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Abstract

The study offorgettingfor reasoning has attracted consider-
able attention in AI. However, much of the work on forget-
ting, and other related approaches such as independence, ir-
relevance and novelty, has been restricted to the classical log-
ics. This paper describes a detailed theoretical investigation
of the notion of forgetting in the context of logic program-
ming. We first provide a semantic definition of forgetting un-
der the answer sets for extended logic programs. We then dis-
cuss the desirable properties and some motivating examples.
An important result of this study is an algorithm for comput-
ing the result of forgetting in a logic program. Furthermore,
we present a modified version of the algorithm and show that
the time complexity of the new algorithm is polynomial with
respect to the size of the given logic program if the size of
certain rules is fixed. We show how the proposed theory of
forgetting can be used to characterize the logic program up-
dates.

Introduction
The ability of discarding irrelevant information is a key fea-
ture that an intelligent agent must possess to adequately
handle reasoning tasks such as query answering, planning,
decision-making, reasoning about actions, knowledge up-
date and revision. This ability is referred to as forgetting (Lin
and Reiter 1994) or elimination (Brown 1990), and, often,
studied under different names such as irrelevance, indepen-
dence, irredundancy, novelty and separability (see (Subhra-
manianet al.1997; Langet al.2003) for more details). For
example, we have a knowledge baseK and a queryQ. It
may be hard to determine ifQ is true or false directly from
K. However, if we discard or forget some part ofK that
is independent ofQ, the querying task may become much
easier.

According to (Lin and Reiter 1994), ifT is a theory in
propositional language andp is a ground atom, then the
result of forgettingp in T is denotedforget(T, p) which
can be characterized asT (p/true) ∨ T (p/false), i.e. the
disjunction of two theories obtained fromT by replacing
p by true and false, respectively. For example, ifT =
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{(cooking∨cleaning)∧singing}, thenforget(T, singing)
is the theory{cooking ∨ cleaning}.

The notion of forgetting has found its applications in ar-
tificial intelligence. However, the existing theories of for-
getting are mainly investigated in the context of classical
logics. It would be interesting to establish a theory of for-
getting in logic programming and nonmonotonic reason-
ing. This issue is first considered in (Zhanget al. 2005)
and consequently two kinds of forgetting are defined (the
strong and weak forgettings) by first transforming a logic
programP into a reduced form and then deleting some rules
(and literals). While they have been used to resolve conflicts
in logic programming, these approaches suffer from some
shortcomings: (1) There is no semantic justification for the
strong or weak forgetting. Specifically, the relationship be-
tween the semantics of a logic program and the result of the
strong or weak forgetting is unclear. (2) It is not addressed
in (Zhanget al.2005) that what are the desirable properties
for a reasonable notion of forgetting in logic programming.
In particular, one may ask what is the difference of these
notions of forgetting from traditional approaches to dele-
tion of rules/literals in logic programming and databases. (3)
More importantly, both of the strong and weak forgettings
are syntax-sensitive. That is, equivalent programs may have
different results of forgetting about the same literal. For ex-
ample,P = {p ← . q ← not p} and P ′ = {p ←}
are equivalent programs under the answer sets. However,
WForgetLP(P, p) = {q ←} andWForgetLP(P ′, p) = {}
are not equivalent. HereWForgetLP(P, p) denotes the result
of the weak forgetting aboutp in P .

Thus, a more reasonable notion of forgetting is highly
desirable for nonmonotonic reasoning (and logic program-
ming). In this paper, we choose answer set programming
(ASP) (Lifschitz 2002) as the underlying nonmonotonic
logic. ASP is a paradigm of logic programming under the
answer sets (Gelfond and Lifschitz 1990) and it is becom-
ing one of the major tools for knowledge representation due
to its simplicity, expressive power, connection to major non-
monotonic logics and efficient implementations. First of all,
we believe that a reasonable semantic notion of forgetting in
ASP should satisfy the following criteria. LetP be a logic
program andP ′ be the result of forgetting about a literall in
P .

