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Abstract

A key challenge in multiagent environments is the con-
struction of agents that are able to learn while acting
in the presence of other agents that are simultaneously
learning and adapting. These domains require on-line
learning methods without the benefit of repeated train-
ing examples, as well as the ability to adapt to the
evolving behavior of other agents in the environment.
The difficulty is further exacerbated when the agents
are in an adversarial relationship, demanding that a
robust (i.e. winning) non-stationary policy be rapidly
learned and adapted.

We propose an on-line sequence learning algorithm,
ELPH, based on a straightforward entropy pruning
technique that is able to rapidly learn and adapt to
non-stationary policies. We demonstrate the perfor-
mance of this method in a non-stationary learning en-
vironment of adversarial zero-sum matrix games.

Introduction

A significant challenge in multiagent environments is
to learn and adapt in the presence of other agents that
are simultaneously learning and adapting. This prob-
lem is even more acute when the agents are competing
in some task. In competitive environments, each agent
is trying to optimize its return at the expense of the
other agents, therefore any single agent’s success de-
pends on the actions of the other agents. Optimal be-
havior in this context is defined relative to the actions
of the other agents in the environment on a moment
to moment basis. An agent’s policy must continuously
change as the other agents learn and adapt. Assuming
the other agents have similar goals (i.e. to win), this
results in the need to learn non-stationary policies over
the space of stochastic actions.

Many previous machine learning approaches apply to
single agent domains in which the environments may be
stochastic, but the learned policies are stationary (Sut-
ton & Barto 1998; Agrawal & Srikant 1995). However,
approaches that learn only stationary policies are in-
sufficient for multiagent, non-stationary environments.
We present ELPH, a novel on-line learning method that
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learns quickly and is highly adaptive to non-stationary
environments. We demonstrate these abilities in the
non-stationary policy learning context of the two-player
zero sum game Rock-Paper-Scissors, employing compe-
tition against both synthetically generated agents and
human opponents.

Zero Sum Matrix Games

Matrix games (Owen 1995) are two player games in
which each player selects simultaneously from some
set of actions, ai ∈ A. Each player’s payout or re-
ward can be represented by an n × n matrix, Rij , in
which the rows i represent the first player’s action and
the columns j represent the second player’s action. A
zero sum matrix game is one in which each player’s
reward matrix is the negative of the other. In the
game of Rock-Paper-Scissors each player selects from
ai ∈ {rock, paper, scissors} with reward as follows:

R1 =

[

0 −1 1
1 0 −1

−1 1 0

]

, R2 =

[

0 1 −1
−1 0 1

1 −1 0

]

Here, paper beats rock, scissors beats paper, and pa-
per beats rock. Nobody receives a payout for ties.

In each of these cases, there is no optimal policy for
either player that is independent of the other (Fuden-
berg & Levine 1999). For example, if player1 employs
a policy of playing all rock, then the optimal policy
for player2 is to play all paper. Assuming each player
is playing rationally and adapting his strategy, a game-
theoretic result for 2-player zero sum games is that each
player will converge to a unique Nash equilibrium. In
this case, the equilibrium policy is to play randomly.

Bowling and Veloso (2002) have shown that the
WoLF (Win or Learn Fast) principle applied to in-
cremental gradient ascent over the space of possible
policies will converge to the optimal policy. However,
using incremental gradient ascent is problematic when
faced with an on-line adversarial learning environment
in which the policy space gradient is non-stationary and
the current operating policy must be adapted quickly
(within a few plays).
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The ability for gradient ascent to “learn fast” de-
pends entirely on the selection of the learning rate
applied to the policy update. If the learning rate is
small, adapting to the opponent’s strategy will be slow.
If the learning rate value is large, facilitating more
rapid learning, convergence might be compromised. Al-
though incremental gradient ascent can be proven to
converge to an optimal policy in the long run, an oppo-
nent that changes policies more quickly can render this
method ineffective.

ELPH: Entropy Learning Pruned

Hypothesis Space

In situations where an opponent agent is likely to
change policies frequently and without warning, it is
essential that an agent (1) learn on-line, (2) learn as
rapidly as possible and (3) adapt quickly to changing
opponent strategies.

