
Diagnosing Terminologies

Stefan Schlobach
Department of Computer Science

Vrije Universiteit Amsterdam
The Netherlands

Email: schlobac@few.vu.nl

Abstract
We present a framework for the debugging of logically con-
tradicting terminologies, which is based on traditional model-
based diagnosis. To study the feasibility of this highly gen-
eral approach we prototypically implemented the hitting set
algorithm presented in (Reiter 1987), and applied it in three
different scenarios. First, we use a Description Logic reason-
ing system as a black-box to determine (necessarily maximal)
conflict sets. Then we use our own non-optimized DL reason-
ing engine to produce small, and a specialized algorithm to
determine minimal conflict sets. In a number of experiments
we show that the first method already fails for relatively small
terminologies. However, based on small, or minimal conflict
sets, we can often calculate diagnoses in reasonable time.

Introduction
Ontologies are widely used in a variety of different applica-
tions, and the recent past has seen a surge in modeling tools
to support the creation of high quality ontologies. What is
usually missing is diagnostic support when they are logically
incoherent. Recent approaches have focused on debugging
of terminologies, and were only applicable to particular log-
ical representation, and restricted formalisms.

Incoherence can have several causes. Modeling errors oc-
cur because constructing an ontology is a very difficult pro-
cess, and the complexity of both the problem and the rep-
resentation languages easily leads to logical contradictions.
Alternatively, incoherence is often a result of migration or
merging of ontologies. (Cornet & Abu-Hanna 2002) de-
scribes how to create Description Logic (DL) terminology
from a frame-based representation. For the migration from
frames to DL modeling decisions have to be taken to inter-
pret the frame semantics in DL, and a stringent migration
can lead to a high number of unsatisfiable concepts. Simi-
lar problems arise when two or more ontologies are merged,
for example in the context of the Semantic Web. Using both
SUMO and CYC (two upper ontologies) in a single docu-
ment leads to over 1000 unsatisfiable concepts.

Schlobach & Cornet were among the first to develop a
general framework for debugging of erroneous terminolo-
gies in (2003), and the authors provide a specialized algo-
rithm for the Description Logic (DL) ALC. They also dis-

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

cuss their experience with the debugging of DICE. Unfortu-
nately, the proposed methods have two main shortcomings.

1. The minimal sub-terminologies considered are small
error-containing terminologies, but they are not further
analyzed to provide further information on which of the
axioms should be ignored or fixed.

2. More serious, however, is the restriction to ALC, and the
need for a full reimplementation of a DL tableau engine.

We try to overcome these problems by placing termino-
logical debugging in the context of model-based diagnosis
(MBD). In his seminal paper, Reiter (1987) introduced di-
agnoses as smallest sets of components that need fixing to
render a system (represented as a set of first-order formulas)
correct. He provides a generic method to calculate diagnoses
on the basis of conflict sets and their minimal hitting sets.

Terminological debugging is a special case of MBD, and
we use Reiter’s algorithms to calculate diagnoses for erro-
neous terminologies. These diagnoses will be minimal sets
of terminological axioms that have to be ignored in order
to turn the terminology coherent. Based on Reiter’s hitting
set tree (HS-tree) algorithm we have an optimized way of
calculating diagnoses, where we can use available DL rea-
soner as a black-box. This has the huge advantage that the
expressiveness of the terminologies to be debugged, is only
restricted by the expressiveness of the reasoner itself.

The computational price for this gain in expressiveness is
very high, though. Based on a prototypical implementation
we evaluated and compared three different types of diag-
noses, all based on Reiter’s original HS-tree method. The
general idea is that diagnoses are paths in minimal trees,
where each of the nodes is labeled with a set of contradicting
axioms (the conflict sets), and where each edge on the path
“hits” precisely one node label on its way to the leaves.

The algorithmic difference in our three approaches is in
the choice of conflict sets. First, we use RACER (Haarslev
& Möller 2001) as a black-box to return entire terminologies
as maximal conflict sets. This approach, though the most
general one, fails even on small incoherent terminologies.
The second idea uses internal information from unsatisfiabil-
ity proofs. As such information is not available from any of
the current DL reasoner, we implemented a (non-optimized)
tableau prover for ALC satisfiability for unfoldable TBoxes,
which returns small (though not minimal) sets of axioms

AAAI-05 / 670

contributing to the closure of the tableau. Finally, the third
approach implements the specialized algorithms described
in (Schlobach & Cornet 2003) to calculate minimal incoher-
ence preserving sub-terminologies as minimal conflict sets.