(F1) The proposed forgetting is a natural generalization of
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classical one:T (p/true) ∨ T (p/false).
(F2) No new symbol is introduced inP ′.

(F3) The reasoning underP ′ is equivalent to the reasoning
underP if l is ignored.

(F4) The definition of forgetting is not syntax-sensitive.
That is, the results of forgetting aboutl in equivalent pro-
grams are also equivalent.

(F5) The semantic notion of forgetting should be coupled
with a syntactic counterpart.

(F1) specifies the major intuition behind forgetting and clar-
ifies the difference of forgetting from deletion; (F2) is nec-
essary because the forgetting is to eliminate redundant sym-
bols. This is a difference of forgetting from some approaches
to revision, update and merging (it is another issue to com-
bine forgetting with other approaches to adding new infor-
mation); (F3) provides a semantic justification for the for-
getting. Note thatP ′ andP may have different answer sets
in general (see Proposition 3); (F4) guarantees the notion of
forgetting is well-defined. (F5) is useful for applications of
forgetting in knowledge representation.

To our best knowledge,there is no theory of forgetting
in nonmonotonic reasoning or logic programming which is
based on the above criteria. However, the definition of for-
getting in classical logic cannot be directly translated to
logic programming. For example, ifP is a logic program,
P (p/true)∨P (p/false) is not even a logic program in gen-
eral. Moreover, as we will see later, it is not straight forward
to replaceP (p/true)∨P (p/false) by an appropriate logic
program.

In this paper, we first introduce a notion of forgetting in
answer set programming and then show that this notion of
forgetting satisfies the above criteria (F1)-F(4) as well as
some other attracting properties (e.g. Theorem 1). Thus our
notion of forgetting captures the classical notion of forget-
ting. To justify (F5), we then develop an algorithm for com-
puting the result of forgetting in a given logic program; and a
variant of the algorithm that is polynomial time if the size of
certain rules is fixed. These results illustrate that our notion
of forgetting possesses all major properties of classical for-
getting. The proposed theory of forgetting provides a general
framework for reasoning tasks such as merging, update and
revision of logic programs. As an example, we show how to
capture the update answer sets (Eiteret al. 2002) by using
our theory of forgetting. Our study also shows that develop-
ing a semantic theory of forgetting for logic programs is a
non-trivial task.

Preliminaries
We deal with extended logic programs (Gelfond and Lif-
schitz 1990) whose rules are built from some atoms where
default negationnot and strong negation¬ are allowed. A
literal is either an atoma or its strong negation¬a. For any
atoma, we saya and¬a are complementary literals. For any
setX of literals,not X = {not l | l ∈ X}.

An extended logic programis a finite set of rules of the
following form

l0 ← l1, . . . , lm,not lm+1, . . . ,not ln (1)

wherel0 is either a literal or empty, eachli is a literal for
i = 1, . . . , n, and0 ≤ m ≤ n. If l0 is empty, then the rule is
aconstraint.

Without loss of generality, we consider propositional pro-
grams. For technical reasons, it should be stressed that the
body of a rule is a set of literals rather than a multiset. For
instance,a ← not b, c, c is not a rule in our sense while
a ← not b, c is a rule. That is, we assume that any rule of
a logic program has been simplified by eliminating repeated
literals in its body.

If a rule of form (1) contains no default negation, it is
calledpositive;P is a positive program if every rule ofP is
positive.

If a rule of form (1) contains no body atoms, it is called
negative;P is a negative program if every rule ofP is nega-
tive.

Given a ruler of form (1),head(r) = l0 andbody(r) =
body+(r)∪not body−(r) wherebody+(r) = {l1, . . . , lm},
body−(r) = {lm+1, . . . , ln}. The sethead(P ) consists of
all literals appearing in rule heads ofP .

