
Functional Specification of Probabilistic Process Models∗

Avi Pfeffer
Harvard University

avi@eecs.harvard.edu

Abstract

Agents that handle complex processes evolving over a period
of time need to be able to monitor the state of the process.
Since the evolution of a process is often stochastic, this re-
quires probabilistic monitoring of processes. A probabilistic
process modeling language is needed that can adequately cap-
ture our uncertainty about the process execution. We present
a language for describing probabilistic process models. This
language is functional in nature, and the paper argues that a
functional language provides a natural way to specify pro-
cess models. In our framework, processes have both states
and values. Processes may execute sequentially or in par-
allel, and we describe two alternative forms of parallelism.
An inference algorithm is presented that constructs a dynamic
Bayesian network, containing a variable for every subprocess
that is executed during the course of executing a process. We
present a detailed example demonstrating the naturalness of
the language.

Introduction
An important goal of artificial intelligence is to design
agents that can handle complex processes that evolve over
a period of time. For example, the CALO project is de-
veloping an intelligent office assistant that will be able to
perform such tasks as planning a meeting or purchasing a
laptop. These tasks require many stages and can go wrong
in a variety of ways. For example, purchasing a laptop re-
quires getting the purchase criteria from the user, soliciting
bids, going through a cycle of refining the criteria if neces-
sary and getting more bids, and, once an appropriate laptop
has been found, getting the right managerial authorizations
for the purchase and the final approval of the user. An agent
that is designed to fulfil such a task must be able to keep
track of the state of the task execution. Since the evolution
of tasks is stochastic, this requires probabilistic monitoring
of complex processes.

A probabilistic process model can be very useful in track-
ing the progress of a process. It will enable us to answer
queries such as “What is the probability of successful com-
pletion of a process, given that a particular subprocess has

∗This work is supported by a DARPA subcontract through SRI
International 27-000913-02.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

failed?”, “What is the probability that a subprocess will
complete successfully given that it has been running for an
hour?”, “What is the probability that a subprocess will be ex-
ecuted, given the state of other subprocesses?”, and “What
is the expected running time of a process, given the state of
its subprocesses?” In order to answer these queries, we need
a probabilistic representation of the process model that ad-
equately captures our uncertainty about the way the process
evolves.

SPARK (Morley & Myers 2004) is a non-probabilistic
process modeling language developed at SRI. In SPARK,
processes pass arguments to their subprocesses. Each sub-
process can be instantiated in many ways. In essence, a
subprocess is a first order variable that can take arguments.
Therefore, in order to compactly describe a probabilistic
process model, we need a first-order probabilistic modeling
language.

Some popular probabilistic representations for dynamic
systems are inadequate for the task. Hidden Markov mod-
els (Rabiner & Juang 1986) collapse the entire state of the
process into a single variable. Since the state of a process
involves the states of all its subprocesses, we end up with
an enormous state space. In addition, there is no way to
talk about the different subprocesses as separately evolv-
ing entities. Dynamic Bayesian networks (DBNs) (Dean
& Kanazawa 1989) do allow us to represent different sub-
processes by different variables. Indeed, as we shall see, a
DBN can be constructed containing every instantiation of
every subprocess. However, this DBN is very difficult to
construct manually. There may be thousands of possible in-
stantiations of subprocesses, and each needs to be enumer-
ated. The essential problem is that DBNs are a propositional
representation, whereas process models are essentially first
order. Hierarchical HMMs (Fine, Singer, & Tishby 1998)
do incorporate hierarchy of processes, but they are also not
a first order representation.

A more recent framework that supports modeling of first-
order dynamic systems is Dynamic Probabilistic Relational
Models (DPRMs) (Sanghai, Domingos, & Weld 2003).
DPRMs go some of the way towards representing proba-
bilistic process models, but they are not a complete solution.
There is no notion of execution of a process. There is no
sense in which a subprocess is executed as part of the ex-
ecution of the parent. In particular, there are no notions of

AAAI-05 / 663



parallel and sequential execution, which are important in a
process modeling language.

An alternative expressive representation for probabilistic
process models is Colored Petri Nets (CPNs) (Jensen 1997).
CPNs combine Petri Nets with the power of programming
languages. CPNs can model a general class of stochastic
processes. In principle, since a CPN defines a probabilistic
model, it could be used to monitor the state of hidden vari-
ables given observations. However, algorithms that perform
this task have not been developed for CPNs. It is not clear
whether a CPN can easily be converted to a DBN or similar
representation that supports efficient monitoring.

This paper presents a new language for representing prob-
abilistic process models, called ProPL (standing for Proba-
bilistic Process Language). The language is functional. We
believe that a functional language naturally captures the evo-
lution of processes. The relationship between a process and
a subprocess is simply a function call. The parent process
passes arguments to the subprocess as arguments to the func-
tion, and receives return values from the subprocess. In ad-
dition, ProPL provides constructs that represent the passage
of time, and uncertainty over the way a process evolves. The
language is currently restricted to discrete models; continu-
ous models will be a matter for further study.

ProPL is based on IBAL (Pfeffer 2001), a probabilistic
modeling language for static models. IBAL provides all the
expressivity of a functional programming language; ProPL
adds the features necessary to represent process models. Es-
sentially, a process is modeled by writing a program describ-
ing the evolution of the process. This can be done quite
naturally by adapting a process model written in a language
such as SPARK. Indeed, two full-scale scenarios written in
SPARK were adapted into ProPL programs. We present a
fragment of the ProPL program for a laptop purchase sce-
nario.

Once we have expressed a process model in ProPL,
we need to be able to do inference on that model. We
need to monitor the state of the process given observa-
tions about some of the subprocesses, and we need to rea-
son about the future (for example, the probability of suc-
cessful completion) based on the current state. Our ap-
proach is to construct a DBN that contains a variable for
every instantiation of every subprocess in the model. We
can then perform inference on this DBN using standard in-
ference algorithms (Kjaerulff 1995; Boyen & Koller 1998;
Doucet 1998).

The ProPL Language
IBAL
The basic idea behind IBAL is that a program describes an
experiment that stochastically produces a value. IBAL pro-
vides a number of expression forms. These include:
Constants that describe experiments that always produce
the same value.
Conditionals of the form “if e1 then e2 else e3”.
Stochastic choice of the form “dist [p1 : e1, . . . , pn :
en]”. This describes the experiment in which one of the pos-
sible subexpressions e1, . . . , en is selected, with the proba-

bility that ei is chosen being pi.
Variable definitions of the form “let x = e1 in e2”. This
describes the experiment in which e1 is evaluated, its value
assigned to x, and then e2 is evaluated using the assigned
value of x.
Variables that have previously been assigned.
Function definition of the form “funf(x1, . . . , xn) → e”.
This defines the (possibly recursive) function named f , tak-
ing arguments x1, . . . , xn, with body e.
Function application of the form “e0(e1, . . . , en)”, where
the value of e0 is applied to the values of e1, . . . , en. Note
that e0 may be stochastic, which means there may be uncer-
tainty about which function to apply.
Tuples and records that provide ways to aggregate infor-
mation together into data structures.

In addition to these basic elements. IBAL provides a good
deal of syntactic sugar.

ProPL
In IBAL, a program describes a stochastic experiment that
generates a value. ProPL introduces two new concepts. The
first is a process that executes over time. Time in this pa-
per is discrete and synchronous. A program still defines a
stochastic experiment, but now execution of the experiment
takes place in time. Each subexpression that is evaluated
corresponds to execution of a subprocess. Each subprocess
has a particular point in time at which its execution begins.
Then, there may be a period of time during which execu-
tion of the subprocess is in progress. Finally, execution is
completed and the subprocess produces a value. The second
notion introduced by ProPL is that of a process with state.
Each subprocess that gets executed has a state that may vary
over time. The state of one subprocess may depend on the
previous state of other subprocesses. This is the natural way
to represent dynamic Bayesian networks.

