
An Analysis of Procedure Learning by Instruction

Jim Blythe

USC Information Sciences Institute
4676 Admiralty Way,

 Marina del Rey, CA 90292 USA
blythe@isi.edu

Abstract
Many useful planning tasks are handled by plan execution
tools, such as PRS, that expand procedure definitions and
keep track of several interacting goals and tasks. Learning
by instruction is a promising approach to help users modify
the definitions of the procedures. However, the impact of
the set of possible instructions on the performance of such
systems is not well understood. We develop a framework in
which instruction templates may be characterized in terms
of syntactic transforms on task definitions, and use it to
explore the properties of coverage, ambiguity and efficiency
in the set of instructions that are understood by an
implemented task learning system. We determine what kind
of ambiguity is affected by the instruction set, and show
how context-dependent interpretation can increase
efficiency and coverage without increasing ambiguity.

Introduction
Task management systems are becoming increasingly
important in a number of areas, for example intelligent
office assistants, task-aware user interfaces and autonomic
computing. End users need to customize the procedure
definitions used in these systems, but find them difficult to
modify for a number of reasons. First, users do not know
the syntax and semantics of the procedure definitions, or
the terms in ontology. Second, the definitions, which are
combined to produce task behavior, are highly interrelated,
so that changes to one procedure definition may produce
unexpected effects when other procedures are executed.
Third, successful modifications to a procedure base often
require keeping track of a sequence of smaller
modifications.
Among techniques that can help users create or modify
process descriptions are programming by demonstration
(PBD) and expectation-based systems. PBD, which learns
procedure definitions inductively from user-provided
examples, has the advantage that users don’t need to worry
about implementation details (Lau, Bergman, Castelli, &
Oblinger, 2004; Lieberman, 2001). However PBD
typically requires concrete examples and access to all the
relevant information, and several training examples may be
required in rich environments. Expectation-based
techniques also shield the user from the procedure syntax
but may still require her to make implementation-level

decisions and keep track when a modification requires
several changes (Blythe, 2001; Kim & Gil, 1999).
Procedure modification by instruction is a complementary
technique (Huffman & Laird, 1995), that has recently
shown promise for helping end users modify the
procedures used in a task execution system (Blythe, 2005).
Figure 1 shows how a procedure definition is modified
following a user instruction. First, the instruction is
matched to a template from a library. The template denotes
a class of potential modifications, and has slots for the
required information. Next, the template is instantiated
based on the instruction. An instantiated template
completely specifies a modification to the procedure
definition. The choices during instantiation depend on the
form of the current procedure and the instruction. The
modification system may propose several candidate
modifications, and may analyze potential problems
introduced in the global problem solver and suggest
remedies to the user.

Figure 1. An instruction to modify a procedure is
matched to a template. Then the template is

instantiated and the resulting modification is tested.

Modification by instruction has several advantages. First,
the user can refer to a modification at the operational level
rather than the implementation level, for example saying
'do A before B' rather than 'add a sequence consisting of A
followed by B into the original parallel construct’. Second,
the approach allows the user to refer to conditions and
tasks directly, rather than through examples. For example,
with the instruction 'email me if it costs more than $400',
the user indicates both a task that the system is to add and
the key condition under which it should be performed.

User instruction

Matching
template

matching

Procedure
definition

interpretation

modification

Template
library

AAAI-05 / 558

Third, the user can refer to the task and condition in their
own terms, and an instruction-based tool can attempt to
match to the domain ontology by search, e.g. 'send
<message> <recipient> <mode>=email' and condition, e.g.
'totalPrice(chosenBid(laptop1)) < 2000'. Finally, the tool
can be used either on a desktop or through speech, since it
relies primarily on a sentence as input, and can easily be
embedded in other systems.
However there are several challenges that need to be
addressed for modification by instruction to have its full
impact. These include understanding (1) what set of
templates may be needed to guarantee one can make any
required modification to a procedure definition, (2) how
often more information is required to resolve an
ambiguous instruction and (3) whether the templates
capture required changes succinctly. This paper develops a
framework to address these questions, and explores them
in the context of an implemented tool for modification by
instruction. Our framework considers the properties of a
set of instruction templates, which characterize the
capabilities of the tool. In particular, we provide a
framework for estimating:

(1) the coverage of a set of instruction templates: the
proportion of the desired modifications to a
procedure knowledge base that can be made,

(2) the ambiguity in a template set: the average amount
of feedback required from the user to uniquely
identify a desired modification,

(3) the efficiency of the template set: how well it
compresses and simplifies the descriptions of
desired modifications.