We recently proposed (Jensen et al. 2005) a novel on-
line learning algorithm that observes and learns tem-
poral sequences over a short-term observation history
using an entropy measure to discard all but highly pre-
dictive sequences. This method is called ELPH (En-
tropy Learning Pruned Hypothesis space). The method
exhibits the ability to both rapidly learn predictive se-
quences (using as little as a single example) and quickly
adapt to non-stationarity in the underlying process
statistics. In a very general sense, the strategy is to
intentionally overfit the observations and subsequently
discard non-predictive and/or inconsistent hypotheses
in real-time.

ELPH learns over a space of hypotheses (HSpace).
Given a short observation history of the n most re-
cent observations, an individual hypothesis consists of a
unique subset of the contents of the observation history
together with an empirical histogram or prediction-set
of events that have, in the past, immediately followed
the pattern contained in the observation subset.

Consider some event et, occurring at time t, which is
immediately preceded by a finite series of temporally or-
dered observations (ot−n, . . . , ot−1). If some subset of
those observations consistently precedes the event et,
then it can be subsequently used to predict future oc-
currences of et. In general, if the observed system takes
the form of a Markov chain of order 1, then the single
observation ot−1 can be used to predict the probability
of the event et. However, given an arbitrary series of
observations, it is not necessarily true that the sequence
results from a Markov process of order 1. For example,
it may be that a single observation like ot−4 or a com-
bination of two specific observations like {ot−6, ot−4}
might suffice to accurately predict the observed event.

At each time step, ELPH attempts to learn which
of the possible subsets of the observation history are
consistently good at predicting the current event et. It
does this by adding a hypothesis to the HSpace for each
possible subset of the observation history corresponding
to the currently observed event, et. Without loss of

generality, assuming an observation history of length 7
there are 27 − 1 = 127 subsets (excluding the empty
subset), that can be used to form hypotheses:

{ot−1} ⇒ et

{ot−2} ⇒ et

...
{ot−6, ot−4} ⇒ et

...
{ot−7, ot−6, . . . , ot−1} ⇒ et

Each of the individual hypotheses are inserted into
the HSpace subject to the following rules:

1. If the hypothesis pattern is not in the HSpace, it is
added with an associated prediction-set containing
only the event et with its event frequency set to 1.

2. If the hypothesis already resides in the HSpace and
the observed event et is found in the associated pre-
diction set, then the proposed hypothesis is consis-
tent with past observations and the event frequency
corresponding to et is incremented.

3. If the hypothesis already resides in the HSpace but
the observed event et is not found in the associated
prediction-set, the novel prediction is added to the
prediction-set with an event frequency of 1.

The combinatorial explosion in the growth of the
HSpace is controlled through a process of active prun-
ing. Since we are only interested in those hypotheses
that provide high-quality prediction, inconsistent hy-
potheses or those lacking predictive quality can be re-
moved. For any given hypothesis, the prediction-set
represents a histogram of the probability distribution
over those events that have followed the specified pat-
tern of observations. The entropy of this distribution
is a measure of the prediction uncertainty and can be
considered an inverse qualitative measure of the pre-
diction. Using the individual event frequencies, fei

, the
entropy of the prediction set can be computed as,

H = −
∑

ei

fei

fetot

log2

(

fei

fetot

)

where fetot
=

∑

ei
fei

is the sum of all the individual
event frequencies. If a specific hypothesis is associated
with a single, consistent prediction, the entropy mea-
sure for that prediction-set will be zero. If a specific
hypothesis is associated with a number of conflicting
predictions, then the associated entropy will be high. In
this sense, the “quality” of the prediction represented
by the specific hypothesis is inversely related to the en-
tropy measure.

Those hypotheses that fail to provide consistent pre-
diction accuracy are pruned. If the entropy of a specific
hypothesis exceeds a predetermined threshold, Hthresh,
it fails the “predict with high certainty” test and is no
longer considered a reliable predictor of future events,
so it is removed from the HSpace. Over time, only those
hypotheses deemed accurate predictors with high prob-
ability are retained. Entropy threshold pruning also
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facilitates rapid adaptation in non-stationary environ-
ments. When the underlying process statistics change,
the resultant increase in prediction-set entropy causes
existing hypotheses to be removed and replaced by low-
entropy hