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Abstract

Learning the most probable a posteriori Bayesian network
from data has been shown to be an NP-Hard problem and typ-
ical state-of-the-art algorithms are exponential in the worst
case. However, an important open problem in the field is
to identify the least restrictive set of assumptions and corre-
sponding algorithms under which learning the optimal net-
work becomes polynomial. In this paper, we present a
technique for learning the skeleton of a Bayesian network,
called Polynomial Max-Min Skeleton (PMMS), and compare
it with Three Phase Dependency Analysis, another state-of-
the-art polynomial algorithm. This analysis considers both
the theoretical and empirical differences between the two al-
gorithms, and demonstratesPMMS’s advantages in both re-
spects. When extended with a greedy hill-climbing Bayesian-
scoring search to orient the edges, the novel algorithm proved
more time efficient, scalable, and accurate in quality of recon-
struction than most state-of-the-art Bayesian network learn-
ing algorithms. The results show promise of the existence of
polynomial algorithms that are provably correct under mini-
mal distributional assumptions.

Introduction
The problem of learning the most probable a posteriori
Bayesian network (BN) from data under certain broad con-
ditions is worst-caseNP-hard (Chickering, Meek, & Heck-
erman 2003). Given the recent emergence, particularly in bi-
ology and medicine, of very high dimensional datasets with
tens of thousands of variables, an important open research
question is whether it is possible to design polynomial learn-
ing algorithms – with well-understood theoretical properties
– that are not only time-efficient, but also exhibit reasonable
average performance in terms of network reconstruction.

A first step towards answering this questions was
the Three Phase Dependency Analysis (TPDA) algorithm
(Chenget al. 2002). The algorithm runs in polynomial
time and correctly identifies the data-generating network,
provided the data distribution ismonotone DAG-faithful. In-
tuitively, the monotone DAG-faithful assumption requires
that the conditional mutual information of two variables
be a monotonic function of the “active paths” between the
variables in the network structure: the more active paths
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open by a conditioning set, the greater the mutual infor-
mation between the variables should be. Compared to
other constraint-based learning algorithms, such as thePC
(Spirtes, Glymour, & Scheines 2000),TPDA uses not only
the binary (yes/no) results of tests of conditional indepen-
dence between two variables, but also the strength of asso-
ciation as indicated by the conditional mutual information.
This additional piece of information, in conjunction with the
monotone faithfulness assumption, is what enables the algo-
rithm to become polynomial.

One way to formally define monotone DAG-faithfulness
was provided by Chickering & Meek (2003). Given their
definition, the authors show that this assumption highly re-
stricts the structure of the BNs that adhere to the condition.
We note, however, that it may still be possible to identify
other formulations of the assumption that are not as restric-
tive.

In this paper we present a new polynomial algorithm,
known as Polynomial Max-Min Skeleton (PMMS), for
learning the BN skeleton, i.e., the graph of the BN without
regard to the direction of the edges. In certain cases,PMMS
can correctly reconstruct skeletons of networks that are not
monotone DAG-faithful and in whichTPDAdoes not return
the proper structure. In addition,PMMSemploys a differ-
ent search strategy for identifyingd-separating subsets that
exhibits better sample utilization. In an extensive empirical
evaluation we comparedPMMSwith other constraint-based
network learning algorithms on the task of reconstructing
the network skeleton.PMMSproves to be a good trade-off
between time and quality of reconstruction compared to all
algorithms, and in general outperformsTPDA particularly
for the smaller sample sizes.

To comparePMMS against search-and-score Bayesian
network learning algorithms (i.e., including the edge ori-
entations), we extended the algorithm with a greedy hill-
climbing Bayesian-scoring search augmented with a TABU
list (as in Friedman, Nachman, & Pe’er 1999) to orient the
edges. The resulting algorithm is more time-efficient than
its non-polynomial counterpart without sacrificing quality
of reconstruction. In addition, this algorithm outperformed
most other state-of-the-art Bayesian network learning algo-
rithms. The evaluation points to the existence of polynomial
algorithms that are provably correct under minimal distribu-
tional assumptions.
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Background
We will denote the conditional independence ofX andY
givenZ in some distributionP with Ind(X;Y |Z), depen-
dence asDep(X;Y |Z), and the conditional mutual informa-
tion used as a measure of association asInf (X;Y |Z) (the
reference distributionP can be inferred by the context).

