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Abstract

Possibilistic networks are important tools for dealing
with uncertain pieces of information. For multiply-
connected networks, it is well known that the inference
process is a hard problem. This paper studies a hew rep-
resentation of possibilistic networks, called hybrid pos-
sibilistic networks. The uncertainty is no longer repre-
sented by local conditional possibility distributions, but
by their compact representations which are possibilis-
tic knowledge bases. We show that the inference algo-
rithm in hybrid networks is strictly more efficient than
the ones of standard propagation algorithm.

Introduction

Probabilistic networks (Pearl 1988; Jensen 1996; Lauritzen
& Spiegelhalter 1988) and possibilistic networks (Fonck
1994; Borgelt, Gebhardt, & Kruse 1998) are important tools
proposed for an efficient representation and analysis of un-
certain information. Their success is due to their simplic-
ity and their capacity of representing and handling inde-
pendence relationships which are important for an efficient
management of uncertain pieces of information. Possibilis-
tic networks and possibilistic logic have been successively
applied in many domains such as fault detection (Cagtac
al. 1996).

Possibilistic networks are directed acyclic graphs (DAG),

information in possibilistic networks, called hybrid possi-
bilistic graphs. Local uncertainty is no longer represented
by conditional possibility distributions but by possibilistic
knowledge bases. This representation generalizes the two
well-known standard representations of uncertainty in possi-
bility theory: possibilistic knowledge bases and possibilistic
networks. Then we propose an extension to the junction tree
algorithm for hybrid possibilistic networks using an exten-
sion of the notion of forgetting variables, proposed in (Lang
& Marquis 1998; Darwiche & Marquis 2004) for computing
marginal distributions.

The main advantage of this propagation algorithm concerns
space complexity. Namely, during the junction tree construc-
tion, it may happen that the size of clusters can be very large.
In such case, in standard possibilistic networks, it may be
impossible to produce local possibility distributions associ-
ated with clusters. Our algorithm enables us to propagate
uncertainty even with large clusters.

The rest of this paper is organized as follows: first, we give
a brief background on possibilistic logic and propagation al-
gorithms for standard possibilistic multiply-connected net-
works (section2). Then, we present our new representa-
tion of possibilistic networks (SectioB). Section4 intro-
duces the prioritized forgetting variable. The adaptation of
the propagation algorithm for multiply connected graphs is
proposed in Sectioh. Experimental results are presented in
SectionG.

where each node encodes a variable and every edge repre-
sents a relationship between two variables. Uncertainties are  Possibilistic logic and possibilistic networks

expressed by means of conditional possibility distributions
for each node in the context of its parents.
The inference in possibilistic graphs, as in probabilistic

graphs, depends on the structure of a DAG. For instance,

Possibility distributions

LetV = {A4, Ao, ..., A, } be aset of variabled) 4, denotes
the finite domain associated with the variable. For the

achieved in a polynomial time. However, for multiply con-

considered here are assumed to be bingrgenotes any of

nected graphs (where between two nodes, it may exists more the two instances o ; and—a; represents the other instance

generally requires a graphical transformation from the ini-

tial graph into another tree structure such as a junction tree.

V' and logical connectors (conjunction)y (disjunction);
(propositional negation)l” and_L, respectively, denote tau-

Nodes in this tree are sets of variables called clusters. The tologies and contradictions.

propagation algorithm efficiency depends on clusters’ size,
and the space complexity is function of cartesian product of
clusters variables’ domains.

Q = x4,evDa, represents the universe of discourse and
an element of}, is called arninterpretation It is either de-
noted by tuplegas, ..., a, ) or by conjunctionga; A...Aay,),

This paper first proposes a new representation of uncertain Wherea;'s are respectively instance f;’s. In the follow-
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ing, = denotes the propositional logic satisfactian= ¢
means thab is a model ofp.
A possibility distributionr (Zadeh 1975) is a mappirtgg —

AAAI-05 / 584



[0,1]. m(w) denotes the compatibility degree of an interpre-
tationw with available pieces of information. By convention,
m(w) = 0 means thaw is impossibles(w) = 1 means that

w is totally possibler(w) > 7(w’) means thav is preferred

to w’. Given a possibility distributionr, two dual measures
are defined:

- A possibility measure of a formula:

