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Abstract

Possibilistic networks are important tools for dealing
with uncertain pieces of information. For multiply-
connected networks, it is well known that the inference
process is a hard problem. This paper studies a new rep-
resentation of possibilistic networks, called hybrid pos-
sibilistic networks. The uncertainty is no longer repre-
sented by local conditional possibility distributions, but
by their compact representations which are possibilis-
tic knowledge bases. We show that the inference algo-
rithm in hybrid networks is strictly more efficient than
the ones of standard propagation algorithm.

Introduction
Probabilistic networks (Pearl 1988; Jensen 1996; Lauritzen
& Spiegelhalter 1988) and possibilistic networks (Fonck
1994; Borgelt, Gebhardt, & Kruse 1998) are important tools
proposed for an efficient representation and analysis of un-
certain information. Their success is due to their simplic-
ity and their capacity of representing and handling inde-
pendence relationships which are important for an efficient
management of uncertain pieces of information. Possibilis-
tic networks and possibilistic logic have been successively
applied in many domains such as fault detection (Cayracet
al. 1996).
Possibilistic networks are directed acyclic graphs (DAG),
where each node encodes a variable and every edge repre-
sents a relationship between two variables. Uncertainties are
expressed by means of conditional possibility distributions
for each node in the context of its parents.
The inference in possibilistic graphs, as in probabilistic
graphs, depends on the structure of a DAG. For instance,
for simply connected graphs, the inference process can be
achieved in a polynomial time. However, for multiply con-
nected graphs (where between two nodes, it may exists more
than one path), the propagation algorithm is expensive and
generally requires a graphical transformation from the ini-
tial graph into another tree structure such as a junction tree.
Nodes in this tree are sets of variables called clusters. The
propagation algorithm efficiency depends on clusters’ size,
and the space complexity is function of cartesian product of
clusters variables’ domains.
This paper first proposes a new representation of uncertain
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information in possibilistic networks, called hybrid possi-
bilistic graphs. Local uncertainty is no longer represented
by conditional possibility distributions but by possibilistic
knowledge bases. This representation generalizes the two
well-known standard representations of uncertainty in possi-
bility theory: possibilistic knowledge bases and possibilistic
networks. Then we propose an extension to the junction tree
algorithm for hybrid possibilistic networks using an exten-
sion of the notion of forgetting variables, proposed in (Lang
& Marquis 1998; Darwiche & Marquis 2004) for computing
marginal distributions.
The main advantage of this propagation algorithm concerns
space complexity. Namely, during the junction tree construc-
tion, it may happen that the size of clusters can be very large.
In such case, in standard possibilistic networks, it may be
impossible to produce local possibility distributions associ-
ated with clusters. Our algorithm enables us to propagate
uncertainty even with large clusters.
The rest of this paper is organized as follows: first, we give
a brief background on possibilistic logic and propagation al-
gorithms for standard possibilistic multiply-connected net-
works (section2). Then, we present our new representa-
tion of possibilistic networks (Section3). Section4 intro-
duces the prioritized forgetting variable. The adaptation of
the propagation algorithm for multiply connected graphs is
proposed in Section5. Experimental results are presented in
Section6.

Possibilistic logic and possibilistic networks
Possibility distributions
LetV = {A1, A2, ..., An} be a set of variables.DAi

denotes
the finite domain associated with the variableAi. For the
sake of simplicity, and without lost of generality, variables
considered here are assumed to be binary.ai denotes any of
the two instances ofAi and¬ai represents the other instance
of Ai. ϕ,ψ, .. denote propositional formulas obtained from
V and logical connectors∧ (conjunction),∨ (disjunction),¬
(propositional negation).> and⊥, respectively, denote tau-
tologies and contradictions.
Ω = ×Ai∈V DAi represents the universe of discourse andω,
an element ofΩ, is called aninterpretation. It is either de-
noted by tuples(a1, ..., an) or by conjunctions(a1∧...∧an),
whereai’s are respectively instance ofAi’s. In the follow-
ing, |= denotes the propositional logic satisfaction.ω |= ϕ
means thatω is a model ofϕ.
A possibility distributionπ (Zadeh 1975) is a mappingΩ→
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[0, 1]. π(ω) denotes the compatibility degree of an interpre-
tationω with available pieces of information. By convention,
π(ω) = 0 means thatω is impossible.π(ω) = 1 means that
ω is totally possible.π(ω) > π(ω′) means thatω is preferred
to ω′. Given a possibility distributionπ, two dual measures
are defined:
- A possibility measure of a formulaϕ:

Π(ϕ) = max{π(ω) : ω |= ϕ}

which represents the compatibility degree ofϕ with avail-
able pieces of information encoded byπ.
- A necessity measure of a formulaϕ:

N(ϕ) = 1−Π(¬ϕ)

which corresponds to the certainty degree associated withϕ
from available pieces of information encoded byπ.
Lastly, conditioning (Hisdal 1978) is defined by :

π(ω | φ) =

{
1 if π(ω) = Π(φ) andω |= φ
π(ω) if π(ω) < Π(φ) andω |= φ
0 otherwise.

(1)

Possibilistic knowledge bases
A possibilistic knowledge base (Dubois, Lang, & Prade
1994) is a finite set of weighted formulasΣ =
{(ϕi, αi) , i = 1, ...,m}, whereϕi is a propositional for-
mula andαi ∈ [0, 1]. (ϕi, αi) can be viewed as a constraint
stating that the certainty degree ofϕi is at least equal toαi,
namelyN(ϕi) ≥ αi.
Possibilistic knowledge bases are compact representa-
tions of possibility distributions. Namely, each possibilis-
tic knowledge base induces a unique possibility distribution,
defined by (Dubois, Lang, & Prade 1994):∀ω ∈ Ω,

πΣ(ω) =
{

1 if ∀(ϕi, αi) ∈ Σ, ω |= ϕi,
1−max{αi : ω 6|= ϕi} otherwise. (2)

The following definitions are useful for the rest of the paper:

Definition 1 Two possibilistic knowledge basesΣ1 andΣ2

are said to be equivalent if their associated possibility dis-
tributions are equal, namely :

∀ω ∈ Ω, πΣ1(ω) = πΣ2(ω)

Subsumption definition is as follows :

Definition 2 Let (ϕ, α) a formula inΣ. Then(ϕ, α) is said
to be subsumed byΣ if Σ and Σ\{(ϕ, α)} are equivalent
knowledge bases.

Namely, subsumed formulas are redundant formulas that can
be removed without changing possibility distributions.

Standard possibilistic networks
Possibilistic networks (Fonck 1994; Borgelt, Gebhardt, &
Kruse 1998), denoted byΠG, are directed acyclic graphs
(DAG). Nodes correspond to variables and edges encode
relationships between variables. A nodeAj is said to be a
parent ofAi if there exists an edge from the nodeAj to the
nodeAi. Parents ofAi are denoted byUAi

.
Uncertainty is represented at each node by local conditional
possibility distributions. More precisely, for each variable A:

If A is a root, namelyUA = ∅, then we provideΠ(a) and
Π(¬a) with max(π(a), π(¬a)) = 1.
If A has parents, namelyUA 6= ∅, then we provideΠ(a |
uA) andΠ(¬a | uA), with max(π(a|UA), π(¬a|UA)) = 1,
for eachuA ∈ DUA

, whereDUA
is the cartesian product of

domains of variables which are parents ofA.
Possibilistic networks are also compact representations of
possibility distributions. More precisely, joint possibility
distributions associated with possibilistic network are com-
puted using a so-called possibilistic chain rule similar to the
probabilistic one, namely :

πΠG(a1, ..., an) = min
i=1..n

Π(ai | uAi
), (3)

whereai is an instance ofAi anduAi
⊆ {a1, ..., an} is an

element of the cartesian product of domains associated with
variablesUAi

which are parents ofAi.

Example 1 Figure 1 gives an example of possibilistic
networks. Table 1 provides local conditional possibility
distributions of each node given its parents.

