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Abstract

We address the problem of learning discrete hidden Markov
models from very long sequences of observations. Incremen-
tal versions of the Baum-Welch algorithm that approximate
theβ-values used in the backward procedure are commonly
used for this problem, since their memory complexity is in-
dependent of the sequence length. We introduce an improved
incremental Baum-Welch algorithm with a new backward
procedure that approximates theβ-values based on a one-step
lookahead in the training sequence. We justify the new ap-
proach analytically, and report empirical results that show it
converges faster than previous incremental algorithms.

Introduction
Hidden Markov models (HMMs) have been successfully ap-
plied to modeling tasks in speech recognition, pattern recog-
nition, biological sequence analysis, and other real-world
applications. Although many variations of HMMs have
been proposed, including coupled Markov models, factorial
HMMs, input-output HMMs, and Markov weighted trans-
ducers, theoretical and empirical results have shown that tra-
ditional HMMs are capable of representing complex prob-
ability distributions given enough hidden states and suffi-
ciently rich observations (Bengio 1999).

The algorithms described in this paper estimate discrete-
valued stationary signals where the output of the source is
categorical. Research on discrete observations is important
because “...when the observations are categorical in nature,
and the observations are quantitative but fairly small, it is
necessary to use models which respect the discrete nature
of the data” (MacDonald & Zucchini 1997, p.3). Exam-
ples of categorical variables include operating system com-
mands typed by a user on a console, computer security au-
dit events, network requests, online transactions, and DNA
bases, among many others.

In many domains, the traditional Baum-Welch learn-
ing algorithm is difficult to apply because the lengthT
of the training sequences is very large (or possibly infi-
nite), and the number of statesN in the model is relatively
small (Warrender, Forrest, & Pearlmutter 1999; Lane 2000;
Qiao et al. 2002; Florezet al. 2005a). Because the time
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and space complexity of Baum-Welch isO(N2T ), learn-
ing in such domains is difficult because of the large val-
ues ofT . For example, to train HMMs for intrusion detec-
tion, Lane (2000, p.57) used sequences of commands gen-
erated by UNIX users, where the sequence length varied
from “just over 15,000 tokens to well over 100,000”. Flo-
rez et al. (2005a) collected library function calls from sci-
entific parallel programs for similar training of HMMs, and
the average number of calls for an implementation of the
LU-Factorization method was more than 20,000, and for a
benchmarking application was more than 800,000.

In addition, these models and learning algorithms are
generally embedded in complex applications (such as in-
trusion and fault detection), where impact on the perfor-
mance of a production system due to training the model
needs to be kept as small as possible (Florezet al. 2005b;
Warrender, Forrest, & Pearlmutter 1999). This motivates re-
search on new learning algorithms that can handle lengthy
discrete data streams, but have reduced memory require-
ments compared to the traditional Baum-Welch algorithm.

Incremental learning algorithms can be used to solve such
problems, since they can speed the convergence of the learn-
ing process as well as reduce its memory requirements (Go-
toh & Silverman 1996; Neal & Hinton 1999). Incremen-
tal Baum-Welch algorithms use theforward-backwardpro-
cedure to re-estimate the parameters of the model as soon
as new data examples are available. Although theα-values
can be computed normally before the end of a training se-
quence, theβ-values cannot. A simple but elegant solution
to the incremental learning problem is proposed by Stenger
et al. (2001), in which all theβ-values are assumed to be 1.0.
In this paper, we demonstrate that the convergence behav-
ior of incremental Baum-Welch algorithms can be improved
when theβ-values are instead approximated by a function
that looks ahead one observation in the sequence. Additional
improvements are also described.

HMMs are a special case of Bayesian networks, which
uselocal structureto reduce the factorN2 in the complexity
of parameter estimation and probabilistic inference (Fried-
man & Goldszmidt 1999). Although we do not consider fac-
tored models in this paper, our work can be viewed as com-
plementary since it reduces the space and time complexity
of the traditional Baum-Welch algorithm when the sequence
lengthT is large.
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Background
We begin with a brief review of stationary discrete first or-
der hidden Markov models, the Baum-Welch algorithm, and
incremental versions of the Baum-Welch algorithm. For a
more complete description of HMMs, refer to the work of
Rabiner (1989) and MacDonald and Zucchini (1997).