A Bayesian network (BN) is a tupleN = 〈G, P 〉, where
G = (V, E)is a directed acyclic graph (DAG) with nodes
representing the random variablesV andP a joint probabil-
ity distribution onV. In addition,G andP must satisfy the
Markov condition: every variable,X ∈ V, is independent
of any subset of its non-descendant variables conditioned on
the set of its parents (Pearl 1988).

A graphical criterion calledd-separation is useful for
characterizing conditional independencies (Pearl 1988).
First, we define the terms “collider” and “blocked path” to
aid in the definition ofd-separation. Acollider is defined as
a nodeW on pathp if p contains two incoming edges into
W , e.g.,W is a collider in the chainX −→ W ←− Y .
A path p from nodeX to nodeY is blockedby a set of
nodesZ, if there is a nodeW on p for which one of the
following two conditions hold: (1)W is not a collider and
W ∈ Z, or (2) W is a collider and none ofW or its de-
scendants are inZ. A path that is not blocked is termed
openor active. Two nodesX and Y are d-separatedby
Z in graphG, denoted asDsepG(X;Y |Z), if and only if ev-
ery path fromX to Y is blocked byZ (Pearl 1988). Two
nodes ared-connected if they are notd-separated. For a
BN N = 〈G, P 〉, DsepG(X;Y|Z) ⇒ Ind(X;Y|Z) (Pearl
1988).

A BN N =〈G, P 〉 satisfies thefaithfulness condition
(called faithful network) if the Markov Condition applied on
G entails all and only the conditional independencies inP
(Spirtes, Glymour, & Scheines 2000). We will call a distri-
butionP for which there exists a faithful network〈G, P 〉, a
faithful distribution andG a perfect mapof P (Pearl 1988).
In a faithful BN 〈G, P 〉 DsepG(X;Y |Z) ⇔ Ind(X;Y |Z)
(Pearl 1988).

It can be proven that in a faithful BN, an edge between
X andY exists if and only if there is nod-separating set
Z such thatInd(X;Y |Z) (Spirtes, Glymour, & Scheines
2000). Algorithms following the constraint-based approach
in BN learning (Spirtes, Glymour, & Scheines 2000; Cheng
et al. 2002) estimate from data the conditional independen-
cies and return only the edges which satisfy the above condi-
tion. These algorithms differ in the strategies for searching
for suchd-separating sets.

The Polynomial Max-Min Skeleton
We will denote withPCG

T the parents and children ofT in
the BN 〈G, P 〉, i.e., all nodes with an edge to and fromT .
This set is unique for allG, such that〈G, P 〉 is a faithful
Bayesian network to the same distributionP (Pearl 1988)
and so we will drop the superscriptG when the distribution
P can be inferred by the context.

We define the minimum association ofX andT relative
to a feature subsetZ, denoted as MINASSOC(X;T |Z), as

M INASSOC(X;T |Z) = min
S⊆Z

Assoc(X;T |S)

Algorithm 1 PMMPCAlgorithm
1: procedurePMMPC (T,D)

%Phase I: Forward
2: CPC = ∅
3: repeat
4: F = arg maxX∈V GREEDYM INASSOC(X; T ;

CPC;Assoc(X;T | ∅); ∅)
5: assoc = maxX∈V GREEDYM INASSOC(X; T ;

CPC;Assoc(X;T | ∅); ∅)
6: if assoc 6= 0 then
7: CPC = CPC∪ F
8: until CPC has not changed

%Phase II: Backward
9: for all X ∈ CPC do

10: if GREEDYM INASSOC( X; T ; CPC;
Assoc(X;T | ∅); ∅) = 0 then

11: CPC = CPC \ {X}
12: return CPC
13: end procedure

14: function GREEDYM INASSOC( X, T , Z, minval, minarg)
15: min = minS∈Z Assoc(X;T |minarg ∪ {S})
16: arg = arg minS∈Z Assoc(X;T |minarg ∪ {S})
17: if ((min < minval) AND (Z \minarg 6= ∅)) then
18: minval = GREEDYM INASSOC( X; T ;