Figure 1: Example of possibilistic causal networkΠG

a 1
4

¬a 1

B|A a ¬a
b 1

4
1
4

¬b 1 1

C|A a ¬a
c 1 1

2

¬c 3
4 1

D|BC bc ¬bc else
d 1 1

4 1
¬d 1

2 1 1

Table 1: Local conditional possibility distributions associ-
ated with DAG of Figure 1

Using possibilistic chain rule, the possibility
degree of π(¬ab¬cd) is computed as follows :
π(¬ab¬cd) = min(π(¬a), π(b|¬a), π(¬c|¬a), π(d|b¬c))

= min(1, 1
4 , 1, 1) = 1

4

Propagation in possibilistic multiply connected
networks
Propagation algorithms aim to establish a posteriori possi-
bility distributions of each nodeA given some evidence on
a set of variablesE. When DAGs are singly connected then
the propagation algorithm is polynomial. In this section, we
only focus on multiply connected graphs.
A well-known algorithm for multiply connected graphs pro-
ceeds to a transformation of the initial graph into a junc-
tion tree. The main idea is to delete loops from the initial
graph gathering some variables in a same node. The result-
ing graph is a tree where each node, called cluster, is a set
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of variables. Common variables of two adjacent clusters are
grouped into another type of node, called a separator.
Figure 2 gives an example of a junction tree associated with
the DAG of figure 1.
The propagation algorithm is then applied on this resulting

Figure 2: Junction tree associated with graphΠG of figure1

structure. The idea is to require that adjacent clusters shar-
ing common variables should have the same marginal dis-
tributions associated with these common variables namely
on their separator. The main steps of the junction tree prop-
agation algorithm are (For more details see (Fonck 1994;
Borgelt, Gebhardt, & Kruse 1998)):
• Step S1 :Standard initialization

This step initializes possibility distributions associated
with clusters and separators using local possibility distri-
butions in the initial DAG.
- For each clusterCi : πI

Ci
← 1,

where1 is a possibility distribution where all elements
have a highest possibility degree1.
- For each separatorSij : πI

Sij
← 1,

- For each variableA, select a clusterCi containing
A ∪ UA and update its possibility distributions as follows
:
πI

Ci
: πI

Ci
← min(πI

Ci
,Π(A | UA)).

• Step S2 :Standard handling of evidence
If A = a (evidence), then select a clusterCi containing
A, and update its possibility distribution as follows:

πI(ω) = min(πI(ω), πa(ω))
whereπa(ω) is defined :

πa(ω) =
{

1 if ω |= a
0 otherwise. (4)

• Step S3 :Standard updating of separators
Each cluster computes its possibility distribution and send
it to the adjacent separator. The separator’s distribution,
denotedπt+1

Sij
, is then updated as follows:

πt+1
Sij
← max

Ci\Sij

πt
Ci
. (5)

• Step S4 :Standard updating of clusters
Each cluster updates its possibility distribution, denoted
πt+1

Cj
, when receiving a message from its adjacent separa-

tor as follows :

πt+1
Cj
← min(πt

Cj
, πt

Sij
). (6)

Steps S3 and S4 are repeated until the junction tree is
globally consistent, namely adjacent clusters should have
same marginal distributions over common variables.

• Step S5 :Computing queries
When the junction tree is consistent, computingΠ(A =
a) consists in selecting any cluster containingA and mar-
ginalizingΠCi

onA:

Π(A = a) = ΠCi
(A = a)

Possibilistic networks with local knowledge
bases

Definition of hybrid graphs
Pieces of information can be either provided in terms of pos-
sibilistic knowledge bases or in terms of conditional possi-
bilities. They can also be either represented using graphical
structures or logic-based structures. The aim of the new rep-
resentation is to take advantage of these two possible repre-
sentation formats (as it has for instance been done in other
frameworks (Wilson & Mengin 2001)). A graphical repre-
sentation is used to take advantage of independence rela-
tions, and a logic-based representation is used to have com-
pact representation of possibility distributions.
In this paper, we propose a new structure called hybrid pos-
sibilistic graphs. More precisely, hybrid possibilistic causal
networks, denotedHG, are characterized by (see figure 3):
• A graphical componentwhich is represented by a DAG

(like standard possibilistic causal networks) that allows to
represent independence relationships.

• A quantitative componentwhich encodes uncertainties. It
associates to each node a local bases instead of a condi-
tional possibility distribution. Namely, at each nodeAi,
one provides a possibilistic knowledge baseΣAi which
represents local knowledge base onA and its parents.

Figure 3: Hybrid graphHG with local knowledge bases

Hybrid graphs are also compact representation of joint pos-
sibility distributions. A possibility distribution associated
with a hybrid possibilistic networkHG is defined by:

∀ω, πHG(ω) = min
Ai∈V

πΣAi
(ω) (7)

whereπΣAi
is the possibility distributions associated with

ΣAi
obtained using equation (2).

From possibilistic bases and standard possibilistic
networks to hybrid possibilistic networks
A hybrid representation is a general framework which
records the standard ones recalled in the previous section.
Namely, any possibilistic networkΠG (where local uncer-
tainty is represented by a possibility distribution) or any pos-
sibilistic knowledge base, can be represented by hybrid net-
worksHG. In (Benferhat & Smaoui 2005), an immediate
encoding of possibilistic logic base into hybrid networks is
provided. In this section, we give the encoding of hybrid net-
works.
Let ΠG be a standard possibilistic causal networks. LetA
be a variable, andπ(ai|ui) be a local possibility degree as-
sociated withA. Then the hybrid possibilistic networkHG
associated withΠG is obtained in the following way: for
eachA, define

ΣA = {(¬ai ∨ ¬ui, αi) : αi = 1− π(ai|ui) 6= 0}. (8)
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Then,

Proposition 1 Let ΠG be a standard possibilistic network.
Let HG be a hybrid network, having a same DAG, and
whereΣAi ’s are obtained using equation (8), then,

πΠG(ω) = πHG(ω) (9)

whereπΠG andπHG are obtained by using (3) and (7).

Example 2 Let us build a hybrid possibilistic causal net-
worksHG from standard possibilistic causal networkΠG
of example 1 by associating knowledge bases to each node
using 8. Uncertainty at the level of nodesA,B,C andD
(binary variables) is represented by possibilistic knowledge
basesΣA, ΣB , ΣC andΣD as follows:
ΣA = {(¬a, 3

4 )}
ΣB = {(¬a ∨ ¬b, 3

4 ), (a ∨ ¬b, 3
4 )}

ΣC = {(a ∨ ¬c, 1
2 ), (¬a ∨ c, 1

4 )}
ΣD = {(b ∨ ¬c ∨ ¬d, 3

4 ), (¬b ∨ ¬c ∨ d, 1
2 )}

We can check that,∀ω, πΠG(ω) = πHG(ω). For instance,
πHG(¬ab¬cd) = min(πΣA

(¬ab¬cd), πΣB
(¬ab¬cd),

πΣC
(¬ab¬cd), πΣD

(¬ab¬cd)) = min(1, 1
4 , 1, 1) = 1

4 .
which is the same as the one given in example 1.

Prioritized forgetting : A syntactic
computation of marginalization

Lin and Reiter (1994) proposed an approach allowing vari-
able domain restriction in propositional knowledge bases
(see (Lang & Marquis 1998; Darwiche & Marquis 2004)
for details). Variable forgetting (also known as projection or
marginalization) is defined as:

Definition 3 LetK be a propositional knowledge base and
X be a propositional variable set. The forgetting ofX inK,
notedforget(K,X), is equivalent to a propositional for-
mula that can be inductively defined as follows :
• forget(K, ∅) = K.
• forget(K, {x}) = Kx←⊥ ∨Kx←>.
• forget(K,X ∪ {x}) = forget(forget(K,X), {x}).
whereKx←⊥ (resp.Kx←>) refers toK in which we affect
false (resp. true) value to each occurrence ofx (instance of
X). ByKi ∨Kj we mean the set{(ϕi ∨ ψj) : ϕi ∈ Ki and
ψj ∈ Kj}.
This approach is defined for classical propositional logic.
We present an extension of this definition, called prioritized
forgetting, which deals with possibilistic knowledge bases.
Let Σ1 andΣ2 be two possibilistic knowledge bases. The
disjunction of two bases in possibilistic framework, denoted
by 6, is defined as follows :
Σ16Σ2 = {(ϕi ∨ ψj ,min(αi, βj)) : (ϕi, αi) ∈ Σ1 and
(ψj , βj) ∈ Σ2}
Prioritized forgetting, denotedpforget, can then be defined
as follows:

Definition 4 Let Σ be a possibilistic knowledge base and
X be a variable set. The prioritized forgetting ofX in Σ,
denotedpforget(Σ, X), is equivalent to a possibilistic for-
mula defined as follows :
• pforget(Σ, ∅) = Σ,
• pforget(Σ, {x}) = Kx←⊥6Kx←>
• pforget(Σ, X ∪ {x}) =pforget(pforget(Σ, X), {x}).

Prioritized forgetting allows to syntacticly capture the base
associated with marginal distributions. More precisely:

Proposition 2 Let Σ be a possibilistic knowledge base
and π its associated distribution. LetX be a set of vari-
ables. Then the possibility distribution associated with
pforget(Σ, X) is :

πpforget(Σ,X) = max
V \X

πΣ (10)

Propagation in multiply connected graphs
One of the limits of junction tree algorithm is that the trans-
formation step of initial multiply connected graphs can pro-
duce clusters with a great number of variables. In that case,
it may be impossible to get local joint possibility distribu-
tions on clusters.
The aim of this section is to propose an alternative prop-
agation algorithm in junction trees. For propagation algo-
rithms on hybrid singly-connected networks see (Benferhat
& Smaoui 2005).
We call a hybrid junction tree, denotedHJT , a junction tree
where uncertainty is represented over clusters by possibilis-
tic knowledge bases, instead of possibility distributions.
The main steps of the new junction tree algorithm are sum-
merized in the following figure:

Procedure Hybrid junction tree propagation
Begin

- Junction tree construction from the initial graph
- Apply step S1 : Standard initialization
If (Standard initialization succeeds)then

- Apply step S2 : Standard handling of evidence,
While (Junction tree is not consistent)do

- Apply step S3 : Standard updating separators,
- Apply step S4 : Standard updating clusters.

done

- Apply step S5 : Standard computing queries.

else
- For each variableA, compute local knowledge baseπΣA ,
- Apply step H1 : Hybrid initialization,
While (Junction tree is not consistent)do

- Apply step H2 : Hybrid handling of evidence,
- Apply step H3 : Hybrid updating separators,
- Apply step H4 : Hybrid updating clusters.

done

- Apply step H5 : Hybrid computing queries.

Steps H1, H2, H3, H4 and H5 are detailed below.
end If

End

The idea of the algorithm is the following : if in the ini-
tialization step, the size of cluster is not very large then
standard propagation steps (S1 − S5) described in the pre-
vious section are used. Now, if it is impossible to repre-
sent distribution over clusters, then we use alternative steps
(H1 − H5) described below. These steps give the counter-
parts of (S1− S5) for possibilistic knowledge bases.

Step H1 : Hybrid initialization
This step consists of initializing the junction tree by assign-
ing knowledge bases to clusters and separators.

• An empty knowledge baseΣCi
is first assigned to each

clusterCi.
ΣCi
← ∅
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• An empty knowledge baseΣSij is also assigned to each
separatorSij .

ΣSij ← ∅
• For each variableA, select a clusterCi containing{A} ∪
UA and add to the knowledge baseΣCi the possibilistic
baseΣA associated withA.

ΣCi
← ΣCi

∪ ΣA

Proposition 3 Let HG be an hybrid possibilistic causal
network. LetHJT be the junction tree associated withHG.
Let{ΣCi

: i = 1, ..., n} be the knowledges bases associated
with clusters{Ci : i = 1, ..., n} at the end of the initializa-
tion step. Then we have:

πHG = min
Ci

πΣCi

Example 3 Given the junction tree of Figure 4, local knowl-
edge bases on clusters after the initialization step are:
ΣC1 = ΣA ∪ ΣB ∪ ΣC = {(¬a, 3

4 ), (¬a ∨ ¬b, 3
4 ),

(a ∨ ¬b, 3
4 ), (a ∨ ¬c, 1

2 ), (¬a ∨ c, 1
4 )}

ΣC2 = ΣD = {(b ∨ ¬c ∨ ¬d, 3
4 ), (¬b ∨ ¬c ∨ d, 1

2 )}
Let us consider the interpretationω = ¬ab¬cd. We have :
πHG(¬ab¬cd) = min(πΣC1

(¬ab¬c), πΣC2
(b¬cd)) = 1

4
which is the same as the one obtained from example 1.

After the initialization step, messages are sent between clus-
ters in order to guarantee the consistency conditions. If, for
instance, for a given two clustersCi andCj , we have :

max
Ci\Sij

πCi 6= max
Cj\Sij

πCj ,

thenCi andCj should update their knowledge bases itera-
tively. The following two elementary steps are repeated until
reaching consistency:
- A separatorSij computes its knowledge base fromCi

(resp.Cj).
- A clusterCj (resp.Ci) updates its knowledge base taking
into account the knowledge base of the separator previously
computed.

Figure 4: Message passing in the junction treeHJT

Step H2 : Hybrid handling evidence
If there are some observations (evidence), then for any ob-
served variableA = a select a cluster containing the vari-
ableA, and add the possibilistic formula(a, 1) to the knowl-
edge base associated with this cluster.

Step H3 : Hybrid updating separators
The knowledge baseΣSij , associated with a separatorSij ,
represents the restriction (marginalization) of the baseΣCi

(resp.ΣCj ) on common variables in the separatorSij . This
knowledge base is immediately obtained thanks to Proposi-
tion 2.
Let V ′ be the set of variables inCi\Sij . Then,

ΣSij
= pforget(ΣCi

, V ′)

Example 4 Let us compute the knowledge baseΣS12 ,
associated with the separatorS12 from ΣC1 . This leads
to forgetting the variableA. Let us apply the definition of
pforget:
- Σa←⊥ = {(¬b, 3

4 ), (¬c, 1
2 )}

- Σa←> = {(⊥, 3
4 ), (¬b, 3

4 ), (c, 1
4 )}

ΣS12 = pforget(ΣC1 , {A})
= {(¬b, 3

4 ), (¬c, 1
2 ), (¬b ∨ ¬c, 1

2 ), (¬b ∨ c, 1
4 )}

= {(¬b, 3
4 ), (¬c, 1

2 )}.
(¬b ∨ ¬c, 1

2 ) and(¬b ∨ c, 1
4 ) are subsumed formulas.

Step H4 : Hybrid updating clusters

When receiving messages from separatorSij , the clusterCi

updates it’s knowledge base as follows :

ΣCj
← ΣSij

∪ ΣCj
(11)

This is justified by the following proposition (Benferhatet
al. 1999) :

Proposition 4 Let HG be an hybrid possibilistic causal
network. LetHJT be a junction tree associated withHG.
Let {ΣCi

: i = 1, ..., n} be the knowledge bases associated
with clusters{Ci : i = 1, ..., n} after each updating step.
Then, we have :∀ω,

πHG(ω) = minCiπΣCi
(ω)

The steps of updating separators and clusters knowledge
bases are repeated until reaching stability (global consis-
tency) in the junction tree. Formally,HJT is consistent if
∀i, j, we have:

πΣSij
= max

Ci\Sij

πΣCi
= max

Cj\Sij

πΣCj
(12)

Example 5 The knowledge baseΣC2 associated with the
clusterC2 after receivingΣS12 is :
ΣC2 = ΣC2 ∪ ΣS12 = {(b ∨ ¬c ∨ ¬d, 3

4 ), (¬b ∨ ¬c ∨
d, 1

2 ), (¬b, 3
4 ), (¬c, 1

2 )} which is equivalent toΣC2 = {(b ∨
¬c ∨ ¬d, 3

4 ), (¬b, 3
4 ), (¬c, 1

2 )}.
At the end of propagation process, we obtain the following
local knowledge bases:
- ΣC1 = {(¬a, 3

4 ), (¬b, 3
4 ), (¬c, 1

2 )}.
- ΣC2 = {(¬b, 3

4 ), (¬c, 1
2 ), (b ∨ ¬c ∨ ¬d, 3

4 )}.
It can be checked thatHJT is consistent.

