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Abstract

Efficient Learning Equilibrium (ELE) is a natural solution
concept for multi-agent encounters with incomplete informa-
tion. It requires the learning algorithms themselves to be in
equilibrium for any game selected from a set of (initially un-
known) games. In an optimal ELE, the learning algorithms
would efficiently obtain the surplus the agents would obtain
in an optimal Nash equilibrium of the initially unknown game
which is played. The crucial part is that in an ELE deviations
from the learning algorithms would become non-beneficial
after polynomial time, although the game played is initially
unknown. While appealing conceptually, the main challenge
for establishing learning algorithms based on this concept is
to isolate general classes of games where an ELE exists. Un-
fortunately, it has been shown that while an ELE exists for the
setting in which each agent can observe all other agents’ ac-
tions and payoffs, an ELE does not exist in general when the
other agents’ payoffs cannot be observed. In this paper we
provide the first positive results on this problem, construc-
tively proving the existence of an optimal ELE for the class
of symmetric games where an agent can not observe other
agents’ payoffs.

1. Introduction
Reinforcement learning in the context of multi-agent inter-
actions has attracted the attention of researchers in cognitive
psychology, experimental economics, machine learning, ar-
tificial intelligence, and related fields for quite some time
(Kaelbling, Littman, & Moore 1996; Erev & Roth 1998;
Fudenberg & Levine 1998). Much of this work uses re-
peated games (e.g. (Claus & Boutilier 1997; Kalai &
Lehrer 1993; Conitzer & Sandholm 2003)) and stochas-
tic games (e.g. (Littman 1994; Hu & Wellman 1998;
Brafman & Tennenholtz 2002; Bowling & Veloso 2001;
Greenwald, Hall, & Serrano 2002)) as models of such inter-
actions. The literature on learning in games in game theory
(Fudenberg & Levine 1998) is mainly concerned with the
understanding of learning procedures thatif adopted by the
different agents will converge at the end to an equilibrium
of the corresponding game. The idea is to show that sim-
ple dynamics lead to rational behavior, as prescribed by a
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Nash equilibrium. The learning algorithms themselves are
not required to satisfy any rationality requirement; it is what
they converge to,if adopted byall agents that should be in
equilibrium. We find this perspective highly controversial.
Indeed, the basic idea in game theory is that agents would
adopt only strategies which are individually rational. This
is the reason why the notion of equilibrium has been intro-
duced and became the dominant notion in game theory and
economics. It is only natural that similar requirements will
be required from the learning algorithms.

In order to address the above issue, Brafman and Tennen-
holtz (Brafman & Tennenholtz 2004) introduced the notion
of Efficient Learning Equilibrium[ELE]. In this paper we
deal with an improved version of ELE, where the agents’
surplus as a result of the learning process is required to be
as high as the surplus of an optimal Nash equilibrium of the
initially unknown game. ELE is a property of a set of learn-
ing algorithms with respect to a class of games. An optimal
ELE should satisfy the following properties:

1. Individual Rationality: The learning algorithms them-
selves should be in equilibrium. It should be irrational for
each agent to deviate from its learning algorithm, as long
as the other agents stick to their algorithms,regardlessof
what the actual game is.

2. Efficiency:

(a) A deviation from the learning algorithm by a single
agent (while the others stick to their algorithms) will
become irrational (i.e. will lead to a situation where
the deviator’s payoff is not improved) after polynomi-
ally many stages.

(b) If all agents stick to their prescribed learning algo-
rithms then the social surplus obtained by the agents
within a polynomial number of steps will be at least
(close to) the social surplus they could obtain, had the
agents known the game from the outset and adopted an
optimal (surplus maximizing) Nash equilibrium of it.

A tuple of learning algorithms satisfying the above prop-
erties for a givenclassof games is said to be anOptimal
Efficient Learning Equilibrium(OELE) for that class. The
definition above slightly deviates from the original defini-
tion in (Brafman & Tennenholtz 2004), since we require the
outcome to yield the surplus of an optimal Nash equilibrium,
while the original definition referred to the requirement that
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each agent would obtain expected payoff close to what he
could obtain insomeNash equilibrium of the game.