Z \minarg; min; minarg ∪ {arg})
19: return minval
20: end function

i.e., as the minimum association achieved betweenX andT
over all subsets ofZ. Assoc(X;T |S), the association be-
tween two variables given a conditioning set, can imple-
mented with a number of statistical or information theo-
retic measures of association, e.g., by the conditional mu-
tual informationInf (X;T |S). In our implementation we
prefer a statistically oriented test and we use the negativep-
value returned by theχ2 test of independenceInd(X;T |S)
(the smaller thep-value, the higher we consider the associa-
tion betweenX andT ) as in Spirtes, Glymour, & Scheines
(2000). A requirement forAssoc(X;T |S) is to return zero
whenInd(X;T |S).

The Polynomial Max-Min Skeleton algorithm (PMMS) is
run on a dataset and returns the skeleton network.PMMS
works by calling the Polynomial Max-Min Parents and Chil-
dren algorithm (PMMPC) for each variable.PMMPC iden-
tifies an approximation ofPCT given a target node,T , and
the data. Once the parents and children set has been dis-
covered for each node,PMMSpieces together the identified
edges into the network skeleton.

PMMPC(T,D), the main subroutine of thePMMSalgo-
rithm, discovers thePCT using a two-phase scheme (shown
in Algorithm 1)1.

In phase I, the forward phase, variables sequentially enter
a candidate parents and children set ofT , denoted asCPC,
by use of the MAX -M IN HEURISTIC:

1PMMPC is a polynomial variant of the Max-Min Parents and
Children (MMPC) algorithm (Tsamardinos, Aliferis, & Statnikov
2003). TheMMPC algorithm can be created from Algorithm 1 by
replacing the calls to GREEDYM INASSOCat lines 4, 5, and 10 with
the function MINASSOC.
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Figure 1: A network DAG and probabilities tables.

Select the variable thatmaximizes the minimum asso-
ciation with T relative toCPC (hence the name of the
algorithm).

The heuristic is admissible in the sense that all variables with
an edge to or fromT and possibly more will eventually enter
CPC. The intuitive justification for the heuristic is to select
the variable that remains highly associated withT despite
our best efforts to make the variable independent ofT . Phase
I stops when all remaining variables are independent of the
targetT given some subset ofCPC, i.e., when the maximum
minimum association reaches zero.

Conditioning on all subsets ofCPC to identify the
M INASSOC(X;T |CPC) requires an exponential number
of calls to Assoc. In this polynomial version of the al-
gorithm, PMMPC, we greedily search for the subsetS ⊆
CPC that achieves the minimum association betweenX
andT conditioned over the subsets ofCPC. The function
GREEDYM INASSOC(X, T,CPC,minval, minarg) starts
with minval as the current estimate of the minimum and
minarg as the current estimate of the minimizerS ⊆ CPC.
Initially, minarg = ∅ andminval = Assoc(X;T | ∅). It
then augmentsminarg by the memberS of CPC that re-
duces the associationAssoc(X;T |minarg ∪ {S}) the most.
It continues in this fashion recursively until we condition on
the full CPC or the minimum association achieved between
X andT cannot be further reduced by augmentingminarg
by a single variable.

For example, examine the network structure in Figure
1, the setZ={A,B} is a minimald-separating set ofX
and Y . Assuming,Assoc(X;Y | ∅) ≥ Assoc(X;Y | {A})
≥ Assoc(X;Y | {A,B}) thenZ, a d-separating set, can be
discovered in a greedy fashion.

In phase II, the backward phase,PMMPCattempts to re-
move some of the false positives that may have entered in
the first phase. The false positives are removed by test-
ing Ind(X;T |S) for some subset of the candidate parents
and children set,S ⊆ CPC. If the independence holds,
X is removed fromCPC. The existence of aS ⊆ CPC
for which Ind(X;T |S) is approximated by testing whether
GREEDYM INASSOCreturns zero.