() = max{r(w) : w |- o}

which represents the compatibility degreegofvith avail-
able pieces of information encoded hy
- A necessity measure of a formufa

N(p) =1 —1(~y)

which corresponds to the certainty degree associatedvith
from available pieces of information encodedhy
Lastly, conditioning (Hisdal 1978) is defined by :

1 if m(w) =1(¢) andw = ¢
ww(m{gm if 7(o) < li(o)ando =6 (1)

Possibilistic knowledge bases

A possibilistic knowledge base (Dubois, Lang, & Prade
1994) is a finite set of weighted formula®
{(¢i,a;),i=1,...,m}, wherep,; is a propositional for-
mula ande; € [0, 1]. (¢;, ;) can be viewed as a constraint
stating that the certainty degreefis at least equal tov;,
namelyN (¢;) > «;.

Possibilistic knowledge bases are compact representa-
tions of possibility distributions. Namely, each possibilis-
tic knowledge base induces a unique possibility distribution,
defined by (Dubois, Lang, & Prade 199%); € Q,

{

The following definitions are useful for the rest of the paper:

Definition 1 Two possibilistic knowledge basgs and 3o
are said to be equivalent if their associated possibility dis-
tributions are equal, namely :

Yw € Q,

Subsumption definition is as follows :

Definition 2 Let(y, ) a formula inX. Then(y, «) is said
to be subsumed b¥ if ¥ and X\{(y, )} are equivalent
knowledge bases.

Namely, subsumed formulas are redundant formulas that can
be removed without changing possibility distributions.

1 lf v(@iaai) € Za w |: Pis
1 —maz{a; :w = p;}  otherwise.

)

Wz(w)

s, (w) = 75, (w)

Standard possibilistic networks

Possibilistic networks (Fonck 1994; Borgelt, Gebhardt, &
Kruse 1998), denoted bl G, are directed acyclic graphs
(DAG). Nodes correspond to variables and edges encode
relationships between variables. A node is said to be a
parent ofA; if there exists an edge from the node to the
nodeA;. Parents ofA; are denoted b{/ 4,

Uncertainty is represented at each node by local conditional
possibility distributions. More precisely, for each variable A:
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If Ais aroot, namely/, = (), then we providdI(a) and
II(—a) with max(7(a), 7(—a)) = 1.
If A has parents, namely, # 0, then we providdI(a |
ug) andIl(—a | uy), with max(m(a|Ua), 7(-alUa)) = 1,
for eachuys € Dy, , whereDy, is the cartesian product of
domains of variables which are parentstbf
Possibilistic networks are also compact representations of
possibility distributions. More precisely, joint possibility
distributions associated with possibilistic network are com-
puted using a so-called possibilistic chain rule similar to the
probabilistic one, namely :

©)

whereaq; is an instance ofi; andu,, C {ay,...,a,} is an
element of the cartesian product of domains associated with
variablesU 4, which are parents ofl;.

Example 1 Figure 1 gives an example of possibilistic
networks. Table 1 provides local conditional possibility
distributions of each node given its parents.

ma(al, ..., an) = Z_:mlinnH(ai | ua,),

T(CIA)

Figure 1: Example of possibilistic causal netwaoH
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Table 1: Local conditional possibility distributions associ-
ated with DAG of Figure 1

Using possibilistic
degree of w(—ab—cd)
m(—ab—ed)

chain rule, the possibility
is computed as follows
= min(7(—a), 7(b|-a), 7(—c|—a), 7 (d|b—c))
=min(1,1,1,1) = 1

Propagation in possibilistic multiply connected
networks

Propagation algorithms aim to establish a posteriori possi-
bility distributions of each nodel given some evidence on

a set of variable€’. When DAGs are singly connected then
the propagation algorithm is polynomial. In this section, we
only focus on multiply connected graphs.

A well-known algorithm for multiply connected graphs pro-
ceeds to a transformation of the initial graph into a junc-
tion tree. The main idea is to delete loops from the initial
graph gathering some variables in a same node. The result-
ing graph is a tree where each node, called cluster, is a set
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of variables. Common variables of two adjacent clusters are
grouped into another type of node, called a separator.
Figure 2 gives an example of a junction tree associated with
the DAG of figure 1.