Notice that the learning algorithms should satisfy the de-
sired properties foreverygame in a given class despite the
fact that the actual game played is initially unknown. This
kind of requirement is typical of work in machine learn-
ing, where we require the learning algorithms to yield sat-
isfactory results foreverymodel taken from a set of mod-
els (without any Bayesian assumptions about the probability
distribution over models). What the above definition bor-
rows from the game theory literature is the criterion for ra-
tional behavior in multi-agent systems. That is, we take in-
dividual rationality to be associated with the notion of equi-
librium. We also take the surplus of an optimal Nash equi-
librium of the (initially unknown) game to be our bench-
mark for success; we wish to obtain a corresponding value
although we initially do not know which game is played.

In this paper we adopt the classical repeated game model.
In such setting, a classical and intuitive requirement is that
after each iteration an agent is able to observe the payoff it
obtained and the actions selected by the other agents. Fol-
lowing (Brafman & Tennenholtz 2004), we refer to this as
imperfect monitoring. In theperfect monitoringsetting,
the agent is also able to observe previous payoffs of other
agents. Although perfect monitoring may seem like an ex-
ceedingly strong requirement, it is, in fact, either explicit or
implicit in most previous work in multi-agent learning in AI
(see e.g. (Hu & Wellman 1998)). In (Brafman & Tennen-
holtz 2004) the authors show the existence of ELE under
perfect monitoring for any class of games, and its inexis-
tence, in general, given imperfect monitoring. These results
are based on the R-max algorithm for reinforcement learn-
ing in hostile environments (Brafman & Tennenholtz 2002).
In Section 3 we show that the same results hold for OELE.
However, this leaves us with a major challenge for the theory
of multi-agent learning, which is the major problem tackled
in this paper :

• Can one identify a general class of games where OELE
exists under imperfect monitoring?

In this paper we address this question. We show the ex-
istence of OELE for the class of symmetric games – a very
common and general class of games. Our proof is construc-
tive, and provide us with appropriate efficient algorithms
satisfying the OELE requirements. Indeed, our results im-
ply the existence and the construction of an efficient pro-
tocol, that will lead to socially optimal behavior in situa-
tions which are initially unknown, when the agents follow
the protocol; moreover, this protocol is stable against ratio-
nal deviations by the participants. Notice that in many inter-
esting situations, such as in the famous congestion settings
studied in the CS/networks literature, the setting is known
to be agent-symmetric, but it is initially unknown (e.g. the
speed of service providers etc. is initially unknown). Al-
though such symmetric settings are most common both in
theoretical studies as well as in applications, dealing with
the existence of an OELE in such settings is highly chal-
lenging, since in symmetric games an agent’s ability to ob-
serve its own payoff (in addition to the selected joint action)

Figure 1:

M1 =
(

5, −5 3, −3
−3, 3 −2, 2

)
M2 =

(
5, 5 6, 6

−3, −3 2, 2

)
M3 =

(
2, 2 −10, 10

10, −10 −5, −5

)

does not directly teach it about other agents’ payoffs (as in
zero-sum games, common-interest games, and games with
perfect monitoring, where ELE has been shown to exist in
previous work).

In the following section we provide a short review of ba-
sic notions in game-theory. Then, in Section 3, we formally
define the notion of optimal efficient learning equilibrium
and adapt previous results obtained on ELE to the context of
OELE. In Section 4 we prove the main result of this paper:
the (constructive) existence of an OELE under imperfect
monitoring for a general class of games – the class of (re-
peated) symmetric games. The related algorithm is briefly
illustrated in Section 5. For ease of exposition, we concen-
trate on two player games. The extension ton-player games
is discussed in Section 6.

2. Game-Theory: some background
Game-theory provides a mathematical formulation of multi-
agent interactions and multi-agent decision making. Here
we review some of the basic concepts. For a good introduc-
tion to the area, see, e.g., (Fudenberg & Tirole 1991).

A game in strategic form consists of a set of playersI,
a set of actionsAi for eachi ∈ I, and a payoff function
Ri : ×i∈IAi → R for eachi ∈ I. We letA denote the
set×i∈IAi of joint actions. Agents’ actions are also often
referred to asstrategies. The resulting description is very
simple, though not necessarily compact, and we adopt it in
the rest of this paper.