In the rest of this section we assume thatP is an extended
logic program andX is a set of literals. A ruler in P is
satisfied byX, denotedX |= r, iff “if body+(r) ⊆ X and
body−(r)∩X = ∅, thenhead(r) ∈ X”. X is a model ofP ,
denotedX |= P if every rule ofP is satisfied byX.

The answer set semantics Thereductof logic program
P on a setX of literals, writtenPX , is obtained as follows:

• Delete everyr from P such that there is anot q ∈
body−(r) with q ∈ X.

• Delete all negative literals from the remaining rules.

Notice thatPX is a set of rules without any negative liter-
als. ThusPX may have no model or have a unique minimal
model, which coincides with the set of literals that can be
derived by resolution.

X is aanswer setof P if X is the minimal model ofPX .
A logic program may have zero, one or more answer sets.

We use‖ P ‖ to denote the collection of answer sets ofP .
A program isconsistentif it has at least one answer set.
Two logic programsP and P ′ are equivalent, denoted

P ≡ P ′, if they have the same answer sets.
As usual,BP is theHerbrand baseof logic programP ,

that is, the set of all (ground) literals inP .

Forgetting in Logic Programming
In this section we introduce a semantic definition of forget-
ting for extended logic programs. That is, we want to define
what it means to forget about a literall in a logic programP .
The intuition behind the forgetting theory is to obtain a logic
program which is equivalent to the original logic program if
we ignore the existence of the literall.

It is direct to forget a literall in a setX of literals, that is,
just removel from X if l ∈ X. This notion of forgetting can
be easily extended to subsets. A setX ′ is anl-subset ofX
if X ′ − {l} ⊆ X − {l}. Similarly, a setX ′ is a truel-subset
of X if X ′ − {l} ⊂ X − {l}.

Two setsX andX ′ of literals arel-equivalent, denoted
X ∼l X ′, iff (X −X ′) ∪ (X ′ −X) ⊆ {l}.
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Given a consistent logic programP and a literall, we
could define a result of forgetting aboutl in P as an ex-
tended logic programP ′ whose answer sets are exactly
‖ P ‖ −l = {X − {l} | X ∈‖ P ‖}. However, such a
notion of forgetting cannot even guarantee the existence for
some simple programs. For example, considerP = {a ←
. p← not q. q ← not p}, then‖ P ‖= {{a, p}, {a, q}}
and thus‖ P ‖ −p = {{a}, {a, q}}. Since{a} ⊆ {a, q}
and each answer set must be minimal,‖ P ‖ −p cannot
be the set of answer sets of any logic program. Sowe need
a notion of minimality of answer sets which can naturally
combine the definition of answer sets, minimality and for-
getting together.

Definition 1 LetP be a consistent logic program,l a literal
in P andX a set of literals.

1. We sayX is l-minimal in a collectionS of sets of literals
if X ∈ S and there is noX ′ ∈ S such thatX ′ is a truel-
subset ofX . In particular, ifSP is the set of models ofP ,
then we sayX is an l-minimal modelof a logic program
P if X is a model ofP and it isl-minimal inSP .

2. X is ananswer set ofP by forgettingl (briefly, l-answer
set) ifX is anl-minimal model of the reductPX .

For P = {a ← . q ← not p. p ← not q}, it has two
answer setsX = {a, p} andX ′ = {a, q}. X is ap-answer
set ofP but X ′ is not. This example shows that, for a logic
programP and a literall, an answer set may not be anl-
answer set.

Having the notion of minimality about forgetting a literal,
we are now in a position to define the result of forgetting
about a literal in a logic program.
Definition 2 Let P be a consistent logic program andl be
a literal. A logic programP ′ is a result offorgetting aboutl
in P if the following conditions are satisfied:

1. BP ′ ⊆ BP − {l}.
2. For any setX ′ of literals, X ′ is an answer set ofP ′ iff

there is anl-answer setX of P such thatX ′ ∼l X.

Notice that the first condition implies thatl does not appear
in P ′. In particular, no new symbol is introduced inP ′.