For example, in the network structure of Figure 1 it is
possible thatX entersCPC before bothA and B when
the target isY . Phase II, however, will removeX once
both A and B are in CPC and the test GREEDYM INAS-

SOC(X;Y, {A,B},Assoc(X;Y | ∅), ∅) returns zero (since
Assoc(X; Y | {A,B}) = 0). 2

A Theoretical Analysis ofPMMS
PMMS is a polynomial variant of the skeleton identifica-
tion phase of the Max-Min Hill-Climbing (MMHC) algo-
rithm (Brown, Tsamardinos, & Aliferis 2004; Tsamardinos,
Brown, & Aliferis 2005). The difference between the algo-
rithms is thatMMHC implements the non-polynomial ver-
sion of the parents and children algorithm,MMPC, that per-
forms an exponential search for ad-separating set, while
the polynomial version,PMMS, employs the greedy polyno-
mial PMMPC. MMHC provably correctly identifies the BN
skeleton, provided the distribution of the dataD is faithful
and the association and independence tests are reliable given
the available data. Thus, any false positives introduced by
PMMSare due to the use of the polynomial approximation
of the heuristic. Notice thatPMMSdoes not introduce any
false negatives (i.e., will not miss any skeleton edges) when
the assumptions hold: since the network to reconstruct is
faithful, everyX ∈ PCT has a non-zero association withT
conditioned on any variable subset, and thus, will enter and
never be removed from inCPC (see Lemma 1 in Tsamardi-
nos, Brown, & Aliferis 2005).

Following the complexity analysis of the non-polynomial
algorithm (Tsamardinos, Brown, & Aliferis 2005) and notic-
ing that the exponential search has been substituted with a
polynomial greedy search, one can show thatPMMS will
perform at mostO(k · PC · |V |2) calls to functionAssoc,
wherek is the maximum size of any conditioning set,PC
the average size of the parents and children set, and|V | the
number of variables. In the worst case, this may grow to
O(|V |4). Notice that both the average and worst case com-
plexity of the algorithm match the corresponding complexi-
ties ofO(|V |2) andO(|V |4) of the Three Phase Dependency
Analysis algorithm.

For each pair of variablesX and Y , constraint-based
algorithms search for ad-separating setZ, such that
Ind(X;T |Z). PMMS raises the following question: when
will a greedy search identify such ad-separating setZ and
when will it fail?

Chenget al. (2002) use the analogy of active paths be-
tween two variables and pipes of flow of information to aid
in addressing this question. The monotone DAG-faithful
condition assumes that the more active paths, the larger
the information (association) flow between two variables.
Following this intuitive analogy, let us assume that ad-
separating set betweenX andY is Z = {A,B} as in Figure
1. We intuitively expect that as we condition on subsets of
Z of increasing size and are closing active paths betweenX
andY the association will be dropping. If this is correct,
then a greedy search will build upZ starting from the empty
set.

2In our implementation we may remove additional false pos-
itives by checking whether the symmetryX ∈ PCY ⇔ Y ∈
PCX holds (for more details see Tsamardinos, Brown, & Aliferis
2005).
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There are, however, situations where this assumption does
not hold. We extend the analogy to consider not only the
magnitude of the associations carried by the different paths,
but also whether they are positive or negative in direction.
The association carried over multiple paths is the sum of the
individual associations of the paths.

We then intuitively expect that if two paths, e.g.,X →
A → Y and X → B → Y carry associations fromX
to Y that cancel each other out, then by conditioning onA
and by closing the active pathX → A → Y the associ-
ation betweenX andY may rise, i.e.,Assoc(X;Y |∅) <
Assoc(X;Y |{A}). This situation is depicted in Figure 1
when we consider the network structureand the probabili-
ties given. The plus and minus signs on the edges denote
a positive and a negative association respectively, e.g.,A is
more likely to get the same value asX (positive associa-
tion) while Y is more likely to get a different value thanB
(negative association).

PMMS will fail to identify Z = {A,B} as a d-
separating set forX and Y on the network of Figure 1
with the probabilities given, and thus return the false pos-
itive edgeX—Y in the output skeleton. This is because
Inf (X;Y |∅) = 0.014 < Inf (X;Y |{A}) = 0.015 and
also Inf (X;Y |∅) = 0.014 < Inf (X;Y |{B}) = 0.032.
When runningPMMPC(Y,D) bothA andB will enterCPC
(since they cannot bed-separated fromY ); however, when
trying to identify the minimum association ofX andY the
greedy search will stop conditioning on additional variables
of CPC, because the information increases when condition-
ing on eitherA or B alone. The backward phase ofPMMPC
will not removeX from theCPC because the greedy search
is also used here. Therefore,PMMPC(Y,D) will return
{A,B, X}.

A slight adjustment to the probabilities of the net-
work in Figure 1 (specifically,P (Y =0|A=0, B=1)=0.9 and
P (Y =1|A=0, B=1)=0.1), results in the greedy heuristic giv-
ing correct results (i.e., it is able to find a minimald-
separating set). With the new probabilities, when block-
ing the active pathX → A → Y information decreases:
Inf (X;Y |∅) = 0.0152 ≥ Inf (X;Y |{A}) = 0.011. This
allows the greedy search to continue and discover{A,B} as
a d-separating set. This is despite the fact that closing the
other active pathX → B → Y makes information increase:
Inf (X;Y |∅) = 0.0152 6≥ Inf (X;Y |{B}) = 0.030. Thus,
even for active paths with cancellation of association, it is
unlikely that for all paths the association will increase when
blocked, and thereby force the greedy search to stop.

Comparison ofPMMS with TPDA
PMMSandTPDA are similar at a fundamental level. Both
have a forward phase where variables enter a candidate par-
ent and children set for each nodeT . This set is theCPC
in thePMMSalgorithm and the set of neighbors ofT in the
current draft of the skeleton inTPDA. They also both have a
backward phase where variables are removed from this set.
During these phases, both algorithms attempt to discover a
setZ such thatAssoc(X;T |Z) = 0 for everyX considered.

A major difference between the algorithms, however, is
thatPMMSbuilds upZ starting from the empty set. In con-

A

C B

D

A P(A)
0
1

0.5
0.5

A P(C|A)

0.8

C

0 0
1 0

1
1

0
1

0.2
0.2

0.8

C P(D|B,C)

0.9

B

0 0
1 0

1
1

0
1

0.5
0.5

0.1
0.10 0

1 0
1
1

0
1

0.5
0.5

0.9

D

0
0
0
0
1
1
1
1

A P(B|A)
0.7

B
0 0
1 0

1
1

0
1

0.3
0.3

0.7

Figure 2: An example Bayesian network from Chenget al.
(2002), slightly modified to make the conditional probability
table values for variableD properly sum to one.

trastTPDAstarts by conditioning on the full set of the can-
didate parents and children (some nodes may be removed
from the conditioning set by considering the current skele-
ton graph) and removing nodes from this set to reachZ.

When the available sample is not enough to condition on
the full set of the parents and children set ofT , we expect
TPDA’s strategy to fail to accurately estimate the conditional
mutual information betweenT and any other node. On the
other handPMMSstarts with the smallest conditioning set
possible – the empty set – and proceeds with conditioning on
larger sets only when the sample allows so. Thus, we expect
PMMSto better reconstruct the skeleton when the available
sample is low relative to the parent and children set sizes.

On the other hand,TPDA’s strategy may pay off for rela-
tively large sample sizes. For example, suppose thatX and
T can bed-separated byS⊆Z, whereZ is the current esti-
mate ofPCT . If the available sample is enough to condition
onZ it may be possible thatInd(X;T |Z), whichTPDAwill
discover with a single call to mutual information. In con-
trast, PMMS has to perform at least|S| calls toAssoc to
identify S.

This different search strategy also gives rise to differ-
ent correctness properties. For example,PMMS will cor-
rectly reconstruct the non-monotone DAG-faithful network
in Cheng et al. (2002), whereTPDA fails (see Figure
2). Similarly, TPDA will correctly reconstruct the (non-
monotone DAG-faithful) network in Figure 1 that is prob-
lematic forPMMS. The above intuitions are exactly corrob-
orated by the empirical results presented in the next section.