When there are only two players, the game can be de-
scribed using a (bi)-matrix whose rows correspond to the
possible actions of the first agent and whose columns cor-
respond to the possible actions of the second agent. Entry
(i, j) contains a pair of values denoting the payoffs to each
agent when agent 1 plays actioni and agent 2 plays action
j. In the rest of this paper, we concentrate, unless stated
otherwise, on two-player games. In addition, we make the
simplifying assumption that the action set of both players is
identical. We denote this set byA. The extension to different
sets is trivial.

In Figure 1 we see a number of examples of two-player
games. The first game is azero-sumgame, i.e., a game in
which the sum of the payoffs of the agents is 0. This is a
game of pure competition. The second game is acommon-
interestgame, i.e., a game in which the agents receive iden-
tical payoffs. The third game is a well-known general-sum
game, the prisoners’ dilemma. In this case, the agents are
not pure competitors nor do they have identical interests.
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When considering the actions an agent can choose from,
we allow agenti to choose among the set of probability dis-
tributionsAm

i = ∆(Ai) over his actions. The corresponding
set of mixed action (strategy) profiles of the agents is de-
noted byĀ = ×i∈IA

m
i . The payoff of an agent given such

a profile is naturally defined using the expectation operator.
We will therefore useRi(a) to refer to expected payoff of
agenti whena ∈ Ā is played.

A basic concept in game-theory is that of aNash equi-
librium. A joint action a ∈ Ā is said to be a Nash equi-
librium if for every agenti and every action profilea′ such
thata′ differs froma in the action of agenti alone, it is the
case thatRi(a) ≥ Ri(a′). Thus, no agent has motivation
to unilaterally change its behavior froma. A basic result of
game theory is that everyn-player game in strategic form,
in which the agents’ set of actions is finite possesses a Nash
equilibrium in mixed strategies (where each agent can se-
lect a probability distribution of its available actions). Un-
fortunately, in general, there can be many Nash equilibria.
An interesting type of Nash equilibria are theoptimalNash
equilibria. A Nash equilibrium of a game is termed optimal
if there is no other Nash equilibrium of the game in which
the agents’ surplus (i.e. the sum of agents’ payoffs) is higher
than in the prescribed equilibrium.

Other concepts, to be used later in the paper
are the probabilistic maximin strategy and the safety-
level value of a gameG. A probabilistic max-
imin strategy for playeri, is a mixed strategys ∈
argmaxs′∈Am

i
mins−i∈×j 6=iAj

Ri(s, s−j), and its value is
the safety-level value.

In order to model the process of learning in games, re-
searchers have concentrated on settings in which agents re-
peatedly interact with each other – otherwise, there is no
opportunity for the agent to improve its behavior. The
repeated-games model has been popular within both AI and
game theory. In this paper we will therefore study learning
in repeated games.

3. Optimal Efficient Learning Equilibrium
In this section we present a formal definition of optimal
efficient learning equilibrium in the context of two-player
repeated games. The generalization ton-player repeated
games is relatively straightforward, but is omitted due to
lack of space. We briefly discuss it in Section 6.

In a repeated game(RG) the players play a given gameG
repeatedly. We can view a repeated gameM , with respect to
a gameG, as consisting of an infinite number of iterations,
at each of which the players have to select an action in the
gameG. After playing each iteration, the players receive the
appropriate payoffs, as dictated by that game’s matrix, and
move to the next iteration. For ease of exposition we normal-
ize both players’ payoffs in the gameG to be non-negative
reals between 0 and some positive constantRmax. We de-
note this interval of possible payoffs byP = [0, Rmax]. Let
Smax(G) be the maximal sum of agents’ payoffs (a.k.a. the
social surplus) obtained in some equilibrium of the gameG.
In theperfect monitoringsetting, the set of possible histories
of lengtht is (A2 × P 2)t, and the set of possible histories,
H, is the union of the sets of possible histories for allt ≥ 0,