A logic programP may have different logic programs as
results of forgetting about the same literall. However, it fol-
lows from the above definition that any two results of for-
getting about the same literal inP are equivalent under the
answer set semantics.
Proposition 1 Let P be an extended logic program andl a
literal in P . If P ′ andP ′′ are two results of forgetting about
l in P , thenP ′ and P ′′ are equivalent (i.e. they have the
same answer sets).

We useforget(P, l) to denote the result of forgetting aboutl
in P .
Examples
1. If P1 = {q ← not p}, thenforget(P1, p) = {q ←} and

forget(P1, q) = {}.
2. If P2 = {q ← not p. p← not q}, thenforget(P2, p) =
{q ← q}. The reason is thatP2 has two answer sets
{p} and{q} but only {p} is a p-answer set ofP2. Thus
forget(P2, p) has a unique answer set{}.

3. ConsiderP3 = {q ← not p. p ←}, which has the
unique answer{p}. Thusforget(P3, p) = {} rather than
{q ←}. This is intuitive because we are forgetting all im-
pacts ofp onP3. In particular, “forgetting aboutp” is dif-
ferent from “assumingnot p”.

4. Let P4 = {a ← not b. b ← not a. p ←
not a. c ← not p}. According to (Zhanget al.
2005), the weak forgettingWForgetLP(P4, p) = {a ←
not b. b ← not a. c ←}; the strong forgetting of
SForgetLP(P4, p) = {a ← not b. b ← not a}. How-
ever,forget(P4, p) = {a ← not b. b ← not a. c ←
a}.

In the next section we will explain how to obtain
forget(P, l). The following proposition generalizes 1 and
shows that the criteria (F4) is satisfied.

Proposition 2 Let P and P ′ be two equivalent logic
programs and l a literal in P . Then forget(P, l) and
forget(P ′, l) are also equivalent under the answer sets.

Now we show that our notion of forgetting does satisfy
(F3).

Proposition 3 For any consistent programP and a literall
in P , the following two items are true:

1. Anl-answer setX of P must be an answer set ofP .
2. For any answer setX of P , there is anl-answer setX ′ of

P such thatX ′ ⊆ X.

This result implies that, ifl is ignored,forget(P, l) is equiva-
lent toP under both credulous and skeptical reasoning with
respect to the answer set semantics.

Let lcomp(P ) be Clark’s completion plus the loop formu-
las forP . Then it is shown in (Lin and Zhao 2004) thatX
is an answer set ofP iff X is a model oflcomp(P ) (in the
classical logic).

Theorem 1 Let P be a logic program andl a literal in P .
Then

lcomp(forget(P, l)) ≡ forget(lcomp(P ), l).

This result means that the answer sets offorget(P, l) are ex-
actly the models of the result of forgetting aboutl in the
classical theorylcomp(P ). Thus forget(P, l) can be intu-
itively and completely characterized by the classical forget-
ting. Notice that it would not make much sense if we replace
lcomp(P ) with a classical theory which is not equivalent to
lcomp(P ) in Theorem 1.

The above definitions of forgetting about a literall can
be extended to forgetting about a setF of literals. Specifi-
cally, we can similarly defineX1 ⊆F X2, X1 =F X2 and
F -answer sets of a logic program. Those properties of for-
getting about a single literal can also be generalized to the
case of forgetting abouta set. Moreover, the result of for-
getting about a setF can be obtained one by one forgetting
each literal inF .

Proposition 4 LetP be a consistent program andF = F ′∪
{l}. Then

forget(P, F ) ≡ forget(forget(P, l), F ′).
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Computation of Forgetting
Since Definition 2 is a semantic one, it does not guaran-
tee the existence of the result of forgetting aboutl in P .
So one important issue is to study the problem of comput-
ing the result of forgetting. In the following we will justify
the criterion (F5) by developing algorithms for computing
forget(P, l) using program transformations. The basic idea
is to equivalentlytransform the original programP into a
standard formN first and then to obtainforget(P, l) directly
from N .

Program transformations
The program transformations in this section are introduced
in (Brasset al.2001).P andP ′ are extended logic programs.

Elimination of Tautologies P ′ is obtained fromP by the
elimination of tautologies if there is a ruler in P such
thathead(r) ∈ body+(r) andP ′ = P − {r}.

Positive Reduction P ′ is obtained fromP by the positive
reduction if there is a ruler in P andc ∈ body−(r) such
thatc 6∈ head(P ) andP ′ is obtained fromP by removing
not c from r.

Negative Reduction P ′ is obtained fromP by negative re-
duction if there are two rulesr and r′ in P such that
body(r′) = ∅ and head(r′) ∈ body−(r). and P ′ =
P − {r}.

Let r and r′ be two distinct rules in a logic program. We
say r′ is an implication ofr if head(r) = head(r′) and
body(r) ⊂ body(r′).
Elimination of Implications P ′ is obtained fromP by the

elimination of implications if there are two distinct rules
r andr′ of P such thatr′ is an implication ofr andP ′ =
P − {r′}.

For two rulesr and r′ with head(r′) ∈ body+(r), the
unfolding of r with r′, denotedunfold(r, r′), is the rule
head(r)← (body(r)− {head(r′)}), body(r′).
Unfolding P ′ is obtained fromP by unfolding if there is a

rule r such that

P ′ = P − {r}
∪{unfold(r, r′) | r′ ∈ P, head(r′) ∈ body+(r)}.

T denotes the set of the program transformations introduced
above.

Lemma 1 (Brasset al.2001) Every logic program can be
transformed into a canonical form byT , which is a negative
program.

This lemma is also true for extended logic programs.

Algorithms for Computing forget(P, l)
We are now ready to present our basic algorithm for com-
puting a result of forgetting about a given literal in a logic
program.

Algorithm 1 (Computing a result of forgetting)
Input: logic programP and a literall.
Procedure:

Step 1. TransformP into its canonical formN .
Step 2. Suppose thatN hasn rules having headl (but

body does not containl due to the Elimination of tautology)
wheren ≥ 0:

rj : l← not lj1, ...,not ljmj

wherej = 1, . . . , n andmj ≥ 0 for all j.
If n = 0, thenN ′ is the program obtained fromN by

removing all appearances ofnot l.
If n = 1 and m1 = 0, then l ← is the only rule inN

having headl. In this caseD1 is defined as false.
If n ≥ 1 and m1 > 0, thenmi > 0, for i = 1, . . . , s,

by the Elimination of implications. LetD1, . . . , Ds be all
possible conjunctions(l1k1 , · · · , lnkn) where0 ≤ k1 ≤ m1,
...,0 ≤ kn ≤ mn.

Replace every appearance ofnot l in rule bodies ofN by
all possibleDi and the resulting program is denotedQ.

Step 3. Remove all rules with headl from Q and the re-
sulting program is denotedN ′.

OutputN ′ asforget(P, l).

Theorem 2 For any consistent programP and a literal l,
Algorithm 1 always returns a result of forgetting aboutl in
P .

Before we present a proof sketch of Theorem 2, first con-
sider two examples.

Example 1 Let P = {a ← not b. b ← not a. c ←
not b. p ← not a,not c. d ← not p}. SinceP is a
negative program, we can directly getforget(P, p) = {a ←
not b. b← not a. c← not b. d← a. d← c}
Consider another program for which program transforma-
tions are needed.

Example 2 LetP = {p← not p1. p← p,not q1. p←
p1,not q1. p1 ← not p2. p1 ← p2,not q}. Then it can
be equivalently transformed into the programN = {p ←
. p1 ←}. Soforget(P, p) = {p1 ←}, forget(P, q) = {p←
. p1 ←}, forget(P, p1) = {p←}.
For some special programs, it can be easier to compute
forget(P, l).

Corollary 3 Let P be a consistent program andN be the
canonical program obtained fromP byT . Then

1. If l ∈ X for everyX ∈‖ P ‖, then forget(P, l) is the
program obtained fromN by removing all rules contain-
ing l. In this case,forget(P, l) coincides with the strong
forgetting defined in (Zhanget al.2005).

2. If l 6∈ X for everyX ∈‖ P ‖, thenforget(P, l) is the pro-
gram obtained fromN by removing all rules with headl
and all appearances of negative literalnot l. In this case,
forget(P, l) coincides with the weak forgetting defined in
(Zhanget al.2005).

While Algorithm 1 provides a canonical form for the result
of forgetting, it is exponential in the worst case. This may be
from two sources: the Unfolding and the construction ofDi

for i = 1, . . . , s. However, we can replace the Unfolding by
a restricted version, that is, only unfolding onl.
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Unfolding on a given literal: P ′ is obtained fromP by un-
folding on a literall if there is a ruler such that

P ′ = P − {r}
∪{unfold(r, r′) | there is a ruler′ ∈ P

such thathead(r′) = l, l ∈ body(r)}.
Notice that we requirehead(r′) = l here. If we just want to
obtain forget(P, l), some program transformations are not
actually needed.

Algorithm 2 Input: logic programP and a literall.
Procedure:

Step 1. Fully apply the Negative Reduction and the Un-
folding onl to programP and the resulting program is de-
notedN .

Step 2. Suppose thatN hasn rules whose head contains
l (but body does not containl due to the Elimination of tau-
tology) wheren ≥ 0:

rj : l← l′j1, ..., l
′
jnj

,not lj1, ...,not ljmj

wherenj ,mj ≥ 0 for all j (1 ≤ j ≤ n).
If n = 0, thenN ′ is the program obtained fromN by

removing all appearances ofnot l.
If n = 1, n1 = 0 andm1 = 0, thenl ← is the only rule

in N whose head isl. In this caseD1 is false.
If n ≥ 1 andn1 + m1 > 0, thenni + mi > 0, for i =

1, . . . , s, by the Elimination of implications. LetD1, . . . , Ds

be all possible conjunctions(L1k1 , · · · , Lnkn) where each
Liki is eithernot l′iki

or liki for i = 1, . . . , n.
Replace every appearance ofnot l in rule bodies ofN by

all possibleDi and the resulting program is denotedQl.
Step 3. Remove all rules with headl and the resulting pro-

gram is denotedN ′.
OutputN ′ asforget(P, l).

Similar to Theorem 2, we can prove that Algorithm 2 is cor-
rect but the proof is more tedious sinceN is not negative.

Theorem 4 For any consistent programP and a literal l,
Algorithm 2 always returns a result of forgetting aboutl in
P .

Notice that the first step in Algorithm 4 can be finished in
polynomial time. In most cases, the size of rules having head
l is not very large compared to the size of the whole pro-
gram. So we can get a polynomial algorithm for computing
forget(P, l) if the size of rules having headl is bounded.

Corollary 5 If the size of rules inP having headl is
bounded, then Algorithm 2 is polynomial in the size ofP .

Proof Sketch of Theorem 2
SinceP is finite, Algorithm 1 will finally terminate.

To prove thatN ′ is a result of forgetting aboutl in P , we
need only to show thatN ′ is a result of forgetting aboutl in
N . That is, for any setX ′ of literals (with l 6∈ X ′), X ′ is
an answer set ofN ′ iff there exists anl-answer setX of N
such thatX ∼l X ′.

N can be split into three disjoint parts:N = N1∪N2∪N3

whereN1 consists of rules inN in which l does not appear;
N2 = {r ∈ N | l ∈ head(r), l 6∈ body−(r)}; N3 = {r ∈
N | l 6∈ head(r), l ∈ body−(r)}.

Let N ′
3 be the program obtained fromN3 by performing

transformations in Step 2. ThenN ′ = N1 ∪N ′
3.