Experimental Evaluation
For the subsequent experiments, the greedy hill-climbing
search with a TABU list (GTS, following Friedman, Nach-
man, & Pe’er 1999),PC 3, Three Phase Dependency Anal-
ysis (TPDA), Max-Min Hill-Climbing (MMHC), and Poly-
nomial Max-Min Skeleton (PMMS) have been implemented
in Matlab 6.5. Optimal Reinsertion (OR, Moore & Wong
2003), Sparse Candidate (SC, Friedman, Nachman, & Pe’er
1999), and Greedy Equivalent Search (GES, Chickering

3PC is implemented as described in (Spirtes, Glymour, &
Scheines 2000) and the Tetrad 3 documentation.
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Table 1: Bayesian networks used in the evaluation sorted by
number of variables.

Domain
Network # Vars # Edges Range
CHILD 20 25 2 - 6
INSURANCE 27 52 2 - 5
M ILDEW 35 46 3 - 100
ALARM 37 46 2 - 4
BARLEY 48 84 2 - 67
HAILFINDER 56 66 2 - 11
CHILD 3 60 79 2 - 6
INSURANCE3 81 163 2 - 5
CHILD 5 100 126 2 - 6
ALARM 3 111 149 2 - 4
HAILFINDER3 168 283 2 - 11
ALARM 5 185 265 2 - 4

2002) use publicly available implementations by the origi-
nal authors for the first two cases and the Tetrad 4 software
for the last one. The statistical threshold used inPC, MM-
HC, andPMMSwas the standard 5%; a threshold of 1% was
used inTPDAas suggested by the authors.ORis an anytime
algorithm and it was set to run both one and two times the
amount of the timeMMHC required on the same dataset. In
addition, the algorithm was run with values chosen from the
set{5, 10, 20} for the parameter to constrain the number of
parents to consider. The best performing variant ofORper
dataset is reported in the tables below.SCwas run withk =
5 or 10, wherek is the size of candidate parents sets. Again,
the best performing variant of theSCalgorithm is reported.
The parameter space for both algorithms is suggested by the
algorithms’ authors. Bayesian scoring with the equivalent
sample size of 10 was used inSC, GTS, andMMHC.

The networks used in the evaluation are mainly ob-
tained from real decision support systems covering a wide
range of real life applications (many of the networks
used are available at the Bayesian Network Repository
http://www.cs.huji.ac.il/labs/compbio/Repository/). To ex-
periment with larger networks than what is available in the
public domain, a method developed by Statnikov, Tsamardi-
nos, & Aliferis (2003) was used to generate large BNs by
tiling several copies of smaller BNs. The tiling is performed
in a way that maintains the structural and probabilistic prop-
erties of the original network in the tiled network (the num-
ber next to the name denoting the number of tiles). Overall,
12 networks were used in this evaluation with information
on the networks given in Table 1.

From each network, 10 datasets were randomly sampled
in sizes of 500, 1000, and 5000. The performance metrics
of an algorithm were the averages over those 10 datasets for
each sample size and network. All algorithms were run on
Pentium Xeons, 2.4GHz, 2GB RAM running Linux. The
evaluation here extends the results of Tsamardinos, Brown,
& Aliferis (2005).

Table 2: Comparing Algorithms for Learning the Skeleton
Network. The median of the number of statistical tests run,
errors of commission, and errors of omission.PMMS re-
quires fewer statistical tests than the non-polynomial algo-
rithmsPC andMMHC while maintaining comparable qual-
ity againstMMHC and better thanPC for small sample
sizes.

Number of Statistics
Alg. 500 SS 1000 SS 5000 SS
PMMS 3.7K 4.9K 7.5K
MMHC 3.9K 5.9K 10.0K
PC 81.2K 78.5K 50.6K
TPDA 12.1K 8.8K 5.3K

