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Abstract

The one-against-all reduction from multiclass classifi-
cation to binary classification is a standard technique
used to solve multiclass problems with binary classi-
fiers. We show that modifying this technique in order
to optimize its error transformation properties results
in a superior technique, both experimentally and the-
oretically. This algorithm can also be used to solve a
more general classification problem “multi-label classi-
fication,” which is the same as multiclass classification
except that it allows multiple correct labels for a given
example.

Introduction
In multiclass learning the goal is to train a classifier that
predicts one of n labels for each test instance, given a set
of labeled training examples. Many machine learning
problems can be phrased in terms of multiclass classifi-
cation with such examples as character recognition and
document categorization. Binary classification, where
the number of labels is two, is the simplest case that
requires predicting just a single bit for each instance.
For example, the question may be whether an object
has a given property or not.

Given that we have many good binary learning algo-
rithms and many multiclass classification problems, it
is tempting to create meta-algorithms which use binary
classifiers to make multiclass predictions.

Probably the simplest such method is the One-
Against-All reduction (see, for example, (Dietterich &
Bakiri 1995)) which creates one binary problem for each
of the n classes. The classifier for class i is trained to
predict “Is the label i or not?” thus distinguishing ex-
amples in class i from all other examples. Predictions
are done by evaluating the n classifiers and randomiz-
ing over those which predict “yes,” or over all n labels if
all answers are “no”. By analyzing the error transform
properties of this reduction, we show that an average
error rate ε of the learned binary classifiers induces an
error rate of at most (n−1)ε for multiclass classification.

A careful consideration of the error transformation
proof of One-Against-All reveals that the false positive
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and false negative failure modes are asymmetric. A false
negative (i.e., predicting “no” when the correct label is
“yes”) is more disastrous than a false positive (i.e., pre-
dicting “yes” when the correct label is “no”) because a
false negative results in a 1

n probability of correct pre-
diction, while for a false positive this probability is 1

2
(provided that there are no other errors). Consequently,
carefully making the learned classifier more prone to say
“yes” results in a lower multiclass error rate. We ac-
complish this by first reducing to importance weighted
binary classification, where each example has some im-
portance, and the goal is to minimize the importance-
weighted error rate. We then compose this reduction
with the Costing reduction (Zadrozny, Langford, & Abe
2003) to remove the importances (by altering the under-
lying distribution using rejection sampling). The exact
choice of importances is given by optimizing the main
theorem so as to achieve a transformed error rate of
roughly n

2 ε. Empirically, this algorithm results in supe-
rior performance on most tested binary learning algo-
rithms and problems.

The setting we analyze actually applies to a more gen-
eral problem of multi-label classification which is simi-
lar, except that any example may have multiple correct
labels. This generalization essentially comes for free.
Note that our analysis does not assume that the cor-
rect labels are independent (Rifkin & Klautau 2004).

There are many ways of reducing multiclass classi-
fication to a set of binary classifications. Perhaps the
most mathematicaly compelling of these is the ECOC
reduction (Dietterich & Bakiri 1995). The idea is to
train a set of binary classifiers, each deciding member-
ship in some subset of labels. So given a sequence of
subsets, each of the n labels corresponds to a binary
string (or a codeword) defined by the inclusion of this
label in the sequence of subsets. A multiclass prediction
is made by finding the codeword closest in Hamming
distance to this sequence of binary predictions on the
test example.

The error rate of the resulting multiclass classifier
can be shown to be at most four times the average er-
ror rate of the individual binary classifiers (Guruswami
& Sahai 1999; Beygelzimer et al. 2004). The proof of
this statement is essentially the observation that there
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exist codes where the distance between any two code-
words is at least 1/2. Consequently, at least 1/4 of the
classifiers must err to induce a multiclass classification
error, implying the bound.

Thus ECOC achieves an error transformation of 4ε
independently of the number of labels, which is theoret-
ically much more appealing than the n

2 ε transformation
achieved by Weighted One-against-all. However, the re-
sult presented here is still relevant for two reasons.

1. The transformations above are stated in terms of the
average error rate ε of the learned binary classifiers.
Thus nothing prevents a reduction from taking an
“easy” multiclass problem and turning it into “hard”
problems for the binary learner. And in fact, ECOC
reductions with the dense codes required for the 4ε
result tend to create artificially hard binary learn-
ing problems, as empirically observed by a number of
authors (Rifkin & Klautau 2004; Guruswami & Sa-
hai 1999; Allwein, Schapire, & Singer 2001). Conse-
quently, the one-against-all reduction can empirically
perform just as well (if not better) than the ECOC
reduction.

2. The method used is orthogonal to the choice of reduc-
tion, and so it may be useful for optimizing ECOC
and other reductions as well.

The paper has the following structure. First we intro-
duce basic notions and analyze the original one-against-
all reduction. We then present our new reduction and
its analysis. Finally, we provide experimental support
for the new reduction and conclude with a discussion of
how this work relates to other approaches.

Basic Notions
A binary classification learner takes as input binary
labeled training examples (x1, y1), . . . , (xm, ym) from
X ×{0, 1}, where X is some feature space and {0, 1} is
the binary label. The goal of the learner is to use the
examples to generate a classifier h : X → {0, 1} which
minimizes the expected error rate

e(h, D) = E(x,y)∼D [I(h(x) 6= y)] ,

with respect to the test distribution D over X ×{0, 1},
where I(·) is the indicator function which is 1 when the
argument is true, and 0 otherwise.

Multiclass classification is defined similarly except
that the labels are in {1, . . . , n} for n > 2. In multi-
label classification there are also more than two classes,
but a given example can belong to more than one class.
Thus examples are of the form (x, Y ), where x ∈ X,
and Y is a subset of {1, . . . , n}. The expected error
rate is then defined as

eS(h, D) = E(x,Y )∼D [I(h(x) 6∈ Y )] ,

where the subscript S stands for “subset”.
Importance weighted binary classification is an ex-

tension of binary classification where there is some im-
portance associated with misclassifying each example.

The learner gets to know the importances of training
examples, and the goal is to minimize the expected
importance-weighted loss,

eW (h, D) = E(x,y,w)∼D [wI(h(x) 6= y)] ,

where the test distribution D is over X×{0, 1}×[0,∞).
We want to show how the performance of binary clas-

sifiers on subproblems generated by a given reduction
translates into the performance on the multiclass prob-
lem. When performance is measured in terms of the
expected error rate, such statements are called error
transformation bounds of the reduction. To state the
bounds, we will need to define how D induces a distri-
bution for the created binary problems.

When analyzing error transformation properties, our
goal will be to characterize the most efficient way in
which any adversary can induce multiclass errors with
a fixed budget on binary errors. The error efficiency of
a reduction on a given example is defined as the max-
imum ratio of the probability of a multiclass error to
the number of binary errors on the examples generated
by the reduction.

Combining Multiple Binary Subproblems into
One To simplify the description of our algorithms and
analyses, we use a general transformation for turning
multiple calls to a binary learning algorithm into a sin-
gle call. We simply augment the feature space with the
name of the call and then learn a combined classifier on
the union of all training data.

The One-Against-All Reduction
In the one-against-all reduction, we learn n binary clas-
sifiers. For i ∈ {1, . . . , n}, classifier bi is trained using
the mapping (x, y) → (x, I(y = i)) from multiclass ex-
amples to binary examples. In order to construct a
multiclass classifier from the binary classifiers, we use
the following procedure: If there exists a label i such
that bi(x) = 1, then predict i, breaking ties randomly;
predict randomly otherwise.

The algorithms formally specifying the reduction are
given below. We combine the calls into one using the
transformation discussed above.

1 OAA-Train (Set of n-class examples S, binary clas-
sifier learning algorithm B)

Set S′ = ∅.
for all examples (x, y) in S do

for all labels i ∈ {1, . . . , n} do
Add a binary example (〈x, i〉, I(y = i)) to S′.

end for
end for
Return h = B(S′).

To state the transformation bound, we must define how
a multiclass test distribution D induces a test distri-
bution OAA-Train(D) over on the combined binary
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2 OAA-Test (Binary classifier h, test example x)

Output argmaxih(〈x, i〉) where i ∈ {1, . . . , n} and ties
are broken randomly.

classifier. To draw a sample from OAA-Train(D), we
draw a multiclass sample (x, y) from D, a random in-
dex i ∈ {1, . . . , n}, and output (〈x, i〉, I(y = i)). Recall
that e(h, D) denotes the error rate of classifier h on
distribution D. The theorem below is known (Allwein,
Schapire, & Singer 2001; Guruswami & Sahai 1999) for
relating training set error rates. Modifying these re-
sults to relate test set error rates is straightforward,
but the is instructive because it reveals the assymetry
that we later exploit in the Weighted One Against All
reduction.

Theorem 1. (One-against-all error efficiency) Given
any binary learner B and a set of examples S in (X ×
{1, . . . , n})∗, let h = OAA-Train(B,S). For all test
distributions D on X × {1, . . . , n},

e(OAA-Test(h), D) ≤ (n− 1)e(h,OAA-Train(D)).

Proof. We analyze how false negatives (predicting 0
when the correct label is 1) and false positives (pre-
dicting 1 when the correct label is 0) produced by the
binary classifiers lead to errors in the multiclass clas-
sifier. A false negative produces an error in the mul-
ticlass classifier a n−1

n fraction of the time (assuming
all the other classifiers are correctly outputting 0), be-
cause we are choosing randomly between n labels and
only one is correct. The other error modes to consider
involve (possibly multiple) false positives. If there are
k false positives, the error probability is either k

k+1 or 1
if there is also a false negative. The efficiency of these
three modes in creating errors (i.e., the maximum ratio
of the probability of a multiclass error to the number

of binary errors) is
n−1

n

1 = n−1
n ,

k
k+1
k = 1

k+1 , and 1
k+1 ,

respectively. Taking the maximum, we get n−1
n . Multi-

plying by n (since we have n opportunities to err, one
for each classifier), we get the result.

Notice that the analysis actually shows that the multi-
class error can be as high as (n− 1)ε.

Weighted One Against All

The key to improving the reduction above is an obser-
vation that the false positive and false negative failure
modes are asymmetric: a false negative implies only a
1/n probability of correct prediction while a false posi-
tive implies only a 1/2 probability of correct prediction.
Thus one might hope that making the learned classifier
more prone to output 1 will result in a lower multi-
class error rate. We accomplish this by first reducing
to importance weighted binary classification, and then
composing this reduction with the Costing algorithm

(Zadrozny, Langford, & Abe 2003) to reduce all the
way to binary classification.

As mentioned in the introduction, the reduction ac-
tually applies to a more general problem of multi-label
classification. This extra property comes for free.

A training example in multi-label classification is la-
beled by some subset Y of n possible labels. Let k be
the number of labels in Y . The reduction maps each
example (x, Y ), to n examples of the form:

(〈x, y〉, I(y ∈ Y ), wI(y∈Y )) for y ∈ {1, . . . , n},

where w0 = n
k+1 , and w1 = n

k+1 if n ≤ k2 + k, oth-
erwise w1 = n−k

k . The oracle uses these examples to
construct a binary importance-weighted classifier h. To
construct a multi-label classifier from h, we do the fol-
lowing: If there exists a label y ∈ {1, . . . , n} such that
h(〈x, y〉) = 1, then predict y, breaking ties randomly;
predict randomly otherwise.

The algorithms below describe the reduction more
formally.