Let D1, D2, . . . , Ds denote the conjunctions constructed
from lij in Step 2. So each ruler in N with l ∈ body(r)
corresponds tos rules inN ′: head(r) ← Di, (body(r) −
{not l}) for i = 1 . . . , s.
⇒:) Suppose thatX is an answer set ofN ′. We want to
prove that there is anl-answer setX ′ of N such thatX ∼l

X ′.
If n = 0 or (n = 1 andm1 = 0), the proof is direct. So we

assume thatn ≥ 1 andmi ≥ 1 for i = 1, . . . , n. Consider
two possible cases:

Case 1.X 6|= Di for all i = 1, . . . , s:
(1.1) We first show thatX ′ = X ∪ {l} is a model ofN .
Sincel 6∈ X, we have
NX′

= (N1 ∪N2 ∪N3)X′
= (N1)X ∪ (N2)X .

It can be shown thatX ′ is a model of both(N1)X and
(N2)X . ThusX ′ is a model ofNX .

(1.2) We then show thatX ′ = X ∪ {l} is an l-minimal
model ofNX′

.
Suppose thatX ′′ is the least model ofNX′

. Notice that
l ∈ X ′′ because the rulel← is inNX . Thus we need only to
show thatX ′ is the least model ofNX′

. (1.2) We then show
thatX ′ = X ∪ {l} is anl-minimal model ofNX′

. By the
assumption,(X ′′−{l}) 6|= Di for all i with 1 ≤ i ≤ s. Thus
(X ′′−{l}) |= (N ′)X , which implies that(X ′′−{l}) = X.
So we haveX ′′ = X ′. ThereforeX ′ is l-answer set ofN .

Case 2. IfX |= Di0 for somei with 1 ≤ i0 ≤ s: We need
only to show thatX is l-answer set ofN .

(2.1) SinceNX = (N1)X∪(N2)X∪(N3)X , we can show
thatX is a model ofNX .

(2.2) If X ′⊆lX such thatX ′ |= NX , then we can show
thatX is alsol-answer set ofN by distinguishing two pos-
sible subcases:l ∈ X ′ andl 6∈ X ′.⇐:) Conversely, suppose
X is l-answer set ofN . We want to prove thatX −{l} is an
answer set ofN ′.

Case 1.l 6∈ X: We show thatX is an answer set ofN ′.
Note that(N ′)X = (N1 ∪N ′

3)
X = (N1)X ∪ (N ′

3)
X ..

It can be shown thatX is a model of both ThusX is a
model of(N ′)X . On the other hand, supposeX ′ ⊆ X and
X ′ |= (N ′)X . By l 6∈ X, we have(N2)X = ∅. For any rule
r′ ∈ (N3)X , it is of the formh ←. Then the rules of the
form h ← Di for 1 ≤ i ≤ s are all in(N ′

3)
X . Notice that

l 6∈ X ′ impliesX ′ |= Di0 for somei0 with 1 ≤ i0 ≤ s. It
follows from X ′ |= (l′ ← Di0) thath ∈ X ′, which implies
thatX ′ |= r′. SoX ′ |= (N3)X . We haveX ′ |= (N ′)X , a
contradiction. Thus,X is an answer set ofN ′.

Case 2.l ∈ X: We show thatX ′ = X − {l} is an answer
set ofN ′. In this case,X |= (N1)X andX 6|= Di for all i,
which imply X ′ |= (N1)X′

andX ′ 6|= Di for all i sincel

does not appear inDi or N1. ThusX ′ |= (N ′)X′
. On the

other hand, supposeX ′′ ⊆ X ′ andX ′′ |= (N ′)X′
. Then

X ′′ ∪ {l} |= (N1)X andX ′′ ∪ {l} |= (N2)X . Obviously,
X ′′ ∪ {l} |= (N3)X . By the l-minimality of X, we have
X ′′ ∪ {l} =l X. Thus,X ′′ = X ′. That is,X ′ is a minimal
model of(N ′)X′

. Therefore,X ′ is an answer set ofN ′.
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Logic Program Update by Forgetting
The theory of forgetting developed in previous sections is
a very general framework for update, revision, merging, in-
heritance hierarchy and even preference handling in logic
programming. In particular, the modified PMA (Dohertyet
al. 1998), the update answer sets (Eiteret al. 2002), inheri-
tance answer sets (Buccafurriet al. 1999) and dynamic an-
swer sets (Alfereset al. 1998) can all be captured by our
forgetting operator. As an example, we show in this section
how to characterize the update answer sets using forgetting.