Total Errors =
Errors of Commission + Errors of Omission

Alg. 500 SS 1000 SS 5000 SS
PMMS 69.7 = 60.0 = 57.5 =

48.5 + 21.2 44.3 + 15.7 45.4 + 12.1
MMHC 64.7 = 47.1 = 34.9 =

43.5 + 21.2 31.3 + 15.8 22.5 + 12.4
PC 131.0 = 75.4 = 50.2 =

108.2 + 22.8 59.8 + 15.6 39.8 + 10.4
TPDA 176.7 = 103.8 = 35.2 =

129.6 + 47.1 70.2 + 33.6 9.3 + 25.9

Results of Evaluation

Skeleton Identification. First, the PMMS algorithm is
compared with the other constraint-based methods for learn-
ing the skeleton network, namely the skeleton identifica-
tion phase ofMMHC (i.e., the non-polynomial version of
PMMS), PC, andTPDA(results in Table 2). The metrics re-
ported are found by calculating the median over all networks
for a given algorithm and sample size (the median was used
over the mean, because the distribution of values was usually
skewed;PMMSperformance is even better when measured
by the mean). The first section of Table 2 reports the number
of statistical tests performed by the algorithm. To compare
the quality of the learned skeleton, the number of errors of
commission (extra edges) and errors of omission (missing
edges) are presented in the next section of Table 2.

PMMSin general outperforms the other polynomial algo-
rithm TPDA. The only exception is at sample size 5000, cor-
roborating our intuitions presented in the previous section.
As expectedPMMS requires fewer statistical tests than the
non-polynomial algorithmsPC andMMHC while maintain-
ing comparable quality againstMMHC and better thanPC
for small sample sizes. SincePMMSperforms only a subset
of the association calls completed byMMHC, as expected,
the results show a larger number of errors of commission
and a smaller number of errors of omission.

Bayesian Network Reconstruction. We extendedPMMS
to orient the edges of the identified skeleton and further
refine the network with a greedy hill-climbing search and
score procedure using the BDeu score (Heckerman, Geiger,
& Chickering 1995) and augmented with a TABU list (as in
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Table 3: Median Normalized Results. Each metric is normalized by dividing the metric for a particular sample size and
network by the corresponding metric value forPMMHC. A median normalized metric value smaller than one corresponds to an
algorithm with a faster time, better score, or fewer structural errors thanPMMHC. PMMHC is the fastest algorithm on average.
PMMHC proves more time efficient and accurate than most other state-of-the-art Bayesian network learning algorithms.

Time Results
SS PMMHC MMHC PC TPDA BestOR BestSC GTS GES
500 1.00 1.45 2.00 9.11 1.60 3.72 5.22 2222.35
1000 1.00 1.20 1.94 3.80 1.41 4.37 5.38 1684.91
5000 1.00 1.44 1.73 0.88 1.77 4.03 5.46 778.50
Ave. 1.00 1.36 1.89 4.60 1.59 4.04 5.36 1561.92

Bayesian Score Results
SS PMMHC MMHC PC TPDA BestOR BestSC GTS GES
500 1.00 1.00 1.13 1.34 1.00 1.01 0.99 1.05
1000 1.00 1.00 1.14 1.32 1.00 1.00 0.99 1.02
5000 1.00 1.00 1.02 1.10 1.00 1.01 1.00 1.11
Ave. 1.00 1.00 1.10 1.25 1.00 1.00 0.99 1.06

Structural Hamming Distance Results
SS PMMHC MMHC PC TPDA BestOR BestSC GTS GES
500 1.00 1.00 2.94 3.02 1.06 1.24 1.09 1.14
1000 1.00 0.99 2.41 2.08 1.18 1.20 1.11 0.98
5000 1.00 1.00 1.72 1.54 1.43 1.46 1.42 1.28
Ave. 1.00 1.00 2.36 2.21 1.22 1.30 1.21 1.13

Friedman, Nachman, & Pe’er 1999). The greedy search was
constrained to add edges only identified byPMMS. We call
the resulting algorithmPMMHC and it is the polynomial
equivalent ofMMHC. We then comparedPMMHC with
other state-of-the-art BN learning algorithms.

We choose to use a search-and-score approach for learn-
ing the orientation of the network, thePC and TPDA al-
gorithms both use a polynomial orientation procedure that
identifies and directs the edges for v-structures and any com-
pelled edges.