In a number of experiments with publicly available ter-
minologies we evaluate the feasibility of diagnosis, in par-
ticular studying the effect of using a general method versus
more specialized algorithms. The outcome is clear: only for
very small examples the general method works in reasonable
time, and at least small conflict sets are required to produce
some diagnoses more or less efficiently.

Related work
How to build good ontologies has been discussed exten-
sively in the literature, and many links can be found on the
W3C website about methodology and languages. For De-
scription Logics the handbook (Baader et al. 2003) is an
excellent reference. Explanation has been an issue in the
DL community for several years, but most papers, such as
(Borgida, Franconi, & Horrocks 2000), deal with subsump-
tion. The number of papers dealing with theoretical stud-
ies of reasoning with inconsistency is enormous (to men-
tion (Beziau 2000; Schaerf & Cadoli 1995) or (Huang, van
Harmelen, & ten Teije 2005) from a DL perspective). The
only work on the detection and explanation of incoherences
we are aware of is (Schlobach & Cornet 2003) that we men-
tioned earlier. From a more practical point of view, closest
to our work are the Chimaera and PROMPT tools described
in (McGuinness et al. 2000) and (Noy & Musen 2000),
which provide support for merging and analysis of knowl-
edge bases but not for debugging.

The literature on model-based diagnosis is manifold, but
we focus on the seminal (Reiter 1987), and (Greiner, Smith,
& Wilkerson 1989), which corrects a small bug in Reiter’s
original algorithm. We refer the interested reader to a good
overview in (Console & Dressler 1999).

Diagnosing Description Logic Terminologies
In this section we will show how to represent the debugging
of Description Logic ontologies1 as a model-based diagno-
sis problem. Description Logics are a family of well-studied
set-description languages which have been in use for over
two decades to formalize knowledge. They have a well-
defined model theoretic semantics, which allows for the au-
tomation of a number of reasoning services.

We shall not give a formal introduction into Description
Logics here, but point to the second chapter of the DL hand-
book (Baader et al. 2003). Briefly, in DL concepts will be
interpreted as subsets of a domain, and roles as binary rela-
tions. In a terminological component T (called TBox) the
interpretations of concepts can be restricted to the models
of T . Let, throughout the paper, T = {Ax1, . . . , Axn} be

1Throughout the paper we will interchange the terms terminol-
ogy and ontology. Formally, with a terminology we denote a set of
terminological axioms, whereas an ontology can also contain as-
sertional knowledge. In principle, the methods we describe work
for ontologies as well as for terminologies, but to simplify matters,
we mostly restrict our attention to terminologies.

a set of axioms, where Axi is of the form Civ̇Di for each
1 ≤ i ≤ n and arbitrary concepts Ci and Di.

Let U be a finite set, called the universe. A mapping I,
which interprets DL concepts as subsets of U is then a model
of an axiom Cv̇D, if, and only if, CI ⊆ DI . Based on
this semantics a TBox can be checked for incoherence, i.e.,
whether there are unsatisfiable concepts: concepts which are
necessarily interpreted as the empty set in all models of the
TBox. More formally

1. A concept A is unsatisfiable w.r.t. a terminology T if, and
only if, AI = ∅ for all models I of T .

2. A terminology T is incoherent if there exists a concept-
name in T , which is unsatisfiable.

Conceptually, these are simple modeling errors because we
assume that a knowledge modeler would not specify an
empty concept in a complex way.

In (2003) Schlobach & Cornet propose to explain unsatis-
fiability by minimal sets of axioms contributing to the unsat-
isfiability (similarly for incoherence). To illustrate their ap-
proach they introduce the (incoherent) TBox T ∗, with prim-
itive concepts A,B and C and defined concepts A1, . . . , A7

and roles r and s:
ax1:A1v̇¬A u A2 u A3 ax2 :A2v̇A u A4

ax3:A3v̇A4 u A5 ax4 :A4v̇∀s.B u C

ax5:A5v̇∃s.¬B ax7 :A7v̇A4 u ∃s.¬B

ax6:A6v̇A1 t ∃r.(A3 u ¬C u A4)

Even for this simple TBox it is non-trivial to pinpoint to
the core of the erroneous modeling. State-of-the-art DL rea-
soning tools efficiently detect, but fail to explain, unsatisfia-
bility of the concept-names {A1, A3, A6, A7}.