Discrete Hidden Markov Models (HMMs)

Consider a system withN states, indexedi, j, k, ..., where
each state represents an observable event. Let the state at
time t be qt. Employing a notation similar to Rabiner’s,
a hidden Markov modelλ can be described as a doubly
stochastic process with the following elements:

• N, the number of states andM, the number of distinct ob-
servation symbols per state (the alphabet size).

• A, the state transition probability distribution with ele-
mentsaij , for 1 < i, j < N .

• B, the observation symbol probability distribution with el-
ementsbj(k), for 1 < j < N and1 < k < M .

• π, the initial state distribution with elementsπi, for 1 <
i < N .

We assume that no previous knowledge of the topology of
the model or the meaning of the hidden states is given, and
therefore, the task of the learning algorithm is to estimatethe
parameters of random, ergodic (fully-connected) models.

Offline Estimation of HMMs: The Baum-Welch
Algorithm (BW)

The Baum-Welch algorithm (known henceforth as BW)
learns the transition and symbol probabilities of an HMM by
maximizingQ(λ, λ′) =

∑

Q P (O,Q|λ)log [P (O,Q|λ′)],
whereλ is the current set of parameters of the model,λ′

is the set of reestimated parameters,Q is the set of all
possible state sequences andO is the sequence of obser-
vations to be learned (Rabiner 1989). Iterative maximiza-
tion of this function has been proved to lead to an increase
in likelihood, i.e., P (O|λ′) ≥ P (O|λ) (Rabiner 1989;
MacDonald & Zucchini 1997).

The reestimation formulas for BW can be obtained an-
alytically by maximizingQ(λ, λ′) via Lagrange multipli-
ers, assuming the stochastic constraints of the HMM pa-
rameters. A key result from the maximization is the esti-
mation of the probability of being in statei at time t and
statej at time t + 1, given the modelλ and the sequence
of observations,ξt(i, j) = P (qt = i, qt+1 = j|O, λ).
Definingαt(i) = P (O1O2...Ot, qt = i|λ), andβt+1(i) =
P (Ot+1Ot+2...OT |qt = i, λ), ξt(i, j) can be written as:

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

∑N

i=1

∑N

j=1αt(i)aijbj(Ot+1)βt+1(j)
(1)

The well knownforward andbackwardprocedures find
exact values forαt(i) andβt(i) in O(N2T ) time. Note that
another widely used estimator, the probability of being in
statei at time t given the model and observation sequence,

γt(i), can be computed based on (1):

γt(i) =
N
∑

j=1

ξt(i, j) =
αt(i)βt(i)

∑N

i=1αt(i)βt(i)
(2)

The traditional Baum-Welch algorithm then updatesA, B
andπ as functions ofξt(i, j) andγt(i). A detailed analysis
of BW indicates that its space complexity isO(N(N+M+
TN)) and its time complexity isO(N(1+T (M+N)). But
since in most practical applicationsT ≫M , it is widely ac-
cepted that the space and time complexity for the traditional
batch learning of an HMM isO(N2T ).

Many variations of the Baum-Welch algorithm have been
introduced. Of particular interest is the work of Binder
et al. (1997), motivated by the problem ofmonitoring
long sequence of observations, in which the space com-
plexity of BW is reduced toO(N2logT ), at the expense of
O(N2T logT ) time complexity.

Incremental Estimation of HMMs
Incremental learning algorithms for HMMs are an active
field of research in the signal processing and control system
communities. Such algorithms generally show faster con-
vergence than the standard batch training algorithm (Gotoh
& Silverman 1996). Note that theoretical justification for
incremental versions of the EM algorithm are given by Neal
and Hinton (1999).