To capture the two notions, we say that every subprocess
has state that varies from one time point to the next. The
state can indicate the execution status of a subprocess exe-
cuting in time. The state of a subprocess can be NotBegun,
indicating that execution of this subprocess has not yet be-
gun. It could be InProgress, indicating that execution
has begun but has not yet completed. It could be Complete
with a value, indicating that the execution of the subprocess
has terminated and resulted in the given value. We also al-
low the value produced by a subprocess to vary over time,
thereby allowing it to represent the current state of a sub-
process with changing state. In other words, when a sub-
process becomes Complete with a certain value, it may
later become Complete with a different value. This may
happen without the subprocess becoming InProgress
again, as a result of changes in the values of its subpro-
cesses. If the value of a subprocess changes, it does not
mean that the previous value was wrong, or that the sub-
process has multiple values, only that the state of the world
has changed and therefore the value of the subprocess has
changed. A subprocess that executes once and reaches a
value that never changes is just a common special case of
this. Its state will go through a period of NotBegun, fol-
lowed by InProgress, before being Complete with a

AAAI-05 / 664



particular value.
Every subprocess has an initial moment of execution,

which is the point in time it changes from being NotBegun
to something else. In the initial state of the world, all subpro-
cesses are NotBegun. Not every subprocess goes through
a stage of being InProgress. For some, the execution is
instantaneous. For other processes, their execution has a du-
ration, and they are InProgress for a certain amount of
time. A subprocess may be InProgress because one of
its subprocesses is InProgress, or it may have a duration
in and of itself. To specify that a subprocess has duration,
one of two syntactical forms are used. The form “delay e1

in e2”, where e1 is an integer expression and e2 is an ex-
pression, is the same as e2, except that the process has a du-
ration as determined by the value of e1. For example, in the
expression “delay (uniform 5) + 4 in true”, the value
is true, but the subprocess represented by the expression
is InProgress for 4 to 8 time units before it takes on the
value true. The second syntactic form is “wait p in e”,
where p is a floating point number between 0 and 1 and e is
an expression. This defines a geometric process whereby the
subprocess begins in state InProgress, and at each time
point it takes the value of e with probability p, otherwise it
remains InProgress.

We need to be careful about specifying the semantics
of delay and wait when the resulting expression e has
changing state. For example, suppose computation of a
delay expression begins at time 0 when e has one value,
and before the delay is complete e changes to another value.
Do we say that after the original delay time, the delay ex-
pression takes on the original value of e, and after a further
delay it takes on the new value? Or do we say that it only
takes on the new value, after the second delay time is com-
plete. We opt for the latter interpretation. The general rule
for delay is that whenever the value of e changes, we re-
set a counter that counts up to the delay time. The counter
advances one tick per time unit. When the counter reaches
the delay time, the entire delay expression takes on the
value of e. This is an unambiguous and natural intepreta-
tion. It means that whenever the value of the delay ex-
pression changes, it takes on the current value of e and not
some historical value.

For a wait expression, the issues are similar. Suppose,
while computing “wait p in e”, the expression e begins
with one value and before the wait is completed it takes on
another value. Here the natural interpretation is to say that
at every time point, with probability p the entire wait ex-
pression takes on whatever the current value of e is.

All subprocesses depend on a (possibly empty) set of sub-
processes to terminate before they begin. These other sub-
processes, for which the first subprocess has to wait, are
called the waiters of the first subprocess. A waiter may be
required to take on specific values for the first subprocess
to begin. For example, in an expression of the form “if e1

then e2 else e3”, the waiter of e2 is e1. This means that
the test e1 must terminate before the consequence e2 is ex-
ecuted. Furthermore, in order for e2 to begin execution, e1

must take the value true. If e1 takes the value false and
does not change, e2 is never executed.

In sequential execution, two subprocesses execute one af-
ter the other. The execution of the first subprocess must be
completely finished before the second one begins. If the first
subprocess is in state NotBegun or InProgress, then
the second one is in state NotBegun. When the first sub-
process becomes Complete, the second one begins.

The main language construct for defining sequential exe-
cution is the let ... in construct. In an expression of the
form “let x = e1 in e2”, e1 is executed first. When the ex-
ecution of e1 has completely finished and it has produced a
result, e2 is executed. The subprocess e1 is the waiter of e2.
Meanwhile, the waiters of e1 are the same as the waiters of
the entire let expression. An if-then-else expression
also employs sequential execution, as described above.