3 WOA-Train (Set of multi-label examples S,
importance-weighted binary classifier learning algo-
rithm B)

Set S′ = ∅ and define

w0 = w0(k) =
n

k + 1
,

w1 = w1(k) =
{

n/(k + 1), if n ≤ k2 + k
(n− k)/k, otherwise

for all examples (x, Y ) in S do
for all labels y ∈ {1, . . . , n} do

Add a binary importance-weighted example
(〈x, y〉, I(y ∈ Y ), wI(y∈Y )) to S′.

end for
end for
Return h = B(S′).

4 WOA-Test (Binary importance weighted classifier
h, test example x)

Output argmaxyh(〈x, y〉) where y ∈ {1, . . . , n} and ties
are broken randomly.

Similarly to the one-against-all algorithm, for any
distribution D on X × 2{1,...,n} there is an induced
distribution WOA-Train(D) defined on importance
weighted samples (X × {1, . . . , n}) × 0, 1 × [0,∞),
where (X × {1, . . . , n}) is the feature space augmented
with the name of the call. To draw a sample from
WOA-Train(D), we draw a multi-label sample (x, Y )
from D, a random index y ∈ {1, . . . , n}, and output
(〈x, y〉, I(y ∈ Y ), wI(y∈Y )).

The following theorem gives an error transformation
bound for this reduction.
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Theorem 2. (WOA error efficiency) Given any
importance-weighted binary learner B and a set
of examples S in (X × 2{1,...,n})∗, let h =
WOA-Train(B,S). For all test distribution D on
X × 2{1,...,n},

eS(WOA-Test(h), D) ≤ eW (h,WOA-Train(D)).

Proof. There are two forms of errors, false positives and
false negatives. First, we show that an adversarial bi-
nary classifier trying to induce multi-label errors with
maximal efficiency has three possible strategies, then
analyze these strategies.

First, notice that it is never more efficient for the
adversary to invest into multiple false positives on a
single example because the expected probability of a
multi-label error grows sublinearly. For any number k
of true positives, the probability of a multi-label error
with two false positives is 2

k+2 , which is less than 2
k+1 ,

the probability of erring on two multi-label examples
when investing one false positive in each. For k = 0,
only one false positive is required to always err.

Now let l be the number of false negatives. If l < k
(note that l can be at most k), there must be one false
positive; otherwise the error rate would be 0. For l
false negatives and one false positive, we have an error
rate of 1

k−l+1 with the adversary paying importance
lw1 +w0. To improve error efficiency, it is beneficial for
the adversary to increase l if

1
k−(l+1)+1

(l + 1)w1 + w0
>

1
k−l+1

lw1 + w0
,

or equivalently if w0 > w1(k−2l). Otherwise, it is more
efficient to decrease l. Thus an optimal adversary must
choose either l = 0 or l = k.

For the l = 0 case, we have error efficiency
1

k+1
w0

.
For the l = k case, the adversary can have 0 or 1

false positives. These cases have multi-label error rates
of n−k

n and 1 with importance consumption of kw1 or
kw1 + w0, respectively.

Thus the adversary’s most efficient strategy is given
by

max
{

n− k

knw1
,

1
kw1 + w0

,
1

(k + 1)w0

}
=

1
n

.

Since the maximal error efficiency is 1
n and there are

n classes, a binary importance weighted loss of ε implies
a multi-label error rate of ε.

Composition with Costing
The reduction above reduces to importance weighted
binary classification. There are easy reductions from
this problem to binary classification. For example, the
Costing algorithm (Zadrozny, Langford, & Abe 2003)
alters the underlying importance-weighted distribution
D on X × {0, 1} × [0,∞) using rejection sampling to
produce a distribution Costing(D) on X×{0, 1}. The
basic result is the following theorem.
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Figure 1: A figure showing comparative performance
of the weighted-one-against-all reduction (+ costing)
and the one-against-all reduction on several multiclass
datasets with a Support Vector Machine (SMO), Naive
Bayes, Decision tree (J48), and Logistic Regression clas-
sifier. Note that for these experiments we used one clas-
sifier per class rather than 1 classifier as in the theorem.
Exact results are reported later.