An approach to incremental learning adopted by many
researchers is to estimate the HMM parameters as soon as
new data examples are available using the Baum-Welch al-
gorithm, with the constraints that theα-values can be com-
puted normally, but theβ-values cannot because they are
associated with the probability of the partial observation
from the current event to the end (Stiller & Radons 1999;
Stengeret al. 2001; Koenig & Simmons 1996). Following
this idea, Stiller and Radons (1999) present an incremental
estimation algorithm in which the HMM’s transition proba-
bilities are not computed directly, but instead, auxiliaryvari-
ables containing “lifted” parameters are computed, assum-
ing inhomogeneous Markov chains.

A simpler scheme was proposed by Koening and Sim-
mons (1996) for learning of models for robot navigation.
They approximate theα-values andβ-values using a “slid-
ing window” of training data, reducing the memory require-
ments of the Baum-Welch algorithm.

Note that Elliot et al. have shown that the backward pass
through the data can be eliminated, at the expense of increas-
ing the space and time complexity of the learning algorithm
toO(N4T ) (Elliot, Aggoun, & Moore 1995).

Other approaches analyze the underlying Markov chain of
the HMM and approximate the state transition probability
and the output probability making use of frequency coun-
ters. This can also be seen as an incremental adaptation
of the segmentalk-means algorithm (Moore & Ford 1998;
Digalakis 1999). Finally, the Kullback-Leibler informa-
tion measure can also be maximized incrementally to obtain
HMMs with improved convergence and reduced memory re-
quirements, compared to models estimated using offline EM
algorithms (Krishnamurthy & Moore 1993).
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The Incremental Baum-Welch Algorithm
(IBW)

We first present the reestimation formulas used in our incre-
mental Baum-Welch algorithm. These formulas are similar
to those proposed by Stenger et al. (2001) for continuous
models. Since our work focuses on discrete hidden Markov
models, we present the reestimation formulas for each of
the elements of theB matrix. A formulation suitable for
incremental learning updates the values ofaij andbj(k) in
the current time step given the values of those estimators in
the previous time step. The initial probability distributionπ
does not need to be reformulated for each time step, since it
corresponds to the expected frequency of being in statei at
the specific timet = 1.

The estimatoraij at the current time stepT is given by:

aT
ij =

aT−1
ij

(

∑T−2
t=1 γt(i)

)

+ ξT−1(i, j)
∑T−1

t=1 γt(i)
(3)

and the output probability,b
T

j (k), is given by:

b
T

j (k) =
b
T−1

j (k)
(

∑T−1
t=1 γt(j)

)

+ ψ(T, j, k)
∑T

t=1γt(j)
(4)

whereψ(T, j, k) is an auxiliary function defined as:

ψ(T, j, k) =

{

0 if OT 6= vk

γT (j) otherwise (5)

These equations estimate the model parameters for each
new observation in a stream. However theβ-values (and
thereforeξt(i, j)) cannot be computed incrementally be-
cause no observations after the current time are available.
The incremental learning problem can be solved by approx-
imating the probability of the partial observation fromt+ 1
to the end, given the statei at timet and the modelλ, defined
asβt(i) = P (Ot+1Ot+2...OT |qt = i, λ). As suggested by
Stenger et al. (2001), a simple approximation is given by
βt(i) = βt+1(i) = βt+2(i) = ...βT (i) = 1 for 1 ≤ i ≤ N .
The probabilitiesγT (i) and ξT−1(i, j) also need to be re-
computed at each time step, using (6) and (7).

γT (i) =
αT (i)βT (i)

∑N

i=1αT (i)βT (i)
=

αT (i)
∑N

i=1αT (i)
(6)

ξT−1(i, j) =
αT−1(i)aijbj(OT )

∑N

i=1

∑N

j=1αT−1(i)aijbj(OT )
(7)

An iterative algorithm that make use of these formulas
will be known henceforth as the incremental Baum-Welch
algorithm, or IBW. This algorithm does not look ahead, nor
does it require knowledge about the length of the sequence.

A New Backward Procedure for the
Incremental Baum-Welch Algorithm (IBW+)

We now present the principal contribution of this paper,
which is an improved method of approximating theβ-values

in the backward procedure of the incremental Baum-Welch
algorithm.