Let A be a concept that is unsatisfiable in a TBox T . A
set T ′ ⊆ T is a minimal unsatisfiability-preserving sub-
TBox (MUPS) of T if A is unsatisfiable in T ′, and A is
satisfiable in every sub-TBox T ′′ ⊂ T ′. The set of MUPS
for TBox T ∗ and, for example, its unsatisfiable concept A1

is {{ax1, ax2}, {ax1, ax3, ax4, ax5}}. Incoherence can be
explained using the smallest subsets of an original TBox
preserving unsatisfiability of at least one atomic concept.
An incoherent TBox T ′ ⊆ T is a minimal incoherence-
preserving sub-TBox (MIPS) of T if T ′ is incoherent, and
every sub-TBox T ′′ ⊂ T ′ is coherent. For T ∗ there are three
MIPS: {{ax1, ax2}, {ax3, ax4, ax5}, {ax4, ax7}}. It can
easily be checked that each of the three incoherent TBoxes
in mips(T ∗) is indeed a MIPS as taking away a single ax-
iom renders each of the three coherent.2

Debugging as model-based diagnosis
In (1987), Ray Reiter introduced a general framework for
diagnosis based on first principles. He defines a system as a

2Schlobach & Cornet introduced a specialized algorithm based
on Boolean minimization of axioms in a tableau proof for unfold-
able ALC-TBoxes, and report on their experience when calculat-
ing MIPS and MUPS to debug the DICE terminology. ALC is a
simple yet relatively expressive DL with full negation and both uni-
versal and existential quantification. A TBox is called unfoldable
if the left-hand sides of the axioms are atomic, and if the right-hand
sides contain no direct or indirect reference to the defined concept
(Nebel 1990).

AAAI-05 / 671

pair (Sd,Cmp) where Sd, the system description, is a set of
first order (FO) sentences, and where Cmp, the system com-
ponents, is a finite set of constants. To represent a terminol-
ogy as a system for terminological debugging we represent
satisfiability and incoherence as first-order satisfiability. Let
(C, x)t be the standard translation from a concept C into
FO-logic given a variable x, i.e. where, for example,

(C1 u C2, x)t = (C1, x)t ∧ (C2, x)t,
(¬C, x)t = ¬(C, x)t,

(∃R.C, x)t = ∃R(x, y) ∧ (C, y)t,
(A, x)t = A(x) for atomic concept names.

This standard translation can be trivially extended to TBox
axioms: (Cv̇D)t = ∀x.(C, x)t → (D,x)t. A TBox T
translates into the first-order statement T t = axt

1∧. . .∧axt
n.

Terminological and first-order satisfiability have a differ-
ent flavor. Consider the translation of example TBox T ∗.

∀x(A1(x) → ¬A(x) ∧ A2(x) ∧ A3(x))∧
. . .
∀x(A7(x) → A4(x) ∧ ∃y(S(x, y) ∧ ¬B(y)))

which is consistent, even though A1 is terminologically un-
satisfiable. To make the translation satisfiability preserving,
in the sense that a concept is satisfiable w.r.t. a TBox if, and
only if, its first-order correspondence formula is satisfiable,
we introduce expectations, such as Ex = {∃yA(y)}. Then,
A is satisfiable w.r.t. T if, and only if, T t ∪E is satisfiable.3

Terminological system descriptions Terminological sys-
tem description will capture the semantics of the terminol-
ogy, and the components are those axioms, which are poten-
tially erroneous. A distinct predicate AB(·) can be added
to denote abnormality of components. In our interpretation,
truth of this predicate means that the axiom is erroneous,
and should not contribute to the semantics of the terminol-
ogy. The (terminological) system description Sd(T) for a
terminology T is the FO-formula:

(

¬AB(ax1) → axt

1

)

∧ . . . ∧ (¬AB(axn))

A diagnosis problem occurs when the terminological system
description is unsatisfiable w.r.t. a set of expectations.4

Definition 1 Let Sd(T) be terminological system descrip-
tion of T , and Ex be a set of FO-formulas called expecta-
tions. Let, furthermore Cmp ⊆ T be a set of axioms, the
components. We call (Sd(T), Ex,Cmp) a (terminological)
diagnosis problem if Sd(T) ∪ Ex) is inconsistent.