We begin by considering the possible modifications to
procedures at the syntax level, defining transform
operators that capture these modifications. We choose a
complete set of transform operators as a reference, and
estimate the completeness of a set of instruction templates
in terms of how well it covers this reference set. We
address ambiguity by examining conditions under which
an instruction template may represent different
modifications at the behavioral level. We relate the
efficiency of a set of instruction types to the average
number of transform operators that must be combined to
express them.
We illustrate the approach with Tailor (Blythe, 2005), an
implemented tool for modifying procedure definitions by
instruction developed for the SPARK task execution
system (Morley & Myers, 2004), which is inspired by PRS
(Georgeff & Lansky, 1987). We use the framework we
develop to explore the coverage and efficiency of the set of
instruction templates intended for Tailor, and show that a
relatively small set can cover the possible modifications in
SPARK. Our approach is applicable to a broad range of
modification and task execution systems.
In the next section we describe a short scenario illustrating
the use of SPARK and Tailor. We follow with a simplified
description of the syntax of SPARK, and describe a
reference set of syntactic modifications to procedure
knowledge. Next we describe the set of templates used in
Tailor and provide their interpretations in terms of

transform operators. Only a subset of the templates is
currently implemented. In the following section we discuss
the ambiguity, completeness and coverage of this template
set. We show examples of context-dependent interpretation
of templates, where the template may entail different
modifications depending on the context of the current
procedure definitions. We finish with a discussion of our
current framework and planned future work.

An Example of Task Modification by
Instruction

Consider an office purchase task, where a user needs to
customize the authorization procedure for a new
department. The user gives the following instruction:
“don’t get authorization if it costs less than $2000”, which
is recognized as an instance of the instruction template
“[don’t] do <task> [if <condition>]”. The modification
system instantiates the instruction by mapping the words
“get authorization” into an existing task and the words “it
costs less than $2000” into a logical expression that is
valid at the point in the plan when the task is considered. If
either of these mappings requires making a choice, the
system may ask the user for clarification, or pick a default
based on generic reasoning about processes. Once the
modification is agreed, the new procedure knowledge is
provided to SPARK in executable form.
In this instruction, the user refers to several features of the
solution without having to know the precise terms in the
ontology. The user also does not need to know the syntax
of the procedure language, or precisely how the
modification will be implemented when there are several
choices at the syntactic level. In addition, some
instructions can compactly represent several modifications.
For example, the instruction “use instant messaging instead
of email” replaces one step with another that achieves the
same goal, and may correspond to the two steps of deleting
the email step and inserting an instant messaging step.
There are also some potential disadvantages of the
technique. For example, in the instruction above it is not
clear what the “cost” refers to. There may be several
objects that could have a cost, and knowledge of the
current situation is needed to know whether such a
statement is ambiguous. Furthermore, given the instruction
“send email before you get authorization”, it is not clear
whether the user is requesting a new email step to be added
or wishes to reorder an existing emailing step.
In the following sections we consider other instruction
templates that the modification system may recognize. For
example, the template “do <task>
before|after|during|instead of <task> [if <condition>”
recognizes the inverse instruction “get authorization before
placing the order”. The template “use <object1> instead of
<object2> [for <task>] [if <condition>]” recognizes
similar requests made in terms of task parameters rather
than direct tasks, such as “use screws instead of nails to fix
the planks”. This expression’s interpretation is context-
dependent. For example, if one ‘fix’ procedure can have

AAAI-05 / 559

screws or nails as an argument, and currently uses nails,
the instruction can be interpreted as changing the argument
of the procedure. However, if there are separate
procedures, ‘nail’ and ‘screw’, each using objects of the
respective types to fix target objects together, then the
instruction can be interpreted as replacing a ‘screw’ task
with a ‘nail’ task. Context-dependent interpretation is a
useful property, since it is unambiguous in each case.
Therefore the user need not be concerned with the way the
procedures have been represented.
As we design and implement procedure modification
systems based on instructions, we wish to understand how
well a set of instruction types serves this goal by balancing
context-dependent interpretation, abstraction, naturalness
and coverage with ambiguity. We quantify these properties
by relating the instruction types to transformations on the
procedure definitions made at the syntactic level. At this
level there is no ambiguity and coverage is easy to
determine, but users are forced to make implementation
decisions and reason about the syntax.