As mentioned before, the incremental learning problem
can be solved by approximating theβ-values to1.0, in-
stead of estimating exact values for them. Therefore, a
natural improvement for IBW consists of selecting a set of
β-values that provide a better approximation to the prob-
ability of the partial observation from timet + 1 to the
end given the current statei at time t and the modelλ,
βt(i) = P (Ot+1Ot+2...OT |qt = i, λ) without requiring the
entire sequence ofT observations to be stored in memory.

Note thatβt(i) increases exponentially toward1.0 as
t increases. The backward procedure for a statei com-
putes theβ-values in the following order: At time 0 com-
pute βT (i), at time 1 computeβT−1(i); ...; at timeT −
1 computeβ1(1); and at timeT computeβ0(i). Since
βt(i) =

∑N

j=1 aijbj(Ot+1)βt+1(j) and eachaij , bj(Ot+1)

andβt+1(j) term is less than1.0 (often significantly less),
the sequenceβT (i),βT−1(i),...,β0(i) tends exponentially to
zero. SinceβT (i) = 1.0 (by definition of the backward pro-
cedure),βt(i) increases exponentially toward1.0.

Therefore, it is reasonable to assume that the backward
procedure can be approximated by a decay functionω.
Specifically, assuming thatβt+1(j) = ω(T − t, j), where
T is the total length of the sequence andt is the current time
step,γt(i) is given by:

γt(i) =
αt(i)

∑N

j=1 aijbj(Ot+1)ω(T − t, j)
∑N

i=1 αt(i)
∑N

j=1 aijbj(Ot+1)ω(T − t, j)

Although many decay functions could be proposed
to approximate theβ-values (including those that look
ahead several observations in the sequence), the series
βT (i),βT−1(i),...,β0(i) tends exponentially to zero for any
state, and therefore for sufficiently large sequences any de-
cay function that approximates theβ-values should also sat-
isfy ω(T − t, j) − ω(T − j, k) ≈ 0 for j 6= k. In other
words,ω(T − t, j) ≈ ω(T − t, k). Should this be the case,
the following equality holds

γt(i) =
αt(i)

∑N

j=1 aijbj(Ot+1)
∑N

i=1αt(i)
∑N

j=1 aijbj(Ot+1)
(8)

This simple assumption helps us to solve the incremental
learning problem. Equations (2) and (8) represent the same
probability, and therefore, it is clear that:

βt(i) =

N
∑

j=1

aijbj(Ot+1) (9)

Since the realβt(i) is based on a exponential decay func-
tion computed via the backward procedure, for largeT this
approximation seems to be appropriate. In any case, it pro-
vides a better approximation than∀t ∀i βt(i) = 1.0. Note
that a backward procedure that recursively uses (9) requires
a one-step look ahead in the sequence of observations and
can be seen as an example of afixed-lag smoothingalgo-
rithm (Moore 1973).
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Figure 1: Change over time in estimates of a parameter of
the model from sourceS(2,2), when IBW+ uses smoothing
factors oft̂ = 0 andt̂ = 10.

The estimation ofξT−1(i, j) is also improved using (10).

ξT−1(i, j) =
αT−1(i)aijbj(OT )βT (j)

∑N

i=1

∑N

j=1αT−1(i)aijbj(OT )βT (j)
(10)

An incremental algorithm whereβt(i) is approximated
using (9) and (10) will be known as the improved incremen-
tal Baum-Welch algorithm or IBW+. Note that a scaling
procedure is required for large sequences because the com-
putation of the HMM’s parameters will exceed the precision
range of traditional machines (Rabiner 1989).

Complexity Analysis
Since the estimators at timeT are computed with those at
timeT−1, it is not necessary to store estimators for allT ob-
servations. Assuming that for most of the practical applica-
tionsT ≫ M , the largest structure needed in the algorithm
stores the values ofξT−1(i, j), requiringO(N2) space. The
time complexity of IBW+ isO(N2T ), which is equivalent to
the time complexity of BW. Nevertheless, experimental re-
sults described in the following sections suggest that IBW+
can converge faster than BW (as other incremental algo-
rithms do), and also converges faster than IBW. However,
there is no theoretical guarantee thatP (O|λ′) ≥ P (O|λ).