H5 : Hybrid computing queries

When the junction tree is consistent, computingΠ(A) is
done syntacticly using possibilistic inference:

Proposition 5 Let Σ be a possibilistic knowledge base. Let
a be an instance ofA. Then,

π(a) = 1− Inc(Σ ∪ {(a, 1)})

whereInc(Σ ∪ {(a, 1)}) is the inconsistency degree ofΣ ∪
{(a, 1)}. For computing the inconsistency degreeInc see
(Dubois, Lang, & Prade 1994).
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Experiments
In the previous section, it is clear that our algorithm is an
improvement of standard junction tree propagation, since
stepsH1 − H5 are run only if it is not possible to initial-
ize the junction tree with explicit local conditional possi-
bility distributions. In this section, we present experimental
results for the proposed possibilistic propagation algorithm.
These experimentations show that our algorithm is a real im-
provement, since we identify several examples where stan-
dard junction tree blocks, while our algorithm provides an-
swers. The experimentation was conducted on sets of possi-
bilistic networks randomly-generated. DAGs are generated
randomly by varying number of nodes and the maximum
number of parents. We define links ratio to be the average
number of links per node in the graph. Local conditional
distributions on each node in the context of its parents are
also generated randomly respecting the normalization con-
straints. It is well-known that the performance of standard
junction tree does not depend on numerical degrees assigned
to interpretations. In hybrid networks, the performance of
the propagation algorithms depend on possibility distribu-
tions. The smaller is the number of interpretations having
possibility degrees different from0 and1, the more efficient
is the algorithm. In our experimentation, the number of in-
tepretations having possibility degree different of0 and1 is
around25%. The experimentations show that with networks
containing35 (resp40, 50, 60) nodes, it begins to be impos-
sible to initialize local distributions at the level of clusters
with links ratio around4.45 (resp.3.55, 2.72, 1.78). Results
in Table 2 are obtained by fixing the maximum number of
parents to10. In most cases, we observe that hybrid junc-
tion tree algorithm provides a result. Our new algorithm can
only be limited by the running-time but never blocks. We
chose to set a time-limit equal to10000 seconds. Clearly, in

nb avg ratio JT avg Hybrid
nodes of algo time algo

links error hybrid error
30 4.32 0% 0.91 s 0%
35 4.42 8% 126.45 s 0%
40 4.58 55% 240.97 s 2%
45 4.55 87% 393.37 s 2%
50 4.67 100% 1535.48 s 15%

Table 2: Experimental results

many examples when standard possibilistic networks blocks
our algorithm provide answers. In particularly for networks
with 50 nodes, standard junction tree algorithm blocks for
basically each generated networks.

Conclusion
This paper provides a new representation of possibility net-
works, where conditional possibility distributions are com-
pactly represented by local possibilistic knowledge bases.
We have shown that standard possibilistic graphs can be
equivalently encoded in hybrid possibilistic graphs.
We then extended the notion of forgetting variables in-
troduced in (Lin & Reiter 1994; Lang & Marquis 1998;
Darwiche & Marquis 2004), and showed that this extension
indeed allows the computation of marginalized knowledge
base.

An adaptation of junction tree algorithm is provided. When
uncertainty on clusters are described by possibilistic knowl-
edge bases, our algorithm improves standard junction tree
propagation algorithm.
Lastly, we provide experimental studies where examples,
which are blocked by standard junction tree algorithm, are
solved using our algorithm based on hybrid representation
of possibilistic networks.
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