Theorem 3. (Costing error efficiency) Given any bi-
nary learner B and a set of examples S in (X×{0, 1}×
[0,∞))∗, let h = Costing(B,S). For all test distribu-
tions D on X × 2{1,...,n},

eW (h, D) ≤ e(h,Costing(D))E(x,y,w)∼D[w].

When Weighted-One-Against-All is composed with this
reduction we get the following corollary.

Theorem 4. Given any binary learner B and a
set of examples S in (X × 2{1,...,n})∗, let h =
WOA-Train(Costing(B), S). Let c(n, k) = n

k+1 if
n ≤ k2 + k, otherwise c(n, k) = n+1

k+1 −
k
n . For all test

distribution D on X × 2{1,...,n},

eS(WOA-Test(h), D)

≤ e(h,Costing(WOA-Train(D)))E(x,y)∼D[c(n, k)].

The theorem should be compared directly with the one-
against-all reduction to binary classification which has
error efficiency of n−1. Here, with k = 1 (i.e., a unique
correct label), we get c(n, 1) = n+1

2 − 1
n = (n+2)(n−1)

2n
implying error efficiency of about n

2 , or about half the
error rate of the original reduction.

Proof. The importance weighted loss is unnormalized
since k

nw1 + n−k
n w0 = n

k+1 for n ≤ k2 + k or (n+1
k+1 −

k
n )

for n > k2 + k. Taking an expectation over k according
to D, we get the result.
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Experimental Results

Here we compare the performance of the One-Against-
All (OAA) and the Weighted-One-Against-All (WOA)
reductions on several multiclass datasets from the UCI
Machine Learning Repository (Blake & Merz 1998). As
binary classifier learners, we use four different learn-
ing algorithms available within Weka (Witten & Frank
2000): a decision tree learner (J48), a (linear) support
vector machine learner (SMO), logistic regression and
naive bayes. Note that for these experiments we use
one binary classifier per class rather than one combined
classifier as done in the analyses.

Four of the datasets we use have standard train/test
splits (annealing, pendigits, satimage and soybean).
For these datasets, we report the results on the test
set. For the other datasets, we repeat the experiments
on 20 random splits of the data (2/3 for training and
1/3 for testing) and report the average result on the
test sets.

We use the default parameters in Weka, except with
the Naive Bayes learner where we use the kernel esti-
mation for modelling numeric attributes (option -K).
We do not perform any kind of parameter optimiza-
tion such as tuning the regularization parameters for
support vector machines or the pruning parameters for
decision trees. Our objective in performing these ex-
periments is simply to compare the performance of the
two reductions under the same conditions.

The test set error rates using each of the binary clas-
sifier learners are shown in Tables 1, 2, 3 and 4. From
these results, we see that WOA generally results in bet-
ter performance than OAA. Using SMO and logistic
regression, WOA performs worse than OAA only for
a single dataset (out of eleven). Using J48 and naive
Bayes, WOA performs worse than OAA for two and
three datasets (out of eleven), respectively.

We chose not to perform any kind of statistical sig-
nificance test because the assumptions of independence
and normality required by the usual tests are not sat-
isfied here. We believe that the consistent results in
favor of WOA across a range of different datasets and
binary learners are enough to show that it is empirically
superior to OAA.

Discussion

Summary We have shown that a simple modification
of the common one-against-all reduction yields better
performance in theory and in practice. The theory sug-
gests an improvement by about a factor of 2 in the error
rate, while the experimental results vary between negli-
gible and significant improvement. Since the one-vs-all
approach is a commonly used technique, this improve-
ment is widely useful.
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