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Abstract

We show that a Horn SAT and logic programming approach
to obtain polynomial time algorithms for problem solving
can be fruitfully applied to finding plans for various kinds
of goals in a non-deterministic domain. We particularly fo-
cus on finding weak, strong, and strong cyclic plans for plan-
ning problems, as they are the most studied ones in the lit-
erature. We describe new algorithms for these problems and
show how non-monotonic logic programming can be used to
declaratively compute strong cyclic plans. As a further bene-
fit, preferred plans among alternative candidate plans may be
singled out this way. We give complexity results for weak,
strong, and strong cyclic planning. Finally, we briefly discuss
some of the kinds of goals in non-deterministic domains for
which the approach in the paper can be used.

Introduction and Motivation
In recent years, one of the approaches that has been used
in finding solutions to AI problems is to find “models” of a
logical encoding of the problem. Examples of this include
finding planning via satisfiability encoding (Kautz & Sel-
man 1992) or logic programming encodings with answer set
semantics (Gelfond & Lifschitz 1991). The later is now re-
ferred to as answer set programming. But in most of these
cases, the problems that are solved are in the complexity
class NP-complete or beyond. One outlier is the work (Baral
& Eiter 2004) which takes advantage of the lower complex-
ity results about specific logic programming and SAT sub-
classes to come up with a polynomial-time algorithm for
finding maintenance policies.

In that paper, the authors first give a propositional SAT en-
coding of the problem. They then give a transformation of
that encoding to a propositional reverse Horn encoding and
show that the models of the encoding correspond to desired
agent policies. The fixpoint iteration approach to compute
models of Horn theories, which is feasible in linear time, is
then exploited to develop a genuine polynomial-time algo-
rithm for finding agent policies. If one were to view the log-
ical encoding as a specification, then the above mentioned
approach can be considered as a systematic way to develop
algorithms from specifications.
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In this paper, we show that the above approach can also be
used in finding polynomial time algorithms for some plan-
ning problems that emerge in non-deterministic domains
(Dal Lago, Pistore, & Traverso 2002; Cimattiet al. 2003).
In particular, we consider the notions of strong planning,
weak planning, and strong cyclic planning (Cimattiet al.
2003) and develop encodings inspired by the encoding in
(Baral & Eiter 2004), leading to polynomial time algorithms
for finding strong cyclic plans, strong plans and weak plans.
Overall, our main contributions in this paper are:

• We illustrate the novel algorithm design approach of
(Baral & Eiter 2004) to systematically develop an algorithm
from a logical specification. Passing through Horn SAT
specifications, we develop new polynomial time algorithms
for weak, strong, and strong cyclic planning; thus shedding
additional insights about these notions.
• We show how strong cyclic plans can be declaratively
generated with answer set programming at an abstract level.
• We discuss how particular properties of the encodings and
features of answer set solvers can be exploited for com-
puting (most) preferred plans among alternative candidate
plans. In particular, based on the encoding, maximal plans
and least defined plans can be found in polynomial time, and
in an answer set solver certain preference information (e.g.
based on action cost) can be easily expressed.
• We briefly discuss how our approach can lead to algo-
rithms for certain other kind of goals in non-deterministic
domains, such as maintenance goals and goals composed of
a sequence of achievements.
• We give complexity results about weak, strong and strong
cyclic planning. (No such results appear in previous papers.)

Plans and Goals in Non-deterministic Domains
We start with recalling the notions of weak, strong, and
strong cyclic plans from (Cimattiet al. 2003). Such plans
manifest in non-deterministic domains. In such domains,
plans map states to actions or to sets of actions. A weak plan
to achievep is a plan that says that at least one of the paths
(based on following that plan) leads top. A strong plan to
achievep is a plan that says that all paths (based on following
that plan) would lead top. A strong cyclic plan to achieve
p is a plan that says all along the path (based on following
that plan) there is at least one of the paths (by following that
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Figure 1: Transition diagram of the planning domainD

plan) that would lead top. In the language ofπ-CTL∗ (Baral
and Zhao 2004), these goals are expressed asEπ♦p, Aπ♦p,
andAπ¤(Eπ♦p), respectively; where♦ means eventually,
¤ means always,Eπ means exists a path following the plan
under consideration, andAπ means all paths following the
plan under consideration.