This algorithm requires one-step look ahead in the se-
quence of observations. In practice, an improved model is
estimated with an insignificant effect on the space and time
complexity of the algorithm.

Additional Improvements
We introduce some additional modifications of the incre-
mental Baum-Welch algorithm that can further improve its
convergence behavior.

Smoothing the Parameter Estimates
Preliminary experiments with IBW+ demonstrated that the
likelihood of the model can sometimes decrease over time
because the BW convergence assumptions do not hold. This
decrease is typically small, but in some cases, the likelihood
was found to decrease dramatically.

An examination of the experimental results revealed that
during the probability estimations ofA, B andπ, the learn-
ing algorithms tend to forget the contributions of previous
estimators at the beginning of each iteration. The drastic
changes in the parameters of the HMM were found to be re-
lated to the initial values of the sufficient statistics described
by
∑T−2

t=1 γt(i),
∑T−1

t=1 γt(i) and
∑T

t=1γt(i). Such statistics
can be seen as weights for the estimation in the previous time
step forA andB. If those weights are very close to zero, the
contribution of the previous estimators is minimal.

A simple solution for smoothing the learning of the model
over time consists of postponing the update of the parame-
ters until some timêt > 0. After t̂, enough statistics should
have been collected to support the reestimation ofA, B and
π. Empirical evidence suggests that even small values fort̂
can smooth the learning process because its main purpose is
to avoid zero (or close) to zero statistics independent of the
quality of the estimation.

Figure 1 shows how estimates of a single HMM param-
eter change over time when IBW+ uses smoothing fac-
tors t̂ = 0 and t̂ = 10. The sequence of observations
was generated by a traditional Monte-Carlo simulation from
the following 2-state and 2-symbols HMM, denotedS(2,2).

π =

(

1
0

)

A =

(

0.3 0.7
0.1 0.9

)

B =

(

0.99 0.01
0.2 0.8

)

Learning from Multiple Observation Streams

To this point, the problem of learning incrementally from a
single discrete data-stream has been considered. However,
in many real-world applications, multiple sequences from a
single source can be observed. Assuming thatR individual
observations are independent, the computation of the param-
eters of the HMM is modified as follows:

πi =
1

R

R
∑

r=1

γ
(r)
1 (i)

aT
ij =

R
∑

r=1

aT−1
ij

(

T−2
∑

t=1

γ
(r)
t (i)

)

+ ξ
(r)
T−1(i, j)

R
∑

r=1

T−1
∑

t=1

γ
(r)
t (i)

b
T

j (k) =

R
∑

r=1

b
T−1

j (k)

(

T−1
∑

t=1

γ
(r)
T (j)

)

+ ψ(T, j, k)

R
∑

r=1

T
∑

t=1

γ
(r)
T (j)

The estimators above can be applied for both the IBW and
IBW+ algorithms, and are similar to the estimators proposed
for offline Baum-Welch learning by Li et al. (2000), among
others. Note that the space complexity of the learning algo-
rithms increases toO(N2R), just as the space complexity of
a multiple observation learning BW increases toO(N2TR).
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Figure 2: Comparison of the average convergence rates of
BW, IBW, and IBW+, in learning an 8-state HMM from
50,000 observations of the sourceS(8,0.3).

Empirical Results
This section compares the convergence behavior of BW,
IBW, and IBW+ on real and synthetic training data. In all of
the experiments, IBW usedβ-values of1.0, as proposed by
Stenger et al. (2001), and IBW+ approximated theβ-values
using (9) and smoothed the estimators using a smoothing
factor of t̂ = 10. Experiments were performed on a Sun-
Blade-100 with 2 gigabytes of RAM running Solaris 5.8.