Three metrics were used to compare performance of the
algorithms for learning the complete BNs. The first metric
is execution time. This metric is used as a measure of com-
putational efficiency, though it should be noted it is highly
dependent on the specific implementation. The second met-
ric used as a measure of reconstruction quality is the BDeu
score of the final DAG returned by the algorithm on a sepa-
rate testing set of data. The BDeu score is attractive because
it assigns the same score to networks that are statistically
indistinguishable from each other (i.e. , Markov equivalent).

The third metric reported that also measures quality is
Structural Hamming Distance (SHD) (Tsamardinos, Brown,
& Aliferis 2005). The Structural Hamming Distance di-
rectly compares the structure of the corresponding equiva-
lence classes of the learned and original networks. The dis-
tance between the two is the number of the following opera-
tors required to make the DAG patterns match: add or delete
an undirected edge, and add, remove, or reverse the orienta-
tion of a directed edge (see Tsamardinos, Brown, & Aliferis
2005 for more details and use of this metric). Thus, an al-
gorithm will be penalized by an increase of the score by one

for learning a DAG pattern with an extra un-oriented edge
and by one for not orienting an edge that should have been
oriented. The reason for using a metric on DAG patterns is
so we do not penalize an algorithm for not differentiating
between statistically indistinguishable orientations.

The mediannormalizedresults are in Table 3. The nor-
malized metrics reported are found by dividing the metric
for a given algorithm, network, and sample size by the corre-
sponding metric forPMMHC. The median of these normal-
ized values was then used to compare algorithms. A nor-
malized metric of greater than one implies an algorithm is
worse thanPMMHC on the same learning task for that met-
ric (i.e., slower, with more structural errors, or with smaller
Bayesian scoring). The normalization essentially gives the
same weight in the average to each network irrespective of
its size, both in terms of sample and variables, as well as the
difficulty of learning. Without it, the larger networks would
dominate the median calculations.

PMMHC is the fastest algorithm on average, withMM-
HC being about 35% slower.TPDA is actually faster than
PMMHC at higher sample but is significantly slower at
smaller sample sizes. We note thatORshould be excluded
from this comparison since it was set to run 1 or 2 times the
time of MMHC and thatGES’s Tetrad implementation does
not contain all optimizations suggested by its authors.

All the algorithms illustrate similar Bayesian score re-
sults with GTS posting the lowest andTPDA the highest
scores. In terms ofSHD, MMHC outperformsPMMHC
finding slightly fewer errors for sample sizes 1000. Since
MMHC started with a better skeleton (see Table 2) this result
implies that the hill-climbing procedure was able to remove
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most of the false positives introduced byPMMHCand bring
the SHD difference closer to zero.GESalso learns a net-
work with fewer structural errors for sample size 1000. In
comparingPMMHC andMMHC, the polynomial algorithm
gains significant computational efficiency for only a slight
drop in quality.

It is important to observe thatTPDA begins edge ori-
entation with a better skeleton thanPMMHC for sam-
ple size 5000. However, the resulting Bayesian networks
have significantly more structural errors after the orientation
phase than the output networks ofPMMHC. This indicates
that while constraint-based algorithms are time-efficient and
high-quality for skeleton identification, the constraint-based
techniques for orienting the edges as the ones used by the
PC and TPDA are highly inaccurate when compared with
Bayesian scoring techniques used by all other algorithms in
our experiments.

Discussion and Conclusion
The problem of learning the most probable a posteriori un-
der certain conditions BN from data isNP-hard. In this
paper, we developed and explored an approximate polyno-
mial learning algorithm called Polynomial Max-Min Skele-
ton (PMMS), which has been shown empirically to improve
time-efficiency with a minimum degradation of reconstruc-
tion quality. Extensive empirical results also showPMMS
(extended to also orient the edges) outperforming most state-
of-the-art BN learning algorithms.

The results presented here indicate that polynomial strate-
gies for learning BNs with high quality are feasible; an im-
portant open question is the theoretical properties of such
algorithms and the minimal, least restrictive set of assump-
tions required for their optimality. In addition, our results
provide evidence for the efficiency with which constraint-
based algorithms can identify the skeleton of a network and
the advantages of search-and-score procedures for orienting
the edges in the skeleton over constraint-based ones.
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