where(A2 ×P 2)0 is the empty history. Namely, the history
at time t consists of the history of actions that have been
carried out so far, and the corresponding payoffs obtained
by the players. Hence, given perfect monitoring, a player
can observe the actions selected and the payoffs obtained in
the past, but does not know the game matrix to start with.
In the imperfect monitoringsetup, all that a player can ob-
serve following the performance of its action is the payoff it
obtained and the actions selected by the players. The player
cannot observe the other player’s payoff. More formally, in
the imperfect monitoring setting, the set of possible histories
of lengtht is (A2×P )t, and the set of possible histories,H,
is the union of the sets of possible histories for allt ≥ 0,
where(A2 × P )0 is the empty history. An even more con-
strained setting is that ofstrict imperfect monitoring, where
the player can observe its action and its payoff alone. Given
an RG,M , a policy for a player is a mapping fromH, the
set of possible histories, to the set of possible probability
distributions overA. Hence, a policy determines the prob-
ability of choosing each particular action for each possible
history. Notice that a learning algorithm can be viewed as
an instance of a policy.

We define thevaluefor player 1 of a policy profile(π, ρ),
where π is a policy for player 1 andρ is a policy for
player 2, using theexpected average reward criterionas fol-
lows: Given an RGM and a natural numberT , we denote
the expectedT -iterations undiscounted average reward of
player 1 when the players follow the policy profile(π, ρ),
by U1(M,π, ρ, T ). The definition for player 2 is similar.

Assume we consider games withk actions, A =
{a1, . . . , ak}. For every repeated gameM , selected from
a class of repeated gamesM, where M consists of re-
peatedly playing a gameG defined onA, let n(G) =
(N1(G), N2(G)) be an optimal Nash equilibrium of the
(one-shot) gameG, and denote byNVi(n(G)) the expected
payoff obtained by agenti in that equilibrium. Hence,
Smax(G) = NV1(n(G)) + NV2(n(G)). A policy profile
(π, ρ) is an optimal efficient learning equilibrium(OELE)
with respect to the classM, if for every ε > 0, 0 < δ < 1,
there exists someT > 0, polynomial in 1

ε , 1
δ , andk, such

that for everyt ≥ T and every RG,M ∈ M (associated
with a one-shot gameG), U1(M,π, ρ, t)+U2(M,π, ρ, t) ≥
Smax(G) − ε, and if player 1 deviates fromπ to π′ in iter-
ation l, thenU1(M,π′, ρ, l + t) ≤ U1(M,π, ρ, l + t) + ε
with a probability of failure of at mostδ. And similarly, for
player 2.

Notice that a deviation is considered irrational if it does
not increase the expected payoff by more thanε. This is
in the spirit of ε-equilibrium in game theory, and is done
in order to cover the case where the expected payoff in a
Nash equilibrium equals the probabilistic maximin value. In
all other cases, the definition can be replaced by one that
requires that a deviation will lead to a decreased value, while
obtaining similar results. We have chosen the above in order
to remain consistent with the game-theoretic literature on
equilibrium in stochastic contexts. Notice also, that for a
deviation to be considered irrational, its detrimental effect
on the deviating player’s average reward should manifest in
the near future, not exponentially far in the future.
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Our requirement therefore is that learning algorithms will
be treated as strategies. In order to be individually rational
they should be the best response for one another. The strong
requirement made in OELE is that deviations will not be
beneficial regardless of the actual game, where the identity
of this game is initially unknown (and is taken from a set
of possible games). In addition, the agents should rapidly
obtain a desired value, and the loss of gain when deviat-
ing should also be materialized efficiently. The above cap-
tures the insight of a normative approach to learning in non-
cooperative setting. We assume that initially the game is
unknown, but the agents will have learning algorithms that
will rapidly lead to the value the players would have ob-
tained in an optimal Nash equilibrium had they known the
game. Moreover, and most importantly, as mentioned ear-
lier, the learning algorithms themselves should be in equilib-
rium. We remark that since learning algorithms are in fact
strategies in the corresponding (repeated) game, we in fact
require that the learning algorithms will be an ex-post equi-
librium in a (repeated) game in informational form (Holz-
manet al. 2004).

The definition of OELE is of lesser interest if we cannot
provide interesting and general settings where OELE exists.
By adapting the results of (Brafman & Tennenholtz 2004) to
the context of OELE we can show that:

Theorem 1 There exists an OELE for any perfect monitor-
ing setting.