ProPL distinguishes between two kinds of parallel execu-
tion. The main language construct for describing the first
kind is the let ... and construct. In general, a let expres-
sion in ProPL may have the form

let x1 = e1and x2 = e2 . . .and xn = enin e

This defines the variables x1, . . . , xn simultaneously. The
subprocesses e1, . . . , en are all executed in parallel. They all
begin at the same time. Then, subsequent evaluation of the
result subprocess e waits until all of e1, . . . , en have com-
pleted. In other words, e1, . . . , en are all waiters of e. The
waiters of e1, . . . , en are the same as the waiters of the entire
let expression. Function applications behave similarly. In
executing an expression “e0(e1, . . . , en)”, all the ei are ex-
ecuted in parallel. Then when all have finished, the body of
the function is applied to the values of the arguments.

In the second kind of parallel execution, different subpro-
cesses produce the value of the same variable. The sub-
processes evaluate in parallel, and whichever finishes first
is accepted. For example, one may try to contact someone
by email or telephone. These two methods may be tried in
parallel, and the first response produced is accepted as the
value. This kind of parallel execution is described by the
expression first [e1, . . . , en].

The state of an expression may depend on other expres-
sions at the previous time step. This is achieved using the
prev expression form. Whenever prev appears in front of
an expression, it indicates that the value of the expression
from the previous time step is taken.

In a dist expression, one of a number of subexpressions
is stochastically chosen for execution. When the expression
is part of a process that is being executed, there are differ-
ent possible ways to interpret the stochastic choice. One
interpretation is that the stochastic choice is made at each
time step. At each time step, a separate choice is made as
to which subexpression gets chosen. Another interpretation
is that the stochastic choice is made once and for all. Once
the choice is made, the same subexpression is chosen at ev-
ery time step. Rather than stipulate a particular interpreta-
tion, ProPL allows both interpretations. A dist expres-
sion is used for the first interpretation, in which a separate
selection is made at each time step. The syntax “select
[p1 : e1, . . . , pn : en]” is used for the second interpretation.

The question of which subexpressions get executed varies
between the two interpretations. For a select expression,
since the same subexpression is chosen at every time step,

AAAI-05 / 665



we say that only that subexpression gets evaluated. How-
ever, for a dist expression, since a different subexpression
may be chosen at every time step, and since the subexpres-
sions execute over time, the most natural thing is to say that
every subexpression gets evaluated, and the value of one of
them is chosen at each particular time point.

A crucial aspect of describing a probabilistic process
model is describing what the observations of the process are.
ProPL provides two methods for specifying when a process
produces observations, corresponding to the two notions of
process executing in time and process with state. For a pro-
cess executing in time, one wants to be able to produce an
observation whenever a subprocess begins executing. The
syntax “emit s; e”, where s is a string and e is an expres-
sion, achieves this. This expression behaves the same as ex-
pression e, except that at the moment it begins executing, the
string s is produced as an observation. There may be multi-
ple subprocesses that emit the same observation s; thus this
mechanism allows for noise in the observations. The second
form of observation is observation of a state variable, which
happens at every point in time. The syntax “observed e”
defines an expression which is the same as e, except that the
state of the subprocess corresponding to the expression is al-
ways observed. Again, noise is supported because e might
define a noisy sensor of some state variable.

Inference
Inference is performed in ProPL through constructing a dy-
namic Bayesian network (DBN). This DBN contains a node
for every subexpression that is evaluated during the course
of executing a program. Each expression has as parents its
subexpressions from which it is computed. The conditional
probability table (CPT) for an expression specifies the rule
for computing the expression from its subexpressions. For
example, an if-then-else expression will have as par-
ents the if, then and else clauses, and its CPT will ex-
press the fact that when the if clause is true the expression
takes on the value of the then clause, otherwise it takes on
the value of the else clause.

In addition, every node in principle has its waiters as ad-
ditional parents. The full CPT for a node, with all its waiters
as parents, expresses the fact that if any of the waiters are
NotBegun or InProgress, the node is NotBegun. Fur-
thermore, if one of the waiters is required to take a certain
value and has not taken that value, the node is NotBegun.
Otherwise the node is computed from its subexpressions.
When a node has many waiters, this scheme results in a large
number of parents. Therefore the dependency on the waiters
is decomposed and replaced with a single node. This node is
the or of a series of nodes, where each represents whether
a single waiter has not yet completed or has not achieved its
required value. More precisely, let w1, . . . , wn represent the
nodes for the different waiters of an expression e. We create
a new node w defined by

w = (w1 = NotBegun ∨ w1 = InProgress)∨
(w2 = NotBegun ∨ w2 = InProgress) ∨ . . .
(wn = NotBegun ∨ wn = InProgress)

If w is true, the node created for e is NotBegun; other-

wise the node created for e depends on its subexpressions.
The node w can be handled by a DBN engine equipped to
deal with noisy-or nodes, or using the standard noisy-or de-
composition (Heckerman & Breese 1996).