Let us look at two particular diagnosis problems,
first, to explain unsatisfiability of a particular concepts,
and,secondly, to explain incoherence. In what fol-
lows we will call the terminological diagnosis problem
(Sd(T), {∃yA(y)}, T) the unsatisfiability problem, and
(Sd(T), {

∧

A∈T
∃yA(y)}, T) the incoherence problem.

3The distinction between first-order and DL satisfiability is
well-known, but has sometimes lead to confusion in discussions
with people without the DL background.

4Expectations replace observations in Reiter’s original frame-
work. Observations follow from the semantics of the system.

Terminological diagnosis We extend Reiter’s definition
of a diagnosis to terminological diagnosis problems by ap-
plying Proposition 3.4. of (Reiter 1987). Note, that in this
framework there is no conceptual difference between di-
agnosing incoherence and diagnosing unsatisfiability prob-
lems.

Definition 2 A (terminological) diagnosis for (Sd(T), Ex,
Cmp) is a minimal set ∆ ⊆ T such that

Sd(T) ∪ Ex ∪ {¬AB(ax) | ax ∈ T \ ∆} is consistent.

In DL terms, a diagnosis ∆ is a minimal sub-terminology
of an unsatisfiable (or incoherent) terminology T (w.r.t. a
concept A), such that A is satisfiable w.r.t. the remaining
TBox T \ ∆ (respectively, that T \ ∆ is coherent).

From mips(T ∗) = {{ax1, ax2}, {ax3, ax4, ax5},
{ax4, ax7}} the 6 diagnoses {ax1, ax3, ax7}, {ax1, ax4},
{ax1, ax5, ax7}, {ax2, ax3, ax7}, {ax2, ax5, ax7} and
{ax2, ax4} can be derived. It can easily be checked, that
for all these T ∆, the TBoxes T ′ = T \ T ∆ are coherent,
and that there are no smaller T ∆ with this property.

It should be noted that diagnoses and MIPS (MUPS) are
complementary for debugging. A diagnosis suggests which
axioms should be ignored (or fixed) to make the terminol-
ogy coherent, but not every diagnosis necessarily contains
the erroneous axiom. Suppose, that ax2 and ax4 contain er-
rors, and that all other axioms are correct. The first diagnose
{ax1, ax3, ax7}, though correct, will not identify the error.
In a large diagnoses space it might be difficult to find the
right diagnosis. Each MIPS, on the other hand, definitively
contains a culprit for the logical conflict.

Calculating terminological diagnoses
Terminological diagnosis, as defined in the previous section,
is an instance Reiter’s diagnosis from first principles. There-
fore, we can use Reiter’s algorithms to calculate terminolog-
ical diagnoses. What is required is a method to produce con-
flict sets, and we will discuss three different options for this.
Let us first recall the basic methodology from (Reiter 1987).

Given an incoherent terminology T , a conflict set for
(Sd(T), Ex,Cmp) is a set CS ⊆ Cmp, such that Sd(T)∪
Ex ∪

⋃

ax∈CS
{¬AB(ax)} is inconsistent. A conflict set is

minimal if, and only if, no proper subset of it is a conflict set
for the same diagnosis problem.

The following proposition is the basis for calculating di-
agnoses on the basis of conflict sets.

Proposition 1 ((Reiter 1987) Proposition 4.2.) A set ∆ ⊆
T is a diagnosis for a terminological diagnosis problem
(Sd(T), Ex,Cmp) iff ∆ is a minimal set such that T \ ∆
is not a conflict set of (Sd(T), Ex,Cmp).

The basic idea to calculate diagnoses from conflict sets is
based on minimal hitting sets. Suppose C is a collection of
sets. A hitting set for C is a set H ⊆

⋃

S∈C
S such that

H ∩ S 6= ∅ for each S ∈ C. A hitting set is minimal for C
iff no proper subset of it is a hitting set for C.