In particular, there is an algorithm that leads to an OELE
for the any class of games with perfect monitoring. Thus,
agents that use this algorithm can attain the average reward
of an optimal Nash equilibrium of the actual game without
prior knowledge about the game played, and deviation from
the algorithm will not be beneficial.

However,

Theorem 2 Under imperfect monitoring, an OELE does not
always exist.

This leaves us with a major challenge for the theory of
multi-agent learning. Our aim is to identify a general setting
where OELE exists under imperfect monitoring. Needless
to say that a constructive proof of existence for such general
setting, will provide us with a most powerful multi-agent
learning technique. This is the topic of the following sec-
tions.

4. OELE for Symmetric Games with
Imperfect Monitoring

A gameG is symmetric if for every actionsa, b ∈ A, the
payoff of agent 1 for(a, b) equals the payoff of agent 2 for
(b, a), i.e. R1(a, b) = R2(b, a). In fact, the best known
games from the game theory literature are symmetric.

Our aim is to show the existence of an OELE for symmet-
ric games. We will make use of the following Lemma (proof
omitted, due to lack of space).

Lemma 1 LetG be a symmetric 2-player game where each
agent can choose actions from amongA = {1, 2, . . . , k},
and agenti’s payoff function isRi (i = 1, 2). Let s ∈

argmaxs′∈A2U1(s′) + U2(s′), and letr = U1(s) + U2(s);
i.e.,s is surplus maximizing and leads to social surplus ofr.
Letv(B) be the safety level value that can be guaranteed by
a player when both players can choose only among actions
in B ⊆ A, and letv = max{B:B⊆A} v(B). Thenv ≤ s

2 .

We now present our main theorem:

Theorem 3 Let A = {a1, . . . , ak} be a set of possible ac-
tions, and consider the set of symmetric games with respect
to this set of actions. Then, there exists an OELE for this set
of games under imperfect monitoring.

Proof(sketch):
Consider the following algorithm, termed the Sym-OELE

algorithm.
The Sym-OELE algorithm:

Player1 performs actionai one time after the other for
k times, for i = 1, 2, ..., k. In parallel to that player 2
performs the sequence of actions(a1, . . . , ak) k times.

If both players behave according to the above, a so-
cially optimal (not necessary individually rational) strat-
egy profile s = (s1, s2) is selected, i.e. s ∈
argmaxs′∈A2(R1(s′) + R2(s′)); agent 1 then playss1

in odd iterations and playss2 in even iterations, while
agent 2 playss2 in odd iterations ands1 in even itera-
tions. If one of the players – whom we refer to asthe
adversary– deviates from the above, the other player –
whom we refer to asthe agent, acts as follows: W.l.o.g
let the agent be player 1. The agent replaces its payoffs
in G by the complements toRmax of the adversary pay-
offs. Hence, the agent will treat the game as a game where
its aim is to minimize the adversary’s payoff. Notice that
these payoffs might be unknown. The corresponding pun-
ishing procedure will be described below. We will use the
following general notation: given a gameG1 we will refer
to the modified (constant sum) game asG′

1. A punishing
strategy in the original game (minimizing the adversary’s
payoff) will be a probabilistic maximin of the modified
game.

Initialize: The agent selects actions randomly until it
knows the payoffs for all joint actions in the setSa =
{(x, a), x ∈ A} for somea ∈ A.
We say that a column which corresponds to actionb of the
adversary isknown, if the agent has observed her payoffs
for strategy profiles(y, b) for all y ∈ A. Denote byC the
set of actions that correspond to known columns at each
point in time, and letG′ denote the restriction ofG only
to actions (of both agent and adversary) that correspond
to known columns, i.e.G′ is a squared matrix game con-
taining all entries of the form(a, b) sucha, b ∈ C. Since
G is symmetric,all the payoffs inG′, of both of the play-
ers, are known to the agent. LetG′′ denote the modified
version ofG′, i.e., where the agent’s payoffs are theRmax

complements of the adversary’s payoffs inG′.

Repeat: Compute and Act: Compute the optimal proba-
bilistic maximin ofG′′ and execute it with probability
1 − α, whereα = 1

Qk ; Q will be determined later and
will be polynomial in the problem parameters. With
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probabilityα uniformly select a random action and ex-
ecute it.