In fact, for many nodes we do not need to provide the
waiters as parents. For expressions that contain subexpres-
sions, the waiters of the expression as a whole will be the
same as the waiters for at least one of the subexpressions.
For example, in an if-then-else expression, the waiters
for the entire expression are the same as the waiters for the
if clause. This is because as soon as the entire expression
begins executing, the if clause begins executing. Therefore
it holds that the entire expression is NotBegun if and only
if the if clause is NotBegun. Therefore, instead of mak-
ing the expression as a whole take the waiters as parents, we
can make the if clause take them as parents. Similar con-
siderations hold for all expressions with subexpressions. It
is only for expressions without subexpressions, i.e. constant
expressions and variables, that we need to provide the wait-
ers explicitly. After providing the waiters for these primitive
expressions, their effects will trickle down to all the expres-
sions containing them that have the same set of waiters.

y z

x

if t then x else y+z

waiter t

y+z

Figure 1: DBN fragment for “if t then x else y+z”

Figure 1 shows the constructed DBN fragment for the
expression “if t then x else y+z”. The entire ex-
pression has one waiter, but this is passed down to the if
clause. The waiter becomes a parent of the variable t. Next,
the if clause is the waiter of the then and else clauses,
so t becomes a parent of x. In the else clause, the waiter
is passed from y+z to its arguments y and z. The figure
does not show the previous time slice since this expression
does not contain dependencies on the previous time slice.

We turn now to the DBN construction for particular
expression forms. We start with function application.
The interesting thing about an expression of the form
“e0(e1, . . . , en)” is that we may have uncertainty about the
value of e0. Therefore we need to consider all possible val-
ues of e0 in order to evaluate the resulting expression. We
therefore create a parent corresponding to the body of each
possible value of e0. The expression e0 is also a parent of the
expression as a whole; it serves as a multiplexer to choose
among the different bodies. A multiplexer node is a special
case of context specific independence (CSI) (Boutilier et al.
1996), and can be handled by a DBN engine equipped to
deal with CSI. Alternatively, it can be decomposed using a
special purpose decomposition for multiplexers.

The actual arguments e1, . . . , en in the function applica-
tion become ancestors of the function bodies. They appear
wherever a formal argument would have appeared. Fig-

AAAI-05 / 666



dist [0.5:f,0.5:g] (z,w)

dist [0.5:f,0.5:g]

f g

x+2 x+y

z w

waiter

x y

Figure 2: DBN fragment for “dist[0.5:f,
0.5:g](z,w)”

ure 2 shows the DBN construction for the function ap-
plication “dist[0.5:f, 0.5:g](z,w)”, where f is
defined by fun f(x,y) = x+2 and g is defined by
fun g(x,y) = x+y. The two bodies are parents of the
expression as a whole, as is the dist expression defin-
ing the function to be applied. The CPT for the ex-
pression as a whole is a multiplexer, with the value of
dist[0.5:f, 0.5:g] determining whether the expres-
sion as a whole takes on the value of x+2 or x+y. The actual
arguments z is a parent of the formal argument x; the CPT
of x just copies the value of z as long as its waiters are ready.
Similarly with w and y. There is an edge from the waiter to
f and g because it is passed down from the application to
the dist expression to its subexpressions. Similarly there
is an edge from the waiter to z and w. There is an edge from
the dist expression and from z and w to x and y because
the expression specifying the function to apply as well as the
argument expressions are waiters of the body expressions.

Up to this point, all parents of a node have been in the
same time slice. Intertemporal dependencies are introduced
by several expression forms. In an expression of the form
“prev e”, the parent is the node representing e at the previ-
ous time slice. The CPT copies over the value of the parent.