We now give the formal definitions.

Definition 1 (Planning Domain) A Planning Domain is a
triple D= 〈S,A, Φ〉 where

• S is the set of states,
• A is the finite set of actions,
• Φ : S × A → 2S is the (non-deterministic) transition

function that specifies how the state of the world changes in
response to actions.

Definition 2 (Executable Actions) Given a planning do-
mainD = 〈S,A, Φ〉, for eachs ∈ S, the set of executable
actions ins, Act(s), is Act(s) = {a : Φ(s, a) 6= ∅}.
Example 1 Consider a planning domainD = 〈S,A,Φ〉.
LetS = {b, c, d, e},A = {x, y}, and the transition function
Φ as in Figure 1. Then,Act(b) = {x, y} whileAct(e) = ∅.
Definition 3 (Plan) Given a planning domainD =
〈S,A,Φ〉, a mappingπ : S → 2A is called a plan if for
everys ∈ S, if π(s) is defined, thenπ(s) ⊆ Act(s).

Definition 4 (Planning Problem) Let D = 〈S,A, Φ〉 be
a planning domain. A planning problem forD is a triple
〈D, I,G〉 whereI ⊆ S, andG ⊆ S.

Definition 5 (Execution Structure) Let π be a plan of a
planning domainD= 〈S,A,Φ〉. The execution structure
induced byπ from the set of initial statesI ⊆ S is a tu-
ple K = 〈Q, T 〉 with Q ⊆ S andT ⊆ S × S inductively
defined as follows:

1. If s ∈ I, thens ∈ Q, and
2. If s ∈ Q, actiona ∈ π(s), ands′ ∈ Φ(s, a), thens′ ∈ Q

and(s, s′) ∈ T .

A states ∈ Q is a terminal state ofK if there is nos′ ∈ Q
such that(s, s′) ∈ T .

In the following, given a〈Q,T 〉, we say a states2 ∈ Q is
reachable from states1 ∈ Q if there is a path froms1 to s2

in T .

Definition 6 (Plans with respect to a planning problem)
LetD = 〈S,A, Φ〉 be a planning domain,P = 〈D, I,G〉
be a planning problem,π be a plan inD. LetK = 〈Q,T 〉
be the execution structure induced byπ fromI.

1. π is a weak plan with respect toP iff for any state inI,
some terminal state inG is reachable from the state.

2. π is a strong plan with respect toP iff K is acyclic and
all the terminal states ofK are inG.

3. π is a strong cyclic plan with respect toP iff from any
state inQ some terminal state is reachable and all the
terminal states ofK are inG.

Example 2 Continuing Ex. 1, for the planning problem
〈D, I,G〉 whereI = {b} andG = {e}, the mappingπ such
that π(c)= x andπ(b)= x, is a strong cyclic plan. Its exe-
cution structure isK = {{b, c, e}, {(b, c), (c, b), (c, e)}}. In
this planning problem, no strong plan exists, whileπ is also
a weak plan.

Finding Strong Cyclic Plans
In this section we use the approach in (Baral & Eiter 2004)
to develop algorithms that construct strong cyclic plans. To
start with, we give a propositional SAT encoding of a plan-
ning problem, and show that the models of this theory en-
code strong cyclic plans, if one exists, and vice versa.

SAT encodingS -Cyclic(P )
In our SAT encoding, we will use, for each states and ac-
tion a, propositionssi ands ai, wherei ≥ 0 is an integer.
Intuitively, si will mean that there is a path froms to G, fol-
lowing T of the execution structureK = 〈Q,T 〉, of length
at mosti. Similarly, s ai will intuitively mean that there is
a path froms to G, following T of the execution structure
K = 〈Q,T 〉, of length at mosti, with a as its first action.
We employ an upper boundmax for i, depending on the
number of states inS; if there is no path of length at most
max, there is no path at all.