The propagation algorithm is then applied on this resulting

Cre D—se}—C o0

Figure 2: Junction tree associated with grapH of figure 1

structure. The idea is to require that adjacent clusters shar-
ing common variables should have the same marginal dis-
tributions associated with these common variables namely
on their separator. The main steps of the junction tree prop-
agation algorithm are (For more details see (Fonck 1994,
Borgelt, Gebhardt, & Kruse 1998)):

Step S1 :Standard initialization

This step initializes possibility distributions associated
with clusters and separators using local possibility distri-
butions in the initial DAG.

- For each cluste€’; : w5, « 1,

where 1 is a possibility distribution where all elements
have a highest possibility degrée

- For each separatd;; : mf -« 1,

- For each variabled, select a clustelC; containing
AU U, and update its possibility distributions as follows

wloml, — min(rl, TI(A | U)),

Step S2 :Standard handling of evidence
If A = a (evidence), then select a clust@y containing
A, and update its possibility distribution as follows:

7l (w) = min(7! (W), T (w))
wherern, (w) is defined :

{

Step S3 :Standard updating of separators

Each cluster computes its possibility distribution and send
it to the adjacent separator. The separator’s distribution,
denotedrg' ", is then updated as follows:

1 ifwkEa

0 otherwise.

4)

7o (w)

7TtJr.l

(5)

t
A
Step S4 :Standard updating of clusters
Each cluster updates its possibility distribution, denoted
wtcfgl, when receiving a message from its adjacent separa-
tor as follows :

i (6)
Steps S3 and S4 are repeated until the junction tree is
globally consistent, namely adjacent clusters should have
same marginal distributions over common variables.
Step S5 :Computing queries
When the junction tree is consistent, computliigd =
a) consists in selecting any cluster containihi@nd mar-
ginalizingIl, on A:

I[(A=a)=1¢,(A=a)

— min(ﬂ'a , Wf%- ).

Possibilistic networks with local knowledge
bases

Definition of hybrid graphs
Pieces of information can be either provided in terms of pos-
sibilistic knowledge bases or in terms of conditional possi-
bilities. They can also be either represented using graphical
structures or logic-based structures. The aim of the new rep-
resentation is to take advantage of these two possible repre-
sentation formats (as it has for instance been done in other
frameworks (Wilson & Mengin 2001)). A graphical repre-
sentation is used to take advantage of independence rela-
tions, and a logic-based representation is used to have com-
pact representation of possibility distributions.
In this paper, we propose a new structure called hybrid pos-
sibilistic graphs. More precisely, hybrid possibilistic causal
networks, denoted GG, are characterized by (see figure 3):

e A graphical componenivhich is represented by a DAG
(like standard possibilistic causal networks) that allows to
represent independence relationships.

e A guantitative componemthich encodes uncertainties. It
associates to each node a local bases instead of a condi-
tional possibility distribution. Namely, at each node,
one provides a possibilistic knowledge basg, which
represents local knowledge base4mand its parents.

Figure 3: Hybrid graptH G with local knowledge bases

Hybrid graphs are also compact representation of joint pos-
sibility distributions. A possibility distribution associated
with a hybrid possibilistic networl/ G is defined by:

()

wherers,, is the possibility distributions associated with
¥ 4, obtained using equation (2).

Yw, mpa(w) = Amér‘l/_ﬂz,qi (w)
7

From possibilistic bases and standard possibilistic
networks to hybrid possibilistic networks

A hybrid representation is a general framework which
records the standard ones recalled in the previous section.
Namely, any possibilistic network G (where local uncer-
tainty is represented by a possibility distribution) or any pos-
sibilistic knowledge base, can be represented by hybrid net-
works HG. In (Benferhat & Smaoui 2005), an immediate
encoding of possibilistic logic base into hybrid networks is
provided. In this section, we give the encoding of hybrid net-
works.