In an expression of the form “wait p in e”, at each time
instance the expression as a whole receives the value of e
with probability p. This is achieved by making its parents the
node representing e at the current time slice, as well as the
node representing the wait expression in the previous time
slice. The CPT determines that with probability p, the wait
expression takes on the value of e, while with probability
1 − p it takes on its previous value.

The DBN construction for delay expressions is more
complex. Recall that the semantics of “delay e1 in e2”
is that every time the value of e2 changes, a new delay is
begun, and it is only when this delay is complete that the
value of the delay expression takes on the value of e2. We
capture this as follows. First,we introduce a Changed node
that is true if the value of e2 has changed since the previous
time step. Then we introduce a Count node that counts the
time since the last change. If Changed is true it resets to
zero, otherwise it increments the previous Count. Next, we
introduce a Target node whose value is the length of the de-
lay. If Changed is true it takes on the value of e1, otherwise
it keeps its previous value. We then introduce a Ready node
which is true if the delay is complete. It depends on Count
and Target. Finally, the node for the delay expression as
a whole has as parents the node for e2, the Ready node, and

its previous value. If Ready is true, it takes on the value of
e2, otherwise it keeps its previous value. The DBN fragment
corresponding to this construction is shown in Figure 3.

e1

delay e1 in e2

e2 e1

delay e1 in e2

e2

t−1 t

Changed

Target

Count

Ready Ready

Count

Target

Changed

Figure 3: DBN fragment for “delay e1 in e2”

For select expressions, recall that the semantics is that
the selection of which branch to take is made once and for
all. One approach would be to make the selection in the ini-
tial time slice. However, this would have the effect that all
future random choices are contained in the state at the very
beginning. There would be no notion of a random choice
being made during the course of evaluation of a process.
Therefore, we make the selection at the time evaluation of
the select expression begins. This is achieved by creat-
ing a Just-Begun node, which is true only at the moment that
the waiters become finished. Then there is a Selection node,
with parents Just-Begun and the previous Selection. If Just-
Begun is false, Selection takes on its previous value, other-
wise it is distributed over the possible selections according
to the parameters of the select expression. Selection then
serves as a multiplexer for choosing one of the subexpres-
sions. Figure 4 shows a DBN fragment for this construction.

Selection

Just−Begun

Selection

Just−Begun

x y x y

select[0.5:x,0.5:y] select[0.5:x,0.5:y]

waiter waiter

t−1 t

Figure 4: DBN fragment for “select[0.5:x,
0.5:y]”

The implementation of dist expressions is easier. The
selection is made each time and there is no need for a Just-
Begun node. A similar technique is used for first ex-
pressions, to remember the value of the first subprocess to
complete. We create a chain of nodes, in which the first
node in the chain is the previous value of the first expres-
sion. There is a successive node in the chain for each subex-
pression of the first expression. Each node in the chain
(other than the first) has as parents the previous node in the

AAAI-05 / 667



chain, and the corresponding subexpression. The chain is
value preserving. If the previous node has a value that is not
NotBegun or InProgress, its successor will have the
same value. Since the first node in the chain is the previous
value of the expression, this ensures that once the expres-
sion is Complete with a value the value will be preserved.
On the other hand, if the previous node in the chain was
NotBegun or InProgress, and the current subexpres-
sion is Complete, the current node will take on the value
of the subexpression. This ensures that the first expres-
sion will take on the first value of its subexpressions.

For emitted observations, a special node is created repre-
senting the observation. This node is made to be true when-
ever one of the processes that emits it begins. For this rea-
son, it has as parents the current and previous states of all
the processes that emit it. These parents are broken up using
an or node, in a manner similar to the waiters.

Once the DBN has been constructed, we can use any
DBN inference algorithm, such as exact inference (Kjaerulff
1995), the Boyen-Koller algorithm (Boyen & Koller 1998),
or particle filtering (PF) (Doucet 1998). However, for any
reasonably sized process, the constructed DBN will be too
large for exact inference. Therefore an approximate infer-
ence algorithm is needed. We focus on PF. Although the
DBN is very large, it is largely deterministic. The dimen-
sionality of the stochastic choices need not be too high.
Therefore, there is a reasonable chance that PF will work.