Syntactic Transform Operators
We consider a set of syntactic transformations that can be
made to SPARK procedures. Tailor interprets instructions
by mapping them to transformations on SPARK. We begin
by reviewing the syntax of SPARK. More details can be
found in (Morley & Myers, 2004).
A SPARK knowledge base includes a set of procedures
that define how to achieve user goals. A procedure consists
of a cue, which is an event for which the procedure is
appropriate, a precondition, which is a logical expression
that must be true at the time of applying the procedure and
a body, which defines the tasks to be executed in order to
execute the procedure. These are built from term
expressions, logical expressions, actions and task
expressions. For simplicity, we only consider procedures
with action cues and ignore database update actions.
A term expression represents a value. These include
constants, variable symbols and function applications. A
function application consists of a function name and a set
of term expressions, e.g. (+ $x 1). The set of constant
types, function and predicate symbols depends on the
domain in which SPARK is applied. For example, the
office domain may include people, e.g. John-Smith, and
functional relations such as office-of(John-Smith). A
logical expression is constructed from a predicate symbol
and a list of terms, (e.g. has-window(office312)),
logical operators and existential quantifiers (e.g. (exists
[$x] (not (p $x))).
An action consists of an action symbol and a list of terms,
e.g. (send-email $message John-Smith). A task
expression may take the form [do: <action>], or may
be one of the expressions shown in Table 1, where t1, t2
and t3 are task expressions and p is a logical expression.
The seq: and parallel: constructs may take an
arbitrary number of tasks.

[noop:] do nothing
[fail:] fail
[seq: t1 t2] do t1 and then t2
[parallel: t1 t2] do t1 and t2 in parallel
[if: p t1 t2] if p is true, do t1, otherwise t2
[try: t1 t2 t3] do t1, and do t2 unless t1

fails, in which case do t3
[wait: p t1] wait until p is true, then do t1

Table 1: Rules for constructing task expressions

To develop metrics for a set of modification instructions,
we consider sets of transform operators over the syntactic
structures of task expressions. Each transform operator can
be described as a pair of patterns, matching the original
and new syntactic structures respectively. For example, the
following pattern captures the transformation of adding a
task to the end of a seq construct:
 [seq: t+] -> [seq: t+ t’]
where t+ denotes a sequence of one or more task
descriptions, and t’ denotes a new task to be added. We
restrict new tasks to be one of [noop:], [fail:] or
[do: <action>]. This transform operator is reversible:
in reverse, it removes the last task from a seq: construct
that has two or more tasks. A set of templates for user
instructions generates a set of transform operators.
It is not hard to construct a set of transform operators that
is complete in the sense that they can be combined to
convert any task expression into any other. One approach
is to mirror the recursive definitions by which compound
tasks are constructed, as shown in Table 2. Each transform
is reversible. We assume that arbitrary logical expressions
can be added by the operators producing if: and wait:
constructs. This assumption could be lifted by including a
set of rules for logical expressions.

[seq: t+] <-> [seq: t+ t’]
[seq: t] <-> t
[parallel: t+] <-> [parallel: t+ t’]
[parallel: t] <-> t
[if: p t1 t’] <-> t1
[try: t1 ta’ tb’] <-> t1
[wait: p t1] <-> t1
[do: <act>] <-> [noop:]
[noop:] <-> [fail:]

Table 2: A complete set of transform operators

The set shown in Table 2 is complete, since any task
expression must be built following the constructs in Table
1, and for each construct we can find a corresponding
transform in Table 2. The operators are reversible, and
therefore can be used to transform any task expression to
[noop:] and then transform [noop:] to any other task
expression. Of course, this is usually a very inefficient
process in terms of the number of operators applied.
This set of operators is by no means unique. For example,
an alternative set might add tasks at the beginning of the
seq: and parallel: constructs rather than at the end.

AAAI-05 / 560

This would alter the order in which the transforms should
be applied for a given modification and may significantly
change the length of the optimal sequence.

Interpreting Instruction Templates as
Transform Operators

We give interpretations of the instruction templates in
terms of the syntactic transform operators described in the
last section. As discussed earlier, the meaning of the
instructions is context-dependent, so for some of the
instructions we provide a set of alternative interpretations
and describe the conditions under which they apply. In the
following, a <condition> can be either a logical
expression, e.g. (and (cost $item $cost) (< $cost 2000)), or
“if <action> succeeds|fails”.