This gives the basis of Reiter approach to calculate diag-
noses given the following theorem which is a direct conse-
quence of Corollary 4.5 in (Reiter 1987).

AAAI-05 / 672

n0 : {1×, 2×, 3, 4, 5, 6×}

n1 : {3, 4, 5}

×

1

n2 : {1, 2, 4×, 6×}

3

n5 : {4, 7}

1

×

4

n11 : ∅X

7

n6 : {4, 7}

2

×

4

n12 : ∅X

7

n3 : {1, 2}

4

n7 : ∅X

1

n8 : ∅X

2

n4 : {1, 2}

5

n9 : {4, 7}

1

×

4

n13 : ∅X

7

n10 : {4, 7}

2

×

4

n14 : ∅X

7

Figure 1: HS-Tree with small conflict sets (14 nodes & 11 calls to the DL reasoner)

Theorem 1 A set ∆ ∈ T is a diagnosis for a termino-
logical diagnosis problem (Sd(T), Ex,Cmp) iff ∆ is a
minimal hitting set for the collection of conflict sets for
(Sd(T), Ex,Cmp).

To calculate minimal hitting trees Reiter introduces hit-
ting set trees (HS-trees). For a collection C of sets, a HS-
tree T is the smallest edge-labeled and node-labeled tree,
such that the root is labeled by X if C is empty. Otherwise it
is labeled with any set in C. For each node n in T , let H(n)
be the set of edge labels on the path in T from the root to n.
The label for n is any set S ∈ C such that S ∩ H(n) = ∅,
if such a set exists. If n is labeled by a set S, then for each
σ ∈ S, n has a successor, nσ joined to n by an edge labeled
by σ. For any node labeled by X, H(n), i.e. the labels of its
path from the root, is a hitting set for C.

Figure 1 shows a HS-tree T for the collection
C = {{1, 2, 3, 4, 5, 6}{3, 4, 5}, {1, 2, 4, 6}, {1, 2}, {4, 7}}
of sets. T is created breadth first, starting with root node
n0 labeled with {1, 2, 3, 4, 5, 6}. For diagnostic problems
the sets in the collection are conflict sets which are created
on demand. In our case, conflict sets for a terminological di-
agnosis problem can be calculated by a standard DL engine
because of the following simple proposition.

Proposition 2 For any set C of components (terminologi-
cal axioms) in a terminological diagnostic problem, the FO-
formula Sd(T) ∪ Ex ∪

⋃

ax∈C
{¬AB(ax)} is inconsistent

if, and only if, A is unsatisfiable in T \ C.

These calls are computationally expensive, which means
that we have to minimize them. In Figure 1, those nodes are
boxed, for which labels were created by calls to the prover.
T reuses already calculated and smallest possible labels, and
is pruned in a variety of ways, which are defined in detail in
(Reiter 1987). Just for example, node n0 is relabeled with a
subset {3, 4, 5} of its label. We denote by 1×, that element
1 is deleted. Note, that no successor for this element has
to be created. Node n6 has been automatically labeled with
{4, 7}, because the intersection of its path h(n6) = {2, 3} is
empty with an already existing conflict set in the tree.

Three ways of implementing diagnosis
The generality of Reiter’s algorithm has the advantage of
giving some leeway for particular methodological choices.
We implemented three ways of calculating conflict sets.

1. Use an optimized DL reasoner to return a conflict set in
each step of the creation of the HS-tree. The only way to

get conflict sets for an incoherent TBox T is to return T
itself, i.e. the maximal conflict set.

2. Use an adapted DL reasoner to return small conflict sets,
which it can derive from the clashes in a tableau proof.

3. Use a specialized method to return minimal conflict sets,
e.g., using the algorithms of (Schlobach & Cornet 2003).

Diagnosis with maximal conflict sets The most general
way to calculate terminological diagnosis based on hitting
sets is to use one of the state-of-the-art optimized DL rea-
soner. The advantage is obvious: the expressiveness of the
diagnosis is only restricted by the expressiveness of the DL
reasoning implemented in the reasoner. We use RACER,
which allows to diagnose incoherent terminologies up to
SHIQ without restriction on the structure of the TBox. The
algorithm to use RACER is simple: if T is incoherent, re-
turn T , other return ∅. As RACER is highly optimized we
can expect to get the maximal conflict sets efficiently.