Observe and update: Following each joint action do as
follows: Let a be the action the agent performed and
let a′ be the adversary’s action. If(a, a′) is performed
for the first time, then we keep record of the reward
associated with(a, a′). We reviseG′ andG′′ appro-
priately when a new column becomes known. That is,
if following the execution of(a, a′) the columna′ be-
comes known, then we should adda′ to C and modify
G′ accordingly.

Claim 1 The SYM-OELE algorithm, when adopted by the
players, is indeed an OELE.

Our proof will be a result of the following analysis with
regard to the above algorithm.

Given the current values ofC andG′, then afterQ2k4

iterations in which actions corresponding to still unknown
columns are played, at least one of these actions should have
been played by the adversary, at leastQ2k3 times. (This is
just the pigeonhole principle.)

The probability that if an actiona, associated with un-
known column, is playedQ2k3 times by the adversary,
the corresponding column will be unknown is bounded by
k(1− α

k )Q2k3
. (This is the probability we will miss an entry

(b, a) for someb, multiplied by the number of possibleb’s.)
Takeα = 1

Qk , thenk(1− α
k )Q2k3

= k(1− 1
Qk2 )Qk2Qk <

ke−Qk (since(1− 1
n )n < 1

e ). Hence, the probability that an
unknown column will not become known after it is played
Q2k3 times is bounded byke−Qk; the probability that no
unknown column will become known after actions associ-
ated with unknown columns are playedQ2k4 times is also
bounded byke−Qk.

ChooseQ such thatke−Qk < δ
3k . Notice thatQ can be

chosen to be bounded by some polynomial in the problem
parameters.

The above implies that afterT ′ = Q2k6 iterations, ei-
ther the number of times where actions corresponding to un-
known columns are selected by the adversary is less than
Q2k5, or all the gameG becomes known afterT ′ iterations
of that kind with probability greater than or equals to1− δ

3 .
This is due to the fact in anyQ2k4 iterations where actions
associated with unknown columns are played, a new column
will become known with probability of failure of at most
δ
3k (as we have shown above); by applying this argument
k times (i.e. fork sets ofQ2k4 iterations like that) we get
that the probability not all columns will become known is
bounded byk δ

3k = δ
3 .

Notice that whenever a column which corresponds to ac-
tion a is known, the gameG′ is extended to include all
and only the actions that correspond to the known columns.
Since the game is symmetric, whenever the agent’s payoffs
for all entries of the form(a, b) for all b ∈ C ⊆ A and for
all a ∈ A are known then the payoffs forboth players are
known to the agent in the gameG′ where the actions are
only those inC.

Hence, afterT = QkT ′ iterations the expected pay-
off of an adversary, which can guarantee itself at mostv

(when playing against a punishing strategy in some gameG′

as above) is bounded byT
′Rmax+(Qk−1)T ′((1−α)v+αRmax)

T .
This is due to our observation earlier:T ′ bounds the number
of times in which the adversary can play an unknown col-
umn, andv is the best value that he can get playing a known
column. The calculation takes also into account that with
probabilityα, when the agent explores, the adversary might
get theRmax payoff. Simplifying, we get that the adversary
can guarantee itself no more thanv + 2Rmax

Qk . This implies
that the average payoff of the adversary would be smaller
thanv + ε whenQ > 2Rmaxk

ε .
It is left to show thatv ≤ s

2 where s
2 is what the ad-

versary would have obtained if we would have followed the
prescribed algorithm. This however follows from Lemma 1.

Although there are many missing details, the reader can
verify that the Sym-OELE is efficient, and that indeed de-
termines an OELE. In fact, the most complex operation in it
is the computation of probabilistic maximin, which can be
carried out using linear programming. Moreover, notice that
the algorithm leads to optimal surplus, and not only to the
surplus of an optimal Nash equilibrium. In no place there is
a need to compute a Nash equilibrium.