Adding a condition to a task
This operation is characterized by the instruction template

 [don’t] do <task> [if <condition>] [1]

If <task> is currently in the task expression and
<condition> corresponds to a logical expression, the
instruction can be identified with the operator,
 task -> [if: p task]
where p is the condition, <c>, or (not <c>) if the
sentence includes “don’t”.
If the condition takes the form ‘<task2> succeeds|fails’,
and <task2> is not found in the task expression, the
appropriate operators are
task -> [try: task2 task] (‘succeeds’)
 -> [try: task2 [noop:] task] (‘fails’)
With tasks reversed if the word ‘don’t’ appears.
If both <task> and <task2> are in the task expression, they
are together replaced by the appropriate [try:] clause.
This may entail re-ordering the tasks relative to each other
or other tasks in the expression.

Adding a new task into a task expression
The instruction template for this operation is

do <task1> before|after|in parallel with|instead of|as part
of < task2> [if <condition>] [2]

where <task2> matches some task already in the task
expression being altered, say t2.
The interpretation of this template depends on whether
<task1> is already present in the task expression being
modified. First, suppose that no task matching <task1> is
in the task expression but the description matches a new
task, t1. If the word ‘before’ is used, then the appropriate
operator adds task1 just before t2:
 t2 -> [seq: t1 t2]
with similar operators for ‘after’ and ‘in parallel with’. If
there is a condition that is a logical expression, we use

 t2 -> [if p [seq: t1 t2] t2]
and if the condition tests success of a task we use a similar
try: construct.
The phrase ‘instead of’ is taken to signify that the task is
being replaced:
 t2 -> t1,
 or t2 -> [if: p t1 t2]
The phase ‘as part of’ signifies that t1 should be included
when t2 is accomplished, or in other words should be
included in the body of every procedure whose cue
matches t2:
 (proc cue: t2 pre: p body: t3)
 -> (proc cue: t2 pre: p
 body: [parallel: t1 t3])
This is similar to ‘do <task1> in parallel with <task3>’
except that it is applied to every matching procedure in the
knowledge base, rather than to a current task expression.

Reordering tasks in a task expression
The same template may be used to reorder tasks when
<task2> matches an existing task t2 and <task1>
matches existing task t1. To save space, omit the cases
where conditionals are specified. These mirror the cases in
the previous section. In the operators below, ta*, tb*
and tc* designate arbitrary sequences of tasks that do not
match <task1> or <task2>.
Keyword: before: (we omit after:, which is similar)
 [seq: ta* t2 tb* t1 tc*]
 -> [seq: ta* t1 t2 tb* tc*]
 [parallel: ta* t1 t2]
 -> [parallel: ta* [seq: t1 t2]]
Keyword: in parallel with:
 [seq: ta* t1 tb* t2 tc*]
-> [seq: ta* tb* [parallel: t1 t2] tc*]
The template is ambiguous when both task1 and task2
match tasks in the current expression, since the user may
either intend to reorder the tasks or to add a new task.

Waiting for a condition to be true
The instruction template:
 wait for <condition>, then do <task> [3]
is used to add a wait: construct to a task expression.
<task> should match a task in the current expression,
task, and <condition> must match a logical expression p.
If the task already depends on p, the condition is replaced
by the wait: construct:
 [if: p task] -> [wait: p task]
otherwise,
 task -> [wait: p task]

Properties of Tailor’s Instruction Set
We have specified three major instruction templates to be
recognized in Tailor, and shown how they are interpreted
as transform operators. Currently, 4.1 and part of 4.2 are
implemented in Tailor. Having provided definitions of the
instructions in terms of syntactic transform operators, we

AAAI-05 / 561

examine their properties, including coverage, efficiency
and ambiguity.

