been developed in the EU
projects TRINDI6 and SIRIDUS7 (Traum & Larsson 2003),
and applied in various projects targeting flexible dialog. An
ISU-based approach with several layers of planning is used
in the tutorial dialog system BEETLE (Zinn et al. 2003).

Finally, the dialogs in our corpus reveal many challenges
for human-oriented theorem proving. Traditional automated
theorem provers (e.g. OTTER and Spass) work on a very
fine-grained logic level. However, interactive proof assis-
tants (e.g. PVS, Coq, NuPRL, Isabelle) and in particular
proof planners (e.g. OMEGA and λClam) support abstract-
level reasoning. The motivation for abstract-level reasoning
is twofold: (a) to provide more adequate interaction support
for the human and (b) to widen the spectrum of mechaniz-
able mathematics. Proof assistants are usually built bottom-
up from the selected base-calculus; this often imposes con-
straints on the abstract-level reasoning mechanisms and the
user-interface.

Conclusion
We have identified novel challenges and requirements to
MDR in the context of tutorial NL dialogs on mathemati-
cal proofs. For instance, we must be able to explicitly repre-
sent and reason about ambiguous and underspecified student
proof steps in the PM. The represented proof steps may be
unsound, of unacceptable granularity or not relevant. The
analysis of these criteria is then the task of PSE. Gener-
ally, resolution of underspecification and PSE are mutually
dependent. Except for pure logical soundness validation of
proof steps, none of these requirements can currently be eas-
ily supported within state-of-the-art theorem provers. Thus,
novel and cognitively interesting challenges are raised to the
deduction systems community.

PSE can principally be supported by different approaches
— including ones that avoid dynamic theorem proving as

6
http://www.ling.gu.se/research/projects/trindi/

7
http://www.ling.gu.se/projekt/siridus/
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presented in this paper. We list some alternative approaches
according to increasing difficulty:

1. We could statically choose one or a few ‘golden proofs’
and match the uttered partial proofs against them.

2. We first generate from the initially chosen golden proofs
larger sets modulo, for instance, (allowed) re-orderings of
proof steps and match against this extended set.

3. We dynamically support PSE with heuristically guided
abstract-level MDR.

4. We interpret the problem as challenge to proof theory and
try to develop a proper proof theoretic approach to differ-
entiate between ’tutorially good proofs and proof steps’
and ’tutorially less good proofs and proof steps’ in the
space of all proofs for a given problem.
The space of all proofs that solve a proof problem is gen-

erally infinite which is one reason why a static modeling of
finitely many ’golden solutions’ as in approaches (1) and (2)
is generally insufficient in our context. Approach (3) is our
currently preferred choice and a first, still rather naive, ap-
proach to the logical dimension of this challenge has been
presented in this paper. Much further research is clearly
needed. Approach (4) is the approach we want to addition-
ally investigate in the future; some relevant related work in
proof theory to capture a notion of good proofs is presented
in (Dershowitz & Kirchner 2003).

For (3) we have developed a heuristically guided MDR
tool that is capable of representing, constructing and analyz-
ing proofs at the assertion level. In the first place these proofs
maybe sound or non-sound. For naive set theory (our math-
ematical domain of choice so far) this tool has been able to
reconstruct and represent student proofs at the same level
of argumentative complexity as given in the DIALOG cor-
pus. We conjecture that this is a basic requirement for PSE
in tutorial settings. We have also shown how (in the same
mathematical domain) our PM resolves ambiguities and un-
derspecification in the student input and how it evaluates the
student input along the three major dimensions of sound-
ness, relevance, and granularity. The application of our ap-
proach to more challenging mathematical domains and its
evaluation therein is future work.
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