Algorithm 1 Suppose we are given a planning problem
P = 〈D, I,G〉 whereD= 〈S,A, Φ〉. Letmax= |S|−1. We
translateP into a SAT encodingS -Cyclic(P ) as follows:

(0) for all s ∈ S andi, 0 < i ≤ max: si−1 ⇒ si

(1) for every states ∈ S\G, and for all i, 0 < i ≤ max:
si ⇒

∨
a∈Act(s) s ai

(2) for every statess, s′ ∈ S such thats′ ∈ Φ(s, a) for
some actiona: s amax ⇒ s′max

(3) for every states ∈ S, actiona ∈ Act(s), and for all i,
0 < i ≤ max: s ai ⇒

∨
s′∈Φ(s,a) s′i−1

(4) for every states ∈ S, actiona ∈ Act(s), and1 < i ≤
max: s ai−1 ⇒ s ai

(5) for s ∈ I: smax

(6) for s ∈ S \ G: ¬s0

The intuition behind this encoding is as follows. The
clauses in (0) state that if there is a path froms to G of
length at mosti-1, then there is a path of length at most
i. The clauses in (4) make a similar statement for paths with
first actiona. The clauses in (1) state that if there is a path
from s to G of length at mosti, then there must exist an ac-
tion a which is the first action of such a path. The clauses
in (2) state that for any states, there is a path froms to G
of length at mostmax with a as its first action only if from
every states′ ∈ Φ(s, a) a path toG of length at mostmax
exists. This takes into account the possibility thats may be
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in (the closure)Q of the execution structure〈Q,T 〉. The
clauses in (3) state that a path froms to G of length at most
i with a as its first action exists only if there is a path from
some states′ ∈ Φ(s, a) to G of length at mosti-1. The
clauses in (5) state that every initial state must have a path
of length at mostmax. Finally, the clauses in (6) exclude
paths of length zero for non-goal states.

Strong cyclic plans with respect toP and the models of
S -Cyclic(P ) are formally connected as follows.

Proposition 1 Let P = 〈D, I,G〉 be a planning problem
with planning dominD= 〈S,A, Φ〉.
1. P has a strong cyclic plan iffS -Cyclic(P ) is satisfiable;
2. For any modelM of S -Cyclic(P ), the partial function

πM : S → 2A defined byπM (s) = {a | M |= s aj , j =
mini M |= si} on all statess ∈ S \ G such thatM |= si

for somei, is a strong cyclic plan ofP .

Horn SAT Encoding
While S -Cyclic(P ) is constructible in polynomial time
from P , we can not automatically infer that finding strong
cyclic plans is polynomial, since SAT is a canonical NP-
hard problem. However, a closer look at the structure of
the clauses inS -Cyclic(P ) reveals that this instance is solv-
able in polynomial time. Indeed, it is areverse Horntheory;
i.e., after reversing the propositions, the theory is Horn. Us-
ing propositionssi, which intuitively mean the converse of
si, the Horn theory corresponding toS -Cyclic(P ), denoted
S -Cyclic(P ), is as follows:

Algorithm 2 We are given a planning problemP =
〈D, I,G〉, whereD= 〈S,A,Φ〉. Supposemax = |S|−1.
We translateP into a Horn encodingS -Cyclic(P ):

(0) for all s ∈ S andi, 0 < i ≤ max: si ⇒ si−1

(1) for every states ∈ S\G, and for all i, 0 < i ≤ max:∧
a∈Act(s) s ai ⇒ si.

(2) for every statess, s′ ∈ S such thats′ ∈ Φ(s, a) for
some actiona: s′max ⇒ s amax

(3) for every states ∈ S, actiona ∈ Act(s), and for all i,
0 < i ≤ max:

∧
s′∈Φ(s,a) s′i−1 ⇒ s ai

(4) for every states ∈ S, actiona ∈ Act(s), and for all i,
1 < i ≤ max: s ai ⇒ s ai−1

(5) for s ∈ I: smax ⇒⊥
(6) for s ∈ S \ G: s0

As computing a model of a Horn theory is a well-known
polynomial problem (Dowling & Gallier 1984), we thus ob-
tain the following result.