Let IIG be a standard possibilistic causal networks. Het

be a variable, and(a;|u;) be a local possibility degree as-
sociated withA. Then the hybrid possibilistic networld G
associated witHIG is obtained in the following way: for
eachA, define

Ya={(a;V-u,a) 0 =1 —m(a;|u;) #0}F (8)
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Then, Prioritized forgetting allows to syntacticly capture the base

Proposition 1 LetTIG be a standard possibilistic network. associated with marginal distributions. More precisely:
Let HG be a hybrid network, having a same DAG, and Proposition 2 Let X be a possibilistic knowledge base

whereX 4,'s are obtained using equation (8), then, and 7 its associated distribution. LeX be a set of vari-
ables. Then the possibility distribution associated with
e (W) = THg(w) ) pforget(X,X)is:
wheren¢ andr g are obtained by using (3) and (7). T forget(,x) = MaX T (10)
’ VAX

Example 2 Let us build a hybrid possibilistic causal net-

works HG from standard possibilistic causal networks Propagation in mu|t|p|y connected graphs

of example 1 by associating knowledge bases to each node o . . . .
using 8. Uncertainty at the level of nodes B, C' and D One of the limits of junction tree algorithm is that the trans-

(binary variables) is represented by possibilistic knowledge formation step of initial multiply connected graphs can pro-

basesy 4, X5, ¢ andyp, as follows: duce clusters with a great number of variables. In that case,
Sa = {(~a,3 )} it may be impossible to get local joint possibility distribu-

3 tions on clusters.
Yp={(~aV-b,32),(aV-b )} The aim of this section is to propose an alternative prop-
Yo ={(aV e, ) (—\a Ve, 1)} agation algorithm in junction trees. For propagation algo-
Yp ={(bV-cV-d, ) (=bV —cVd, %)} rithms on hybrid singly-connected networks see (Benferhat
We can check thatiw, an(w) = Tpc(w). Forinstance, & Smaoui 2005).

We call a hybrid junction tree, denotéfl/T", a junction tree
where uncertainty is represented over clusters by possibilis-
tic knowledge bases, instead of possibility distributions.

The main steps of the new junction tree algorithm are sum-
merized in the following figure:

T (—ab-ed) = min(WEA (mab—cd), g (ﬁab—'cd)
T (mab-ed), ws, (-ab-ed)) = min(1, §,1,1) =
which is the same as the one given in example 1

Prioritized forgetting : A syntactic

computation of marglnallzatlon Procedure Hybrid junction tree propagation
Lin and Reiter (1994) proposed an approach allowing vari- | Begin

able domain restriction in propositional knowledge bases - Junction tree construction from the initial graph
(see (Lang & Marquis 1998; Darwiche & Marquis 2004) ingﬁ"y Zte%.slt: ?tartl_dard mntuahcztgtlon
for details). Variable forgetting (also known as projection or S o Stom &2 - Standard o en ,
T . . pply step S2 : Standard handling of evidence,
marginalization) is defined as: While (Junction tree is not consistert)
Definition 3 Let K be a propositional knowledge base and :ﬁgg:iﬁ ZESS gi ; gigﬂggﬁg ﬂggggﬂg iﬁgtié?;?rs’
X be a propositional variable set. The forgettingXfin K, done
noted forget(K, X), is equivalent to a propositional for- else
mula that can be inductively defined as follows : - For each variablel, compute local knowledge base , ,
o forget(K, () = K. - Apply step H1 : Hybrid initialization,
o forget(K,{x}) = Koot V Ko7 While (Junction tree is not consistemtd

- Apply step H2 : Hybrid handling of evidence,
- Apply step H3 : Hybrid updating separators,
- Apply step H4 : Hybrid updating clusters.

o forget(K, X U{x}) = forget(forget(K,X),{x}).
whereK,. , (resp.K,. ) refers toK in which we affect

false (resp. true) value to each occurrencecdfnstance of done
X). By K; vV K we mean the s€(; V ;) : ¢; € K; and Steps H1, H2, H3, H4 and H5 are detailed below.
’lpj - Kj} end If

End

This approach is defined for classical propositional logic.
We present an extension of this definition, called prioritized
forgetting, which deals with possibilistic knowledge bases.  The idea of the algorithm is the following : if in the ini-
Let 3% and X, be two possibilistic knowledge bases. The  jajization step, the size of cluster is not very large then
disjunction of two bases in possibilistic framework, denoted  giandard propagation stepsl(— S5) described in the pre-

by ©, is defined as follows : vious section are used. Now, if it is impossible to repre-
21Q% = {(¢i V ¢, min(ai, B5)) : (i i) € ¥y and sent distribution over clusters, then we use alternative steps

(5, 6;) € X} . (H1 — H5) described below. These steps give the counter-
Pn?rﬁlzed forgetting, denotegforget, can then be defined parts of 61 — S5) for possibilistic knowledge bases.
as follows:

Definition 4 Let & be a possibilistic knowledge base and Step H1 : Hybrid initialization

X be a variable set. The prioritized forgetting &f in %, This step consists of initializing the junction tree by assign-
denotedp forget (X, X), is equivalent to a possibilistic for-  jng knowledge bases to clusters and separators.

mula defined as follows : g .

o pforget(S,0) = 3, e An empty knowledge basEc;, is first assigned to each
o pforget(S,{x}) = Koo | @Ky 7 clusterC.

o pforget(S, X U {x}) =pforget(pforget(S, X), {z}). Zo, 0
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e An empty knowledge basEg,, is also assigned to each  Example 4 Let us compute the knowledge basg,,

separatoiS; ;. associated with the separatd¥;> from X,. This leads
s, — 0 to forgetting the variabled. Let us apply the definition of
e For each variablel, select a clustef’; containing{ A} U pfgrget. _f(p. B 1
U4 and add to the knowledge bask;, the possibilistic -Ya1 ={(= 731)7 (ﬁc’gi)} .
baseX 4 associated witti. -YaeT ={(L,5),(=b,%),(c, 7)}
S, — Se, Uy 2515 =?{ogg§§(?cni{ﬁ) , b ove )
‘ ¢ - —|,*,_|C,*7_\\/_|C,*,_\\/C,*
Proposition 3 Let HG be an hybrid possibilistic causal = {(=b %) (—e g)}_ 2 :
network. Letd JT be the junction tree associated withG. 1 JAN T2
Let{Sc. : i = 1,...,n} be the knowledges bases associated (? Y 7¢z) @nd(=bV ¢, 3) are subsumed formulas.
with clusters{C; : i = 1,...,n} at the end of the initializa- ) )
tion step. Then we have: Step H4 : Hybrid updating clusters
THG = H(lji‘n TSe, When receiving messages from separatgr the clusteiC;

) . . ) updates it's knowledge base as follows :
Example 3 Given the junction tree of Figure 4, local knowl-

edge bases on clusters after the initialization step are: Yo, — S, USg, (11)
Yo, =24UXpUXc = {(—\CL, %), (—|CL V —b, %),

(aV=b2),(aV-ci) (mavel)} This is justified by the following proposition (Benferheit
202 = ED - {(b\/_.'C\/_\d,%)., (“bV“CVd,%)} al. 1999) '

Let us consider the interpretatian = ~ab-cd. We have : Proposition 4 Let HG be an hybrid possibilistic causal
Tpe(nabmed) = min(ms,, (mab-c), ms,, (boed)) = 3 network. LetH JT be a junction tree associated witiG.
which is the same as the one obtained from example 1. Let{X¢, : i = 1,...,n} be the knowledge bases associated

After the initialization step, messages are sent between clus- With clusters{C; : i = 1,...,n} after each updating step.

ters in order to guarantee the consistency conditions. If, for Then, we havevw,

instance, for a given two cluste€ andC;, we have : .
Tae (W) = ming, s, (w)

max T, # max mc,, i

Ci\Si; Ci\Si; °

thenC; andC; should update their knowledge bases itera-

tively. The following two elementary steps are repeated until

reaching consistency:

- A separatorS;; computes its knowledge base froff}

The steps of updating separators and clusters knowledge
bases are repeated until reaching stability (global consis-
tency) in the junction tree. Formally{ JT is consistent if
Vi, j, we have:

(resp.C;). _ _ 12
- A clusterC; (resp.C;) updates its knowledge base taking s cm\%sxj e, c%l\%%j e (12)
into account the knowledge base of the separator previously
computed. Example 5 The knowledge basE., associated with the
[essage 56, clusterC;, after receiving®g,, Is :
step B3, step 54 Yo, = B, UBgy, = {0V eV d,2),(=bV eV
@ 25 @ d, %), (=b, 3), (=e, 1)} which is equivalent t&c, = {(bV
et < SEép WA Step HS Zoz —cV —d, %)7 (ﬁbv %)’ (ﬁcj %)} . .
[Message C,C,| At the end of propagation process, we obtain the following
local knowledge bases:
Figure 4: Message passing in the junction tFegT =Y, = {(ma,2), (=, 3), (=c, 1)}
) . . . =Y, = {(=b,3), (=¢, L), (bV =c Vv —d, 3)}.
Step H2 : Hybrid handling evidence It can be checked thatJT is consistent.

If there are some observations (evidence), then for any ob-
served variabled = a select a cluster containing the vari- . ; : :
ableA, and add the possibilistic formu(a, 1) to the know!- H5 - Hybrid computing queries

edge base associated with this cluster. When the junction tree is consistent, computifig4) is

. . done syntacticly using possibilistic inference:
Step H3 : Hybrid updating separators y y 9p

The knowledge basEg, , associated with a separatsy;, Proposition 5 LetX be a possibilistic knowledge base. Let
represents the restriction (marginalization) of the bdse a be an instance afl. Then,
(resp.X¢,) on common variables in the separafy. This
knowledge base is immediately obtained thanks to Proposi- m(a) =1—Inc(XU{(a,1)})
tion 2. . . .
Let V' be the set of variables ifi;\ S;;. Then, wherelnc(¥ U {(a,1)}) is the inconsistency degree BfU
! ) {(a,1)}. For computing the inconsistency degréec see
Ys,, = pforget(Xc,, V') (Dubois, Lang, & Prade 1994).
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Experiments

In the previous section, it is clear that our algorithm is an
improvement of standard junction tree propagation, since
stepsH1 — H5 are run only if it is not possible to initial-
ize the junction tree with explicit local conditional possi-
bility distributions. In this section, we present experimental
results for the proposed possibilistic propagation algorithm.
These experimentations show that our algorithm is a real im-
provement, since we identify several examples where stan-
dard junction tree blocks, while our algorithm provides an-

swers. The experimentation was conducted on sets of possi-

bilistic networks randomly-generated. DAGs are generated
randomly by varying number of nodes and the maximum
number of parents. We define links ratio to be the average
number of links per node in the graph. Local conditional
distributions on each node in the context of its parents are
also generated randomly respecting the normalization con-
straints. It is well-known that the performance of standard

junction tree does not depend on numerical degrees assigned

to interpretations. In hybrid networks, the performance of
the propagation algorithms depend on possibility distribu-
tions. The smaller is the number of interpretations having
possibility degrees different fromand1, the more efficient

is the algorithm. In our experimentation, the number of in-
tepretations having possibility degree differenbaind1 is
around25%. The experimentations show that with networks
containing35 (resp40, 50, 60) nodes, it begins to be impos-
sible to initialize local distributions at the level of clusters
with links ratio aroundt.45 (resp.3.55, 2.72,1.78). Results

in Table 2 are obtained by fixing the maximum number of
parents tol0. In most cases, we observe that hybrid junc-
tion tree algorithm provides a result. Our new algorithm can
only be limited by the running-time but never blocks. We
chose to set a time-limit equal 1®000 seconds. Clearly, in

nb | avgratio] JT avg Hybrid
nodes of algo time algo
links error | hybrid error
30 4.32 0% 0.91s 0%
35 4.42 8% 126.45 s 0%
40 4.58 55% | 240.97s 2%
45 4.55 87% | 393.37s 2%
50 4.67 100% | 1535.48s| 15%

Table 2: Experimental results

many examples when standard possibilistic networks blocks
our algorithm provide answers. In particularly for networks
with 50 nodes, standard junction tree algorithm blocks for
basically each generated networks.

Conclusion

This paper provides a new representation of possibility net-
works, where conditional possibility distributions are com-
pactly represented by local possibilistic knowledge bases.
We have shown that standard possibilistic graphs can be
equivalently encoded in hybrid possibilistic graphs.

We then extended the notion of forgetting variables in-
troduced in (Lin & Reiter 1994; Lang & Marquis 1998;
Darwiche & Marquis 2004), and showed that this extension
indeed allows the computation of marginalized knowledge
base.

An adaptation of junction tree algorithm is provided. When
uncertainty on clusters are described by possibilistic knowl-
edge bases, our algorithm improves standard junction tree
propagation algorithm.

Lastly, we provide experimental studies where examples,
which are blocked by standard junction tree algorithm, are
solved using our algorithm based on hybrid representation
of possibilistic networks.
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