The disadvantage of this naive approach is that the con-
flict sets are huge, and even with reusing of node la-
bels and pruning, the HS-tree become quickly to large
to handle. Take TBox T ∗ with its incoherence problem
(Sd(T ∗), {

∧

A∈T
∃yA(y)}, T ∗, ∅), where related HS-tree

already has 380 nodes, and needs 67 calls to RACER. We
will see that the price we pay for the gain in expressiveness
is too high, and that smaller conflict sets are required.

Diagnosis with small conflict sets The disadvantage of
using a DL reasoner as a black-box is that they do not
provide any information on which components contribute
to the incoherence. Technically, this means which axioms
contribute to the closure of the tableau. To show that al-
ready straightforward collecting of clash-enforcing axioms
can dramatically improve the efficiency of diagnosis, we
implemented a simple tableau calculus for unfoldable ALC
TBoxes. This reasoner returns an unordered, and not nec-
essarily minimal, list of axioms which are (indirectly) re-
sponsible for the clashes in the tableau. The basic idea is
to label each formula with a set of axioms, which are added
to a formula in the tableau whenever they are used to “un-
fold” a defined concept. This algorithm is not optimized, but
returns small conflict sets, and the sizes of the HS-Trees de-
crease dramatically. Figure 1 shows the hitting tree for the
incoherence problem for T ∗ where small conflict sets have
been collected from tableau proofs. Compared to the previ-
ous method, there were only 14 nodes created, and 11 calls
to the DL reasoner necessary.

AAAI-05 / 673

length RACER Maximal CS Small CS Minimal CS
#ax #unsat #mips |mips| of mD timeCC #D/hr timeD1 #D/hr timeD1 #D/hr timeD1

DICE-A 534 76 16 3 3 88 s 0 - 4 1622 s 27 151 s
MGED 406 72 38 4 3 3 s 0 - 10 40 s 58 31 s

Geo 417 11 22 2.6 8 1.3 s - - 8 114 s 115 62 s
S&C 6382 923 - - - 45 s 0 - 0 - 0 -

WINE 176 10 - - 2 1 s 6 37 s - - - -
MadC 69 1 - - 1 0.4 s 4 12 s - - - -

1 2 3 4 5 6 7 8 9 10 11 12

Table 1: Comparing Diagnosis with different types of conflict sets

Diagnosis with minimal conflict sets Previously, we re-
called the notion of minimal unsatisfiability (and inco-
herence) preserving sub-terminologies MUPS and MIPS,
which were introduced in (Schlobach & Cornet 2003) for
the debugging of terminologies.

The MUPS of an incoherent terminology T and an
unsatisfiable concept A are the minimal conflict sets
for the unsatisfiability problem (Sd(T), {∃yA(y)}, T , ∅).
It is easily checked that each MUPS {{ax1, ax2},
{ax1, ax3, ax4, ax5}} for A1 and T ∗ is indeed a
minimal conflict set for the unsatisfiability problems
(Sd(T ∗),∃yA1(y)), T ∗, ∅). This time, only 12 nodes were
created. Based on the MUPS, it is straightforward to calcu-
late MIPS, which are the minimal conflict sets for the inco-
herence problem.

Proposition 3 The MIPS of an incoherent terminology T
are the minimal conflict sets for the incoherence problem
(Sd(T), {

∧

A∈T
∃yA(y)}, T , ∅).

Experiments
With a number of experiments we studied the feasibility of
diagnosis. We implemented the three techniques described
in the previous section in JAVA,5 and applied them to a num-
ber of publicly available Description Logic terminologies.

We split our test terminologies in three groups, ordered
by how they were built. As an example for a terminology
created through migration we consider a previous version
of the anatomy fragment of DICE (we abbreviate DICE-A),
with 534 axioms and 76 unsatisfiable concepts. The inco-
herence of DICE-A has two distinct causes: first, this is a
snap-shot from the terminology in its creation process, i.e.
it contains real modeling errors. Moreover, the high number
of contradictions is specific for migration as a result of strin-
gent semantic assumptions. MGED and Geo are variants of
ontologies which are incoherent because they have disjoint-
ness statements artificially added for semantic enrichment
(as suggested in (Schlobach 2005)). MGED provides stan-
dard terms for the annotation of micro-array experiments to
enable structured queries on those experiments; and Geo an
ontology of geography made available by the Teknowledge
Corporation. The third category contains the merged ontol-
ogy of SUMO and CYC, two well-known upper ontologies.
As they are topic-related, and as CYC provides disjointness
statements, there is a high number of unsatisfiable concepts.