Theorem 1 Strong cyclic plans can be computed in polyno-
mial time. ¤

Maximal plan An interesting aspect of the above is that,
as well-known, each satisfiable Horn theoryT has the least
model,M∗(T ), which is given by the intersection of all its
models. Moreover, the least model is computable in linear
time, cf. (Dowling & Gallier 1984). This model not only
leads to a strong cyclic plan, but also leads to themaximal

plan, in the sense that the control is defined on the great-
est set of states outsideG among all possible strong cyclic
plans for initial statesI ′ and goal statesG such thatI ⊆ I ′.
This gives a clear picture of which other states may be added
to I while strong cyclicness is preserved. Besides, for any
strong cyclic plan, for any state, the action dictated by that
plan for that state is among the actions dictated by the plan
corresponding toM∗(T ).
Lean plans On the other hand, intuitively a strong cyclic
plan constructed from some maximal model ofS -Cyclic(P )
with respect to the propositionssk is undefined to a largest
extent, and works merely for a smallest extension. We may
generate, starting from any model ofT , such a maximal
model of T by trying to flip step by step all propositions
sk which arefalse to true, and change other propositions
as needed for satisfiability. In this way, we can generate a
maximal model ofT on {sk | s ∈ S \ E} in polynomial
time, from which a “lean” control can also be extracted in
polynomial time.

Genuine Procedural Algorithm
From the encoding to Horn SAT above, we can distill a di-
rect algorithmSTRONG CYCLIC PLAN to construct a strong
cyclic plan, if one exists. It mimics the steps which a SAT
solver might take in order to solveS -Cyclic(P ). For each
states∈S and actiona ∈ Act(s), we use countersc[s] and
c[s a] ranging over{−1, 0, · · · ,max} and{0, 1, · · · ,max},
respectively. Intuitively,c[s] = i represents that so fars0, s1,
· · ·, si are assigned true; in particular,i =−1 represents that
no si is assigned true yet. Similarly,c[s a] = i represents
that so fars a1, s a2, · · ·, s ai are assigned true. In particu-
lar, c[s ai] = 0 means that nos ai is assigned true yet.

Algorithm 3 STRONG CYCLIC PLAN

Input: A planning domainD = 〈S,A,Φ〉, and a planning
problemP = 〈D, I,G〉.

Output: A strong cyclic plan ofP if such plan exists. Oth-
erwise, output that no such plan exists.

(Step 1) Initialization:
(i) For everys ∈ G, setc[s] := −1.
(ii) For everys ∈ S\G, if Act(s) = ∅ then set
c[s] := max else setc[s] := 0.

(iii) For eachs ∈ S\G anda ∈ Act(s), setc[s a]:=0.
(Step 2) Repeat until no change orc[s] = max for some
s∈I:
(i) For every states ∈ S\G such thatAct(s) 6= ∅,
c[s] := max(c[s], i) wherei = mina∈Act(s) c[s a].

(ii) For every states∈S, a∈Act(s), ands′ ∈Φ(s, a), if
c[s′] = max, thenc[s a] := max.

(iii) For every states ∈ S anda ∈ Act(s),
c[s a] := max(c[s a], i+1) wherei=mins′∈Φ(s,a) c[s′].
(Step 3) Ifc[s] = max for somes∈I, then output that there
is no strong cyclic plan; halt.

(Step 4) Output the planπ : S → 2A defined on the states
s ∈ S\G with c[s]≤max and π(s)= {a | a∈Act(s),
c[s a] = minb∈Act(s) c[s b] }. ¤
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Proposition 2 Algorithm STRONG CYCLIC PLAN finds a
strong cyclic plan, if one exists, in a planning problem. Fur-
thermore, for every inputD andP , it terminates in polyno-
mial time.

We remark that algorithmSTRONG CYCLIC PLAN can be
made more efficient by pruning in a linear time preprocess-
ing all states which are not on a path between some states
s ∈ I ands′ ∈ G.

A more detailed account of the complexity ofSTRONG
CYCLIC PLAN and possible improvements are given below.

Strong Cyclic Planning Using an Answer Set Solver
In this section, we show how computing strong cyclic plans
can be encoded as a logic program, based on the results of
the previous section. More precisely, we describe an encod-
ing to non-monotonic logic programs under the Answer Set
semantics (Gelfond & Lifschitz 1991), which can be exe-
cuted on one of the available Answer Set solvers such as
DLV (Leoneet al. 2005) or Smodels (Simons, Niemelä, &
Soininen 2002). These solvers support the computation of
answer sets (models) of a given program, from which solu-
tions (in our case, strong cyclic plans) can be extracted.

The encoding is generic, i.e., given by afixed program
which is evaluated over instancesI represented by input
facts F (I). It makes use of the fact that non-monotonic
logic programs can have multiple models, which correspond
to different solutions, i.e., different strong cyclic plans.

In the following, we first describe how a system is rep-
resented in a logic program, and then we develop the logic
programs for both deterministic and general, nondeterminis-
tic domains. We adopt here the syntax of DLV; the adaptions
for other Answer Set Solvers (e.g. Smodels) are very minor.

Input representation F (I) The input I can be repre-
sented by factsF (I) as follows.

• The following facts represent the planning domainD =
〈S,A,Φ〉 and the planning problemP = 〈D, I,G〉:
• state( s) , for eachs ∈ S;
• action( a) , for eacha ∈ A;
• trans( s, a, s′) , for eachs, s′ ∈ S anda ∈ A such that
s′ ∈ Φ(s, a);
• the set of statesI is represented by using a predicate
start by factsstart( s) , for eachs ∈ I;

• the set of statesG is represented by using a predicate
goals by factsgoal( s) , for eachs ∈ G;

• finally, the ranges1 . . . max and 2 . . . max are repre-
sented using predicatesrange1 andrange2, respectively.

Program PSC The programPSC , executable on the DLV
engine, for computing a strong cyclic plan is as follows.

%ranges
range1(N) :- #int(N), N>0.
range2(N) :- #int(N), N>1.

% 0
s_bar(S,J1) :- s_bar(S,J), J=J1+1.

% 1
s_bar(S,I) :- state(S), not goal(S),

range1(I), not fail_body(S,I).

fail_body(S,I) :- range1(I),
trans(S,A,Y), not s_a_bar(S,A,I).

% 2
s_a_bar(S,A,#maxint) :-

trans(S,A,Y), s_bar(Y,#maxint).
% 3

s_a_bar(S,A,I) :- state(S), action(A),
range1(I), not fail_a_body(S,A,I).

fail_a_body(S,A,I) :- range1(I), I=I1+1,
trans(S,A,Y), not s_bar(Y,I1).

% 4
s_a_bar(S,A,I1) :- range2(I),

I=I1+1, s_a_bar(S,A,I).
% 5

:- s_bar(S,#maxint), start(S).
% 6

s_bar(S,0) :- state(S), not goal(S).
% single out a plan:

pi(S,A) :- fail_a_body(S,A,J),not goal(S),
J = #min {J1: fail_body(S,J1) }.

Besides the input predicates ofF (I), the program em-
ploys predicatess bar(S,I) ands a bar(S,A,I) which
intuitively correspond toSI and S AI respectively. The
predicatesfail body(S,I) and fail a body(S,A,I)
are used to uniformly represent clauses in (1) and (3), re-
spectively, with varying body size; they amount to the nega-
tion of s bar(S,I) and s a bar(S,A,I) , respectively.
The plan is computed in the predicatepi(S,A) .

Example 3 The logic program encodingF (I) of the strong
cyclic planning problem in Example 2 is as follows:

#maxint=3.
state(b). state(c). state(d). state(e).
start(b). goal(e). action(x). action(y).
trans(b,x,c). trans(c,x,b). trans(c,x,e).
trans(b,y,d). trans(c,y,d).

The programPSC ∪ F (I) has one answer set. Filtered to
the atomsfail a body(s,a,i) andpi(s,a) , we get:

{ fail_a_body(c,x,1), fail_a_body(b,x,2),
fail_a_body(c,x,2), fail_a_body(b,x,3),
fail_a_body(c,x,3), pi(b,x), pi(c,x) }

Hence, we obtain the strong cyclic planπ given byπ(b) =
{x} andπ(c) = {x}.
Preferred plans In the above example,PSC yields a sin-
gle and deterministic planπ, i.e., |π(s)| ≤ 1 always holds.
In general, there can be multiple answer sets, each cor-
responding to a different plan. Moreover,π can be non-
deterministic; if in Example 3 a further actionz would lead
from c to e, thenπ(c, e) would be in the result computed,
and thusπ(c) = {x, z}. By adding further rules inPSC , we
can easily generate a deterministic planπdet, e.g. by nonde-
terministically selecting one action fromπ(s):

pi_det(S,A) :- pi(S,A), not drop(S,A).
drop(S,A)v drop(S,B):- pi(S,A),pi(S,B),A<>B.

For the case where multiple solutions exist, we might ex-
ploit features available in Answer Set Solvers to select pre-
ferred plans. For example, using weak constraints offered
by DLV, we can express prioritization between different ac-
tions. For illustration, the weak constraints
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:˜ pi_det(c,x). [:1] :˜ pi_det(c,z). [:2]

express that as forπdet, taking actionz in statec is pre-
ferred over takingx. Using weak constraints, we can also
easily modelcostsfor action execution, possibly dependent
on the state, which add up in execution. In this way, op-
timal (i.e., most preferred) plans among the candidates can
be computed, possibly combining different criteria like de-
terministic actions and execution cost. We leave a detailed
discussion of this for further study.

Finding Strong Plans
Finding strong plans can be approached in three ways: (i) as
a special case of finite maintainability, when there are no ex-
ogenous actions; (ii) further constraining strong cyclic plan-
ning; or (iii) by a generic SAT encoding.

As for (ii), a Horn SAT encoding and genuine algorithm
for strong planning are as follows:

Horn Sat EncodingStrong(P ): The clauses (0), (1), (4),
(5), (6) fromS -Cyclic(P ) and the following clauses:
(7) For every states ∈ S and actiona ∈ A, for all s′ ∈
Φ(s, a), and for alli, 0 < i ≤ max: s′i−1 ⇒ s ai

Genuine procedureSTRONG PLAN : Steps 1, 2.(i), 3, and
4 from STRONG CYCLIC PLAN plus the new Step:
(Step 2) (ii′) For any states ∈ S, if s′ ∈ Φ(s, a) for
a ∈ Act(s) andc[s′] = i such that0 ≤ i ≤ max, then do
c[s a] := max(c[s a], i + 1).

As discussed later, this yields algorithms of the same or-
der as for strong cyclic planning.

The following Horn SAT encoding and the corresponding
genuine procedure is more efficient.

Algorithm 4 For planning problemP = 〈D, I,G〉, where

D = 〈S,A,Φ〉, the Horn instanceStrong
+
(P ) contains:

(0) for everys ∈ G: s

(1) for every states ∈ S\G and actiona ∈ Act(s) such
thatΦ(s, a) = {s′1, . . . , s′m}, m > 0:
s′1 ∧ · · · ∧ s′m ⇒ s and s′1 ∧ · · · ∧ s′m ⇒ s a.

(2) For I = {s1, . . . , sl}: s1 ∧ · · · ∧ sl ⇒ ⊥.

Theorem 2 For a planning problemP = 〈D, I,G〉,
(i) a strong solution exists iffStrong

+
(P ) is unsatisfiable

iff ⊥ is derivable fromStrong
+
(P ).