Ambiguity
Ambiguity arises when an instruction may have several
interpretations, and further information is required from
the user to find which one is intended. Context-dependent
interpretation is not ambiguous since, although there are
two or more interpretations, the correct one is clear from
the current procedure definition. We discuss ambiguity
first because subsequent measures make adjustments for it,
as we explain below.
We distinguish two kinds of ambiguity, based on the
source. Term ambiguity occurs with an unclear reference
to a term in an instruction, either a task or a logical
condition. For example, consider the instruction “send
email before getting authorization if it costs more than
$2000”. The logical condition is ambiguous since it is not
clear what ‘it’ refers to. In the task expression being
modified, several variables may already be bound from
prior queries or task parameters that may have a cost
according to the ontology, and applying one or more
relations from the ontology may yield others. Tailor has a
bias to prefer objects already referred to or shorter chains
of references, but in some cases must ask follow-up
questions to resolve ambiguity. Similar work must be done
to create a concrete new task matching ‘send email’, to fill
the parameters for the recipient and message.
The second type is template ambiguity, which occurs when
there are several possible interpretations of the instruction
into transform operators. For example, the same instruction
has template ambiguity if the expression already contains a
task to send email after getting authorization. In this case it
is not clear whether the user intends to add a new email
task or to move the existing one earlier.
Neither form of ambiguity presents a serious problem for
the approach, given an interactive environment where
alternative interpretations can be presented. Both forms
can make the approach less convenient, however, by
requiring more feedback from the user. The choice of
instruction templates does not impact term ambiguity,
since it is independent of the templates themselves, while
template ambiguity is directly affected. Template
ambiguity is an important property of a set of instruction
templates in its own right, and it also affects efficiency
described below.

Coverage
We measure coverage by the proportion of transforms in a
complete set, for example Table 2, that can be addressed
by instruction templates. In terms of syntactic transform
operators, our set of instruction templates described in the
previous section does not provide complete coverage. For
example, there is no reliable way to transform from
[seq: t] to the operationally equivalent t using the
instruction templates defined. However, all of the
transforms from Table 2 are covered by transforms from

the instruction templates up to purely syntactic differences,
so this set provides complete coverage.

Efficiency
Two measures are used to capture the efficiency of a set of
instruction templates. First, coverage efficiency is
measured as the ratio of the number of transform operators
required to cover the set of templates to the number of
templates. Second, expression efficiency is measured as the
average number of transform operators from a reference
set that are required to model the instruction templates.
For an absolute measure of coverage efficiency, we would
need to know the smallest possible set of transform
operators giving complete coverage. We might also wish
to account for the difference in expressiveness of the
templates, whose range is increased by the use of multiple
keywords, and the fact that the transform operators are
designed to provide syntactic coverage while the templates
are designed to provide operational coverage. However,
the value is more useful as a comparison between
alternative sets of instruction templates, so we use a
constant reference set of transforms, introducing a constant
multiplier on the value for any set of templates. We
increase the count of instruction templates to the smallest
number that could be specified without template
ambiguity, to avoid favoring smaller, ambiguous sets.
In the example from the previous section, we have 3 main
templates, ignoring [3]. Since [2] has template ambiguity,
we increase the count to 4, essentially positing a copy of
[2] that is only used for existing tasks and one that is only
used for new tasks. Our reference set of transform
operators from Table 2 has 9 operators, yielding a
coverage efficiency of 9/4, or 9/5 if template [3] is
included.
Roughly half as many templates are required as operators
for two reasons. First, the use of multiple keywords allows
a template to represent multiple operators. For example the
keywords before and in parallel with in [2] correspond to
seq: and parallel: operators respectively. Second,
the use of context-dependent interpretation also increases
the range of a template.
The expression efficiency is the average number of
transform operators required to interpret a template. Again,
this depends on the set of transform operators used. In
particular, if we used the set of all interpretations as the
reference set, efficiency could not be greater than 1.
However, this set may have incomplete coverage, or poor
coverage efficiency. A reference set serves to compare
alternative sets of instruction templates. This property also
depends on the population of modifications that is chosen
to compute the average. Here we include each case in
which the templates may be used and a direct example of
each use of a transform operator, all weighted equally.
From the cases outlined above, we have an efficiency of
approximately 1.6 for the example set. The improvement
can be attributed to the optional “if” clauses in the
templates, and the direct expression of reordering, which is
not directly implemented in the reference set of transforms.