Figure 2 shows likelihood values averaged over 10 ex-
ecutions of the learning algorithms, trained on sequences
of 50,000 observations generated by a Markov chain with
8 states and a conditional relative entropy (CRE)1 of 0.3.
We denote this source byS(8,0.3). Results are presented
in a standard log-likelihood graph where thex-axisdisplays
the number of iterations (visits to the data streamO) and the
y-axisshowslog P (O|λ), whereλ is the model being es-
timated with the learning algorithm. One iteration of BW
consists of reading the entire sequence of observations, set-
ting theα-values andβ-values to zero and updating the pa-
rameters of the model via the Baum-Welch algorithmonce.
One iteration of IBW/IBW+ consists of setting the initial
statistics to zero and updating the parameters of the model
via the incremental estimators foreachobservation. Note
that IBW+ converges faster than both BW and IBW. How-
ever, as discussed before, the likelihood for the incremental
algorithms can decrease over time.

Figure 3 shows the difference between the log like-
lihoods of the training sequence,log(P (O|λBW )) −
log(P (O|λIBW+)), when BW and IBW+ are used to esti-
mate sequences of increasing length from the sourceS(2,2).
Negative values indicate a higher log likelihood for IBW+.
The results show that as the length of the sequence of obser-
vations increases, IBW+ generates better models than BW.

Figure 4 compares the convergence rates of BW, IBW
and IBW+ when trained on five independent observation se-
quences (R = 5). To create the independent sequences, the
first ten thousand words from the classalt.atheismof the

1A CRE of 0 indicates a deterministic source. In contrast, a
value of 1 indicates a completely random source.

Figure 3: Difference in the log likelihood of models esti-
mated with BW and IBW+ fromS(2,2)after 10 iterations.

Figure 4: Comparison of the average convergence rates of
BW, IBW, and IBW+, in learning an 8-state HMM from five
text sequences fromalt.atheism.

Newsgroupsdataset2 were divided into five sequences, each
of length 2,000. Note that both incremental learning algo-
rithms converge faster than BW, and the fastest convergence
rate is achieved with IBW+.

Different stopping criteria are used by the IBW/IBW+ and
BW algorithms. The reestimation formulas for the incre-
mental learning algorithms are executed until a drop in the
likelihood is detected. Since the likelihood never decreases
for BW, the estimators in a traditional implementation of the
Baum-Welch algorithm are executed up to a maximum num-
ber of iterations or to a point where the change in the likeli-
hood is insignificant.

Table 1 compares training times and resulting model qual-
ity when the appropriate stopping criteria were used for each
algorithm. IBW+ was executed until a drop in the likelihood
was detected, and BW was executed for 20 iterations or until
log P (O|λcurrent)− log P (O|λprevious) ≤ 10−10. Experi-
ments were performed using two different data sets. The first
is a synthetic data set of 100,000 observations generated by
a Markov chain with 2 states and 2 symbols. The second
is a sequence of library system calls generated by the Fast

2http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
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Source Algorithm logP(O|λ) Training Time
S(2,2) BW -60,932.7 4.5 mins.

IBW+ -60,884.2 0.87 mins.
FFT BW -60,932.7 49.7 mins.

IBW+ -89,141.4 8.9 mins.

Table 1: Computer resources and model quality

Fourier Transform (FFT) executing in a Linux cluster (taken
from (Florezet al. 2005b)). The alphabet for the second task
contains 15 symbols and the model contains 32 states. The
results show that IBW+ consistently executes in a fraction
of the time required for BW, and in some cases can produce
models of superior quality.

Conclusion
We have introduced an incremental version of the Baum-
Welch algorithm that approximates theβ-values used in the
backward step based on a one-step look-ahead buffer. Ex-
perimental results demonstrate that it converges faster than
traditional Baum-Welch and outperforms previous incre-
mental approaches. Moreover, an analysis of the IBW+ rees-
timation formulas indicates that the longer the sequence of
observations, the better the approximation of theβ-values.
Experimental results confirm that the advantage of the new
backward procedure improves with longer sequences. Al-
though we presented this algorithm as an approach to in-
cremental learning of HMMs with discrete observations, the
same approach could also be applied to incremental learning
of HMMs with continuous observations.
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