(ii) π = {〈s, a〉 | s a ∈ T i
P ′ , s /∈ T i−1

P ′ , for somei ≥ 1},
is a (non-deterministic) strong solution, whereT 1

P ′ = G
andT i+1

P ′ = {` | `1 ∧ · · · ∧ `l ⇒ ` ∈ Strong
+
(P ) and

`1, . . . , `l,∈ T i
P ′} for i ≥ 1, are the powersT i

P ′ of the
logic programming immediate consequence operatorTP ′

(see e.g. (Dantsinet al. 2001)) for the programP ′ =
Strong

+
(P ) (viewing⊥ as atom).

A strong planπ as in the theorem can be constructed in
O(|Φ| + |S|) time starting fromP , sinceStrong

+
(P ) is

easily constructed and, as well-known, the powers ofTP ′ are
incrementally computable in linear time using proper data
structures, cf. remarks in (Dantsinet al. 2001).

Finding Weak Plans
One way to think about finding weak plans is as relaxing
strong cyclic planning. A respective Horn SAT encoding
and genuine algorithm for Weak planning are as follows:

Horn Sat EncodingWeak(P ): The clauses (0), (1), (3),
(4), (5), (6) fromS -Cyclic(P ).

Genuine procedure: It consists of Steps 1, 2.(i), 2.(iii), 3,
and 4 of algorithmSTRONG CYCLIC PLAN . (It does not
contain the Step 2 (ii).)

Again, this yields algorithms of the same order as for
strong cyclic planning. More efficient ones emerge from the
following encoding.

Algorithm 5 For planning problemP = 〈D, I,G〉, where

D = 〈S,A,Φ〉, the Horn instanceWeak
+
(P ) is as follows:

(0) for everys ∈ G: s

(1) for every states ∈ S\G, actiona ∈ Act(s), ands′ ∈
Φ(s, a): s′ ⇒ s a ands′ ⇒ s.

Theorem 3 For a planning problemP = 〈D, I,G〉,
(i) a weak solution exists iff for eachs ∈ I, Weak

+
(P ) ∪

{¬s} is unsatisfiable if and only if eachs ∈ I is true in

M∗(Weak
+
(P )), the least model ofWeak

+
(P ).

(ii) π = {〈s, a〉 | s a ∈ M∗(Weak
+
(P ))}, is a (non-de-

terministic) strong solution, if any strong solution exists.

Note thatWeak
+
(P ) is definite Horn, and thus its least

modelM∗(Weak
+
(P )) does exist. Furthermore, it is com-

putable in linear time in the size ofWeak
+
(P ). Since the

latter is easily constructed, finding a weak plan w.r.t.P is
thus feasible in timeO(|Φ|+ |S|), i.e., in linear time.

Complexity and Relation to other Algorithms
For any planning domainD = 〈S,A, Φ〉 and planning prob-
lemP = 〈D, I,G〉, we denote by‖D‖ = |S|+|A|+|Φ| and
‖P‖ = ‖D‖+ |I| + |G| the representation size ofD andP ,
respectively (whereΦ is viewed as set of triples〈s, a, s′〉).
Proposition 3 Strong Cyclic Planning can be solved, via
the Horn encodingS -Cyclic(P ) and, by a suitable imple-
mentation of AlgorithmSTRONG CYCLIC PLAN , in time
O(|S|·‖P‖) andO(|S|·|Φ|), respectively.

Compared to (Cimattiet al. 2003), our algorithm for
strong cyclic planning works differently. Basically, their
algorithm iteratively computes weak plans by backtracking
from the goal states and prunes the planning problem until a
weak plan which is also a strong cyclic plan is obtained. Our
algorithm, instead, has no such intuition and simply aims
at establishing the necessary logical conditions, as in the
seminal planning as satisfiability approach (Kautz & Selman
1992). A simple implementation of the Cimattiet al. algo-
rithm hasO(|S|2|Φ|) time complexity, while a sophisticated
one hasO(|S|·|Φ|) comparable to ours. In the extended ver-
sion of the paper, we illustrate on an example the difference
between the workings of their algorithm and ours.