5Implementations and test sets will be made publicly available.

We constructed simplified ALC versions for all five ter-
minologies. Without loss of unsatisfiability, we removed,
for example, numerical constraints, role hierarchies and in-
stance information. All terminologies, however, were non-
cyclic and could be transformed to an unfoldable format.

For the last two examples, WINE and MadC, this is not
the case. They were constructed to illustrate language fea-
tures of Description Logics, and we use them to illustrate
Reiter’s generic method works for expressive formalisms,
where both other methods fail. MadC is incoherent with un-
satisfiable concept MadCow, but we have enriched the wine
terminology with five erroneous statements, resulting in a
terminology with 10 unsatisfiable concepts.

Quantitative analysis: Table 1 summarizes the quantita-
tive results of diagnosis on the 6 incoherent terminologies
introduced above. All experiments were performed on a
Pentium III, 1.3.GHz, RedHat Linux. The first 4 columns
summarize information about the terminologies, the num-
ber of axioms, unsatisfiable concepts and MIPS, as well as
the average size of the MIPS. Column 5 gives the length of
the smallest diagnosis, Column 6 the time RACER needs to
check for incoherence of the terminology. The diagnostic
results are split in three pairs: the first two columns 7 and 8
((labeled Maximal CS) give
• the number of diagnoses calculated per hour (#D/hr), and
• the time to calculate the first diagnosis (timeD1)
based on maximal conflict sets. Similarly for columns 9 and
10, for small, and 11 and 12 for minimal conflict sets (cal-
culated using MIPS). The runtime in column 12 contains
calculation of unsatisfiability using RACER, the calculation
of the MIPS, and, finally, of the hitting sets.

Qualitative analysis: The most significant result is the al-
most complete failure to calculate diagnoses using the naive
maximal hitting set approach. Only for the toy examples of
the WINE and MadC terminologies are any diagnoses found.
The reason for this is the length of the minimal diagnosis
and the number of axioms. As all but one axioms belong to
the maximal conflict sets, there are (#ax-1) branches at first
level, and (#ax-1)*(#ax-2) branches at level 2. To find a di-
agnosis of length 3, a branch of depth 3 has to be explored,
which means, e.g., for DICE-A a total number of 100 million
branches. Only small ontologies with small diagnoses can
be debugged in this most general way.

AAAI-05 / 674

Things look better for the other methods. Both detect di-
agnoses of size up to 8 for large terminologies such as DICE-
A or GEO. Again, all depends on the size of the diagnoses
and the number of axioms. Still the results were unsatis-
factory: there was not a single algorithm that determined
any diagnoses for the merged SUMO and CYC ontology,
and only once did the algorithm terminate within an hour,
namely when checking DICE-A using minimal conflict sets.

For this latter method (based on minimal conflict sets)
the computational difficulty lies in the fact that construct-
ing minimal hitting sets from MIPS corresponds to calcu-
lating prime implicants for a propositional formula, and is
thus an NP-COMPLETE problem. Although our prototypi-
cal implementation uses some optimization it is not efficient
enough to build and search very large HS-Trees. The inter-
mediate implementation based on small conflict sets could
significantly be made faster by using an optimized reasoner
to return conflict sets more efficiently. From manual inspec-
tion we believe that the size of the conflict sets (and thus the
size of the HS-Tree) would not be much smaller, but the time
to find the small conflict sets could be significantly lower. In
both cases, however, the theoretical (and practical) complex-
ity is very high, so that we doubt that terminologies such as
the merged S&C can be diagnosed in the near future.