Example and Results
As an example, we show part of a ProPL program describ-
ing the process of purchasing a laptop. The program was
produced by hand translating a SPARK description of the
process. In the ProPL program, each of the stages in the
process is represented by a function, and breaks up naturally
into subprocesses. At the top level is a purchase function,
which is performed by obtaining criteria from the user and
then purchasing a laptop with the given criteria.
purchase() =
emit ‘‘beginning purchase’’;
let (criteria,s) = get_criteria() in
s &
purchase_laptop(criteria)

Note that an observation is emitted at the beginning of this
and most other functions. This is because the CALO sys-
tem that executes this process always knows which part of
the process it is executing. Next, the purchase_laptop
process breaks down into finding a laptop that meets the cri-
teria, completing a requisition form for the found laptop, ob-
taining the appropriate authorizations, placing the order and
informing the user about the order. Each subprocess returns
both an actual result and a status flag. The execution of sub-
sequent processes only continues if the status flag is true.
purchase_laptop(criteria) =
emit "beginning purchase_laptop";
let {select,s1} = find_laptop(criteria) in
s1 &
let {form,s2} = complete_form(select) in
s2 &

let {actual_auth,perceived_auth} =
obtain_auth(form,select) in

perceived_auth &
let s4 = place_order(select,form) in
s4 &
inform_user() &
actual_auth

Note that obtain_auth returns two status flags, to allow
for uncertainty about whether authorizations were actually
received. The system might believe authorizations were re-
ceived when they actually were not, or vice versa. To capture
this, the first flag actual_auth indicates whether the au-
thorizations were actually received, while the second flag
perceived_auth indicates whether the system thinks
they were received. It is the second flag that determines
whether the system will execute the rest of the process, but
the first flag determines whether the process is successful.

Authorizations may be obtained from one or two man-
agers. Note that when obtaining authorizations from two
managers, the let-and construct is used, to indicate that
they are obtained in parallel. The subprocess get_auth
returns two status codes, as described above. Getting an au-
thorization requires sending an email and obtaining a reply.
get_auth(manager) =
let s1 = send_email(manager) in
if s1
then obtain_reply(manager)
else {false, false}

obtain_auth_one_manager() =
emit "beginning obtain_auth_one_manager";
get_auth(’manager1)

obtain_auth_two_managers () =
emit "beginning obtain_auth_two_managers";
let {r1,s1} = get_auth(’manager1)
and {r2,s2} = get_auth(’manager2)
in (r1 & r2, s1 & s2)

obtain_authorizations (form, selection) =
select [0.5 : obtain_auth_one_manager(),

0.5 : obtain_auth_two_managers()]

Sending an email and obtaining a reply are primitive ac-
tions. It is here that uncertainty and time enter the system.
These actions might fail to complete correctly. We also
have uncertainty over how long they take. The model for
send_email is
send_email(recipient) =
select [0.8 : delay uniform 100 in true,

0.2 : delay 100 in false]

Sending the email may terminate correctly, in which case
the time it takes is uniform between 0 and 99 units. Al-
ternatively, it may timeout after 100 units. The model for
obtain_reply is a little more complex, as it has four
possibilities corresponding to the two status flags. It also
includes a noisy observation. The observation corresponds
to whether the system thinks a reply was sent. Whatever the
result, the delay until a reply follows a geometric process.
obtain_reply(replyer) =
wait 0.05 in
select [0.6 : emit "acc"; {true,true},

AAAI-05 / 668



0.1 : emit "rej"; {true,false},
0.25 : emit "rej"; {false,false},
0.05 : emit "acc"; {false,true}]

We can imagine a more sophisticated model for
obtain_reply, in which obtaining a reply is only pos-
sible when the replyer is attentive to email.
obtain_reply(replyer) =
if attentive(replyer)
then wait 0.05 in ...
else wait 0 in obtain_reply(replyer)

attentive(person) =
if prev (attentive(person))
then dist [0.1 : false, 0.9 : true]
else dist [0.9 : false, 0.1 : true]
The complete ProPL description of the laptop purchase

scenario is 443 lines of code. This was produced from a
SPARK description that is 734 lines long. As mentioned
earlier, the translation from SPARK to ProPL was done by
hand. The translation took about four hours. We ran our
inference algorithm on the program. The constructed DBN
has 7208 nodes in a time slice. While this is a large net-
work, most of the nodes deterministically compute very sim-
ple functions. Note that this DBN would be very hard to
construct by hand, because of its size and because of the
special techniques used in its construction described earlier.