5. The Sym-OELE algorithm: an example
To illustrate the algorithm, we now consider a small exam-
ple of using the following 3x3 game:

(5,5) (4,0) (3,8)
(0,4) (-2,-2) (3,2)
(8,3) (2,3) (3,3)

If the adversary does not deviate from the algorithm, after
9 iterations, the game will become known to the agents, and
(1,3) and (3,1) will be played interchangeably; here we use
(i, j) to denote the fact player 1 plays action numberi and
player 2 plays action numberj.

Suppose that the adversary deviates immediately. In that
case, the first agent will select actions uniformly. With high
probability, after a number of steps, she will know her pay-
offs for one of the columns. Assume that she knows her
payoffs for column 1. In that case,C = {1} andG′′ is the
single action game:

(3,5)

The agent now plays action 1 almost always, occasion-
ally playing randomly. Suppose that the adversary always
plays column 1. In that case, the adversary’s payoff will be
slightly less than 5, which is lower than the value he would
have obtained by following the algorithm (which is 5.5). If
the adversary plays other columns as well, at some point,
the agent would learn another column. Suppose the agent
learned column 2, as well. NowC = {1, 2} andG′′ is the
game:

(3,5) (8,0)
(4,4) (10,-2)
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Now, the agent will play action 2 most of the time. This
means that the adversary’s average payoff will be at most a
little over 4. Finally, if the adversary plays column 3, occa-
sionally, the agent will learn its value, too, etc.

6. n-player games
When extending ton-player games, for any fixedn, we
assume that there are private channels among any pair of
agents. Alternatively, one can assume that there exists a me-
diator who can allow agents to correlate their strategies, by
sending them private signals, as in the classical definition
of correlated equilibrium (Aumann 1974). Although details
are omitted due to lack of space, we will mention that our
setting and results are easily extended to that setting of cor-
related equilibrium, and it allows us to extend the discussion
to the case ofn-players. The above extended setting (where
we either refer to private communication channels, or to a
correlation device) implies that any set of agents can behave
as a single master-agent, whose actions are action profiles
of the set of agents, when attempting to punish a deviator.
Given this, the extension ton-player games is quite imme-
diate. The agents will be instructed first to learn the game
entries, and (once the game is known) to choose a joint ac-
tion which is surplus maximizing,s = (s1, s2, . . . sn), and
behave according to then! permutations repeatedly. This
will lead each agent to an average payoff which isΣn

i=1Ui(s)
n .

This will yield convergence to optimal surplus in polyno-
mial time. In order to punish a deviator, all other players
will behave as one (master-agent) whose aim is to punish an
adversary.

Let B = An−1 be the action profiles of the above-
mentioned master agent. When punishing the adversary we
will say that a column corresponding to an actiona ∈ A of
the adversary is known if all other agents (i.e. the master
agent) know their payoffs(b, a), for everyb ∈ B. Let A′ be
the set of actions for which the corresponding columns are
known then we get that all payoffs (also of the adversary)
in G′, where agents can choose actions only from among
A′, are known. Hence, the proof now follows the ideas of
the proof for the case of 2-player games: a punishing strat-
egy will be executed with high probability w.r.t toG′, and a
random action profile will be selected with some small prob-
ability.

7. Conclusion
The algorithm and results presented in this paper are, to
the best of our knowledge, the first ones to provide effi-
cient multi-agent learning techniques, satisfying the natural
but highly demanding property that the learning algorithms
should be in equilibrium given imperfect monitoring. We
see the positive results obtained in this paper as quite sur-
prising, and extremely encouraging. They allow to show
that the concept of ELE, and OELE in particular, is not only
a powerful notion, but does also exist in general settings, and
can be obtained using efficient and effective algorithms.

One other thing to Notice is that although the Sym-OELE
algorithm has a structure which may seem related to the fa-
mous folk theorems in economics (see (Fudenberg & Tirole

1991)), it deals with issues with quite different nature. This
is due to the fact we need to punish deviators under imper-
fect monitoring, given there is no information about entries
in the game matrix.

Taking a closer look at the Sym-OELE algorithm and its
analysis, it may seem that the agent needs to know the value
of Rmax, in order to execute the algorithm. In fact, this in-
formation is not essential. The agent can base her choice of
the parameterQ on the maximal observed reward so far, and
the result will follow. Hence, the algorithm can be applied
without any limiting assumptions.
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