Conclusion
We present a model-based diagnosis approach for the debug-
ging of Description Logic terminologies. Representing the
terminological incoherence problems as a first-order system
descriptions allows us, at least in theory, to use Reiter’s gen-
eral framework to calculate diagnoses for very expressive
terminologies. There are several conceivable extensions:
one can use diagnoses to explain correct and incorrect sub-
sumption. Given a coherent terminology, one can specify
subsumption (or non-subsumption) as expectations. Simi-
larly, extending diagnosis with instances is easy, one simply
has to add assertional axioms to the system description, and
instance relations to the expectations. In all cases, diagnosis
works “off-the-shelf” as long as the components are set of
axioms. But even this leaves room for extension, as one can
easily choose particular subsets of a terminology as sets of
components, which not only can be very useful in practice,
but can improve the efficiency significantly.

This will be necessary, as our experimental evaluation
shows that the complexity of the general problem is so high
that it is doubtful whether it will work on large incoherent
terminologies. Only the two more specialized algorithms
work in practice, which implies that implicit information
on proofs is required. We believe that it should be feasi-
ble to extract small conflict sets from a more verbatim out-
put of current DL reasoner. Applying an optimized, efficient
and expressive general-purpose reasoning system for small
conflict set creation has many advantages, as it would make
the much more efficient method based on small conflict sets
available for terminologies such as WINE or MadC.

We are currently implementing an interesting alternative,
which is to calculate MIPS in a generic, bottom-up way. The
idea is to create sub-TBoxes of an incoherent terminology
of increasing size, and check for correctness using RACER.

This combines the advantages of the three approaches de-
scribed in this paper; we have a generic algorithm for de-
bugging of incoherent terminologies, which should be rea-
sonably efficient, and applicable on expressive ontologies.
An evaluation of this new algorithm and the methods de-
scribed in (Schlobach & Cornet 2003) is forthcoming.

These remarks also determine our future research direc-
tions: first we will address the computational problems
by improving the HS-Tree implementation as well as the
tableau calculus of our DL engine. The next step will be to
stepwise extend the expressiveness of the diagnosable ter-
minologies and the functionality by explaining subsumption
and instance relations as described above.

References
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P., eds. 2003. The Description Logic
Handbook. Cambridge University Press.
Beziau, J.-Y. 2000. What is paraconsistent logic? In
Batens, D.; Mortensen, C.; Priest, G.; and Van Bendegem,
J., eds., Frontiers of paraconsistent logic. 95–111.
Borgida, A.; Franconi, E.; and Horrocks, I. 2000. Explain-
ing ALC subsumption. In Proc. of the 14th Eur. Conf. on
Artificial Intelligence, 209–213.
Console, D., and Dressler, O. 1999. Model-based diagnosis
in the real world: Lessons learned and challenges remain-
ing. In IJCAI, 1393–1400.
Cornet, R., and Abu-Hanna, A. 2002. Evaluation of a
frame-based ontology. A formalization-oriented approach.
In Proceedings of MIE2002., volume 90, 488–93.
Greiner, R.; Smith, B. A.; and Wilkerson, R. W. 1989. A
correction to the algorithm in reiter’s theory of diagnosis.
Artif. Intell. 41(1):79–88.
Haarslev, V., and Möller, R. 2001. RACER system descrip-
tion. In Goré, R.; Leitsch, A.; and Nipkow, T., eds., IJCAR
2001, number 2083 in LNAI.
Huang, Z.; van Harmelen, F.; and ten Teije, A. 2005. Rea-
soning with inconsistent ontologies. In IJCAI’05.
McGuinness, D.; Fikes, R.; Rice, J.; and Wilder, S. 2000.
The chimaera ontology environment. In The Seventeenth
National Conference on Artificial Intelligence.
Nebel, B. 1990. Terminological reasoning is inherently
intractable. AI 43:235–249.
Noy, N., and Musen, M. 2000. PROMPT: Algorithm and
tool for automated ontology merging and alignment. In
Proceedings of the Seventeenth National Conference on Ar-
tificial Intelligence. AAAI Press.
Reiter, R. 1987. A theory of diagnosis from first principles.
Artificial Intelligence 32:57–95.
Schaerf, M., and Cadoli, M. 1995. Tractable reasoning via
approximation. Artificial Intelligence 74:249–310.
Schlobach, S., and Cornet, R. 2003. Non-standard reason-
ing services for the debugging of description logic termi-
nologies. In Proceedings of IJCAI’03. Morgan Kaufmann.
Schlobach, S. 2005. Semantic clarification by pinpointing.
In Proceedings of ESWC’05.

AAAI-05 / 675