To test the performance, we ran experiments in which the
network was simulated for 20 time steps to obtain ground
truth. At the same time, PF was run to obtain an approxi-
mate representation of the probability distribution over the
state of the system at each point in time. We then queried
the probability that the laptop purchasing process terminated
successfully, given the state after 20 time steps. We also
queried the expected time to completion of the process.

We averaged the results over twenty experiments. We
used 1000 particles, and the average time for one iteration
of PF was about 1 minute. The average error in predicting
the probability of success was 7.238%. The average relative
error in predicting the time to completion of the process was
7.231%. These are surprisingly good results given that PF
normally has a lot of trouble in high dimensions. It seems
to be the case that since most of the nodes are deterministic,
the effective dimensionality of the domain is much lower.

We also successfully implemented a meeting scheduling
SPARK domain in ProPL. The task requires contacting each
of the participants about their availability, attempting to find
a time that meets all the constraints, selecting a meeting
time, and asking all the participants to confirm. Each of
these steps can result in failure. The constructed DBN for
this scenario has 2820 nodes. The average prediction error
was only 0.0275%, and the relative time error was 9.05%.

Discussion and Conclusion
One thing that is needed in coding ProPL programs is mod-
els of primitive actions. Ideally these would be learned from
examples of the actions taking place. Such a learned model
would need to specify the probability of success of an ac-
tion, the distribution over execution times of the action given
that it terminates successfully and given that it fails, and the
probability distribution over the value returned.

It would be nice to make the translation from SPARK to
ProPL as automatic as possible, can be automated, but there
are aspects of the translation that require human interven-
tion. There are design decisions that are made with regard
to what elements to include in the probabilistic model and
what to leave out. For example, a decision was made that the
exact specifications of the laptops returned by a web query
are unnecessary; all we need to know is the number of lap-
tops returned. This simplifcation made the model feasible to
work with, and it could not have been made automatically.

In future work, we would like to extend ProPL to con-
tinuous and asynchronous time. We would also like to in-
corporate interrupt-driven processes. Finally we would like
to allow models in which subprocesses are interleaved with
each other, rather than executing in parallel.

In conclusion, we have presented a language for describ-
ing probabilistic process models and shown by example that
this language is easy to use. We have also developed an in-
ference algorithm for the language and applied the inference
algorithm successfully to the example.

References
Boutilier, C.; Friedman, N.; Goldszmidt, M.; ; and Koller,
D. 1996. Context-specific independence in Bayesian net-
works. In UAI.
Boyen, X., and Koller, D. 1998. Tractable inference for
complex stochastic processes. In UAI.
Dean, T., and Kanazawa, K. 1989. A model for reason-
ing about persistence and causation. Computational Intel-
ligence 5:142–150.
Doucet, A. 1998. On sequential simulation-based meth-
ods for Bayesian filtering. Technical Report CUED/F-
INFENG/TR. 310, Cambridge University Department of
Engineering.
Fine, S.; Singer, Y.; and Tishby, N. 1998. The hierar-
chical Hidden Markov Model: Analysis and applications.
Machine Learning 32.
Heckerman, D., and Breese, J. 1996. Causal independence
for probabilistic assessment and inference using Bayesian
networks. IEEE Transactions on Systems, Man and Cyber-
netics 26(6).
Jensen, K. 1997. Coloured Petri Nets. Basic Concepts,
Analysis Methods and Practical Use. Springer-Verlag.
Kjaerulff, U. 1995. dHugin: A computational system
for dynamic time-sliced Bayesian networks. International
Journal of Forecasting.
Morley, D. N., and Myers, K. L. 2004. The SPARK agent
framework. In AAMAS.
Pfeffer, A. 2001. IBAL: A probabilistic rational program-
ming language. In IJCAI.
Rabiner, L. R., and Juang, B.-H. 1986. An introduction to
hidden Markov models. IEEE Transactions on Acoustics
Speech, Signal Processing 3(1):4–16.
Sanghai, S.; Domingos, P.; and Weld, D. 2003. Dynamic
probabilistic relational models. In IJCAI.

AAAI-05 / 669