For finding strong plans and weak plans by constrained
and relaxed strong cyclic planning, respectively, we obtain:
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Proposition 4 Strong Planning (resp., Weak Planning) can
be solved, via the encodingStrong(P ) (resp.,Weak(P )) in
timeO(|S|·‖P‖), and by a properly implemented algorithm
STRONG PLAN (resp.,WEAK PLAN ), in timeO(|S|·|Φ|).

Simple implementations of the algorithms for strong and
weak planning in (Cimattiet al. 2003) have time com-
plexity O(|S|·|Φ|), while more sophisticated ones have
O(‖P‖), i.e., linear time. For the special Horn encod-

ingsStrong
+
(P ) andWeak

+
(P ), we obtain the same time

bound. They are closely related to the respective algorithms
in (Cimatti et al. 2003) and may be viewed as declarative
descriptions of the plan construction method. Nicely, an ef-
ficient implementation comes for free by the efficient algo-
rithms for solving Horn theories.

As for the computational complexity of the planning
problems, we note the following.1

Proposition 5 Deciding whether a given planning problem
〈D, I,G〉 has (i) a strong cyclic solution isP-complete (ii)
a strong solution isP-complete, and (iii) a weak solution is
NLOG -complete.

TheP-hardness results are an easy consequence of com-
plexity results onk-maintainability (Baral & Eiter 2004).
TheNLOG -membership of weak solutions is explained by
the fact that as shown above, this reduces to solving for each
s ∈ I a Horn SAT instance (Theorem 3) that is also a 2-SAT
instance, which is feasible inNLOG . TheNLOG -hardness
follows from a simple reduction from the canonical graph
reachability problem. We finally note that exploiting Theo-
rem 3, also computing some weak plan is feasible in nonde-
terministic logspace.

Extending the Approach to Other Goals
As we mentioned earlier, weak, plans, and strong cyclic
plans can be expressed asEπ♦p, Aπ♦p, andAπ¤(Eπ♦p) in
languageπ-CTL∗. Although we focus on these plans in this
paper, the planning algorithm finding approach can be used
to find algorithms for many other kinds of goals inπ-CTL∗.
Such goals include:

• Maintenance Goals such asAπ¤(Eπ¤♦p). Such goals
are particularly relevant when possible exogenous actions
can take the agent away fromp, and it has to get back top.

• Goals such asA¤(Eπ♦p), andAπ¤(E♦p), whereE and
A correspond to exist path and all path regardless of whether
they follow the policy under consideration or not.

• Goals of the kind: Reachp for sure; then reachq and so
on. In this case the second ‘reach’ could mean either weak,
strong or strong cyclic way of reaching. Here our approach
can be used to generate multiple policies that are to be used
depending on the status of achievement.

• Goals of the kind: Try to reachp (weak plan) and if at any
point if p becomes unreachable then try to reachq.

1We could not find a reference for these results, which might be
known to the specialists, though.

Conclusion
In this paper, we show that the methodology in (Baral &
Eiter 2004) can be used to develop polynomial time plan-
ning algorithms for various kinds of problems in a non-
deterministic domain, viz. for weak, strong, and strong
cyclic planning. Small modifications to the algorithm ob-
tained for strong cyclic planning, whose complexity is com-
parable to a sophisticated implementation of the Cimattiet
al. algorithm, yield polynomial algorithms for strong and
weak planning. Furthermore, simple, genuine Horn encod-
ings give efficient (linear time) implementations of Cimatti
et al.’s strong and weak plan construction method at an ab-
stract level. We also show how strong cyclic planning can
be declaratively done in non-monotonic logic programming,
using an Answer Set Solver. By exploiting features of such
solvers, a (most) preferred among multiple candidate plans,
depending on criteria like deterministic actions, action pref-
erence, or action cost might be singled out.

It appears that the method described in this paper may be
fruitfully applied to obtain polynomial-time planning algo-
rithms for other kinds of goals in non-deterministic domains.
Among them are several goals expressed in the languageπ-
CTL∗ (Baral and Zhao 2004). Exploring this is part of our
ongoing work.
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