An update sequenceis an ordered sequenceP =
[P1, P2, . . . , Pt] where eachPi is an extended logic program
for i = 1, . . . , t andt ≥ 1.

Informally, Pi+1 is assumed to update the information
represented by[P1, . . . , Pi]. SoPi+1 represents more recent
information thanPi and thus the rules inPi+1 are assigned
higher priority in case of a conflict.

In Eiter et al’s approach, an update sequenceP is first
translated into a single logic programPC and the answer set
semantics ofP is defined as the set of answer sets ofPC. So
this is basically a syntactic approach.

To define the translated programPC, for each literalsl, we
introduce new literalsli andl−i wherei = 1, . . . , t. For each
rule r, a new literalrej (r) is also introduced. The extended
Herbrand base is denotedB∗

P .

Definition 3 The update programPC = P1 C · · · C Pt

overB∗
P consists of the following rules:

1. All constraints inPi (1 ≤ i ≤ t).
2. For eachr ∈ Pi (1 ≤ i ≤ t):

li ← body(r),not rej (r) if head(r) = l
l−i ← body(r),not rej (r) if head(r) = not l

3. For eachr ∈ Pi (1 ≤ i ≤ t):

rej (r) ← body(r), l−i+1 if head(r) = l
l−i ← body(r), li+1 if head(r) = not l

4. For each literall in P,

l−i ← l−i+1; li ← li+1; l← l1; ← l1, l
−
1 .

A setX of literals is an answer set of the update sequence
P if X = X ′ ∩BP for some answer setX ′ of PC.

To characterize the update semantics, we define

F (X) = ∪1≤i≤tFi(X)

where the sequenceFn(X), . . . , F1(X) for P are recur-
sively defined asFt(X) = ∅, and fori < t,

Fi(X) = {head(r) | there existr ∈ Pi andr′ ∈ Pj

s.t.head(r) andhead(r′) are complementary,
X |= (body(r) ∩ body(r′)),
head(r′) 6∈ Fi+1(X) ∪ · · · ∪ Ft(X)}.

The intuition behindF (X) is that a literal will be forgot-
ten provided that its validity causes conflict with more recent
information.

Theorem 6 Let P = [P1, . . . , Pt] be an update sequence
and X a set of literals. DenoteP = P1 ∪ · · · ∪ Pt. Then
X is an update answer set ofP iff X is an answer set of
forget(P, F (X)).

Conclusion
We have proposed a novel semantic approach to forgetting
for reasoning with logic programs. The suitability of this no-
tion of forgetting is justified against four criteria as well as
illustrating examples. An important result is the algorithm
for computing the result of forgetting in a logic program.
Furthermore, we show that a variant of the algorithm is poly-
nomial in the size of the given logic program if the size of
certain rules is fixed. The proposed theory of forgetting is
a very general framework for a variety of AI tasks includ-
ing merging, update and revision of logic programs. In par-
ticular, we show that the update answer sets can be intu-
itively captured in our framework. Issues for future research
include (1) The relation of our approach to relevance, inde-
pendence and novelty. Note that the notion of relevance for
reasoning can be naturally defined once the forgetting is de-
fined. (2) Applications of our theory of forgetting in charac-
terizing some other approaches to conflict resolving, for ex-
ample, extended abduction introduced in (Sakama and Inoue
2003). (3) Determining classes of logic programs such that
the computing of forgetting is computationally tractable.
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