AAAI-05 / 562

For example, consider the instruction: “Send me email
before seeking authorization if the airline is not based in
the US”. Suppose that ‘seeking authorization’ matches task
auth in the current task expression, ‘if the airline is not
based in the US’ matches condition not-US, and ‘send
me email’ matches a new task email. Then the
instantiated interpretation of template [2] is
 auth ->
 [if: not-US [seq: email auth] auth]
In the reference set of table 2, this is achieved by
combining the following transforms:
 auth -> [if: not-US auth auth]
 auth -> [seq: email auth]

Discussion
The benefits of allowing users to modify procedure
definitions through instruction depend on a number of
factors, including how large a set of instruction templates
must be mastered, how efficiently they capture the changes
users want to make and how much follow-up work is
required to resolve ambiguity. In this paper we introduced
a framework for quantifying some of the properties of a set
of instruction templates that determine these features. We
show how the choice of templates can impact ambiguity,
coverage and expression efficiency. The properties are
illustrated in the context Tailor, which helps users modify
task expressions in SPARK through instruction.
It is important to see how well a set of templates captures
the modifications that a user typically wants to make. We
are investigating this aspect, although it is beyond the
scope of this paper. Blythe (Blythe, 2005) uses a set of task
modifications from a web site as a measure of typical
modifications. We plan to augment our analysis with user
studies to explore the use of the templates in practice.
Many task-based systems have been designed to take
instruction from users. In advice-taking systems such as
Foo (Mostow, 1981), the instruction takes the form of
high-level advice that must be operationalized by the
system in order to be used, e.g. “try to flush out the
Queen” in a game of Hearts. Myers (Myers, 1996)
characterizes the possible forms of advice in an advice-
taking system. We have attempted this for direct task-
modification instructions, although there is some overlap.
INSTRUCTO-SOAR (Huffman & Laird, 1995) is one of the
broadest instruction-taking systems and accepts a range of
instructions to modify its procedure definitions,
generalizing from instructions to perform particular actions
and also learning operator control knowledge from more
general instruction, e.g. “never pick up green blocks”.
However, properties of the set of recognizable instructions
such as completeness or conciseness are not investigated.
Lau et al. (Lau et al., 2004) and Liebermann (Lieberman,
2001) also consider inductive techniques for updating
procedures through examples. The analysis of procedure
transformations provided here would also be relevant to
these systems, providing further information on coverage
and machine learning bias.

Work on the TRIPS and TRAINS projects at Rochester has
addressed many aspects of dialog management in the
context of collaborative problem-solving, including the
combined use of context and dialog to help resolve
ambiguous instructions (Allen et al., 2001). Our work is
complementary as it considers instructions in the context
of an executable procedure model, using properties of the
model for disambiguation and to investigate completeness.
Quantifying the benefits from a set of instruction templates
is only one aspect of an instruction-based system, although
an important one. By distinguishing term ambiguity from
template ambiguity, we isolate an aspect that is
independent of the template set but must still be studied
and reduced as far as possible. The context provided by the
current procedures, the current task and the modification
being made is a powerful guide to help reduce ambiguity
that we will explore further in future work.

Acknowledgments
I am very grateful for comments from Yolanda Gil, Karen
Myers, Varun Ratnakar, Tim Chklovski, Jihie Kim and
Melinda Gervasio. This material is based upon work
supported by the Defense Advanced Research Projects
Agency (DARPA), through the Department of the Interior,
NBC, Acquisition Services Division, under Contract No.
NBCHD030010.

References
Allen, J., Byron, D., Dzikovska, M., Ferguson, G.,
Galescu, L., & Stent, A. (2001). Towards conversational
human-computer interaction. AI Magazine.
Blythe, J. (2001). Integrating expectations from different
sources to help end users to acquire procedural
knowledge. In Proc. IJCAI, Seattle, WA.
Blythe, J. (2005). Task learning by instruction in tailor. In
Proc. Intelligent User Interfaces, San Diego, CA.
Georgeff, M., & Lansky, A. (1987). Reactive reasoning
and planning. In Proc. AAAI, Seattle, WA.
Huffman, S., & Laird, J. (1995). Flexibly instructable
agents. Journal of AI Research, 3, 271-324.
Kim, J., & Gil, Y. (1999). Deriving expectations to guide
knowledge-base creation. In Proc. AAAI.
Lau, T., Bergman, L., Castelli, V., & Oblinger, D. (2004).
Sheepdog: Learning procedures for technical support. In
Proc. Intelligent User Interfaces.
Lieberman, H. (2001). Your wish is my command.San
Francisco: Morgan Kaufmann.
Morley, D., & Myers, K. (2004). The spark agent
framework. In Proc. AAMAS, New York, NY.
Mostow, J. (1981). Mechanical transformation of task
heuristics into operational procedures. Ph.D. thesis,
Carnegie Mellon University, Pittsburgh.
Myers, K. (1996). Strategic advice for hierarchical
planners. In Proc. Knowledge Representation.

AAAI-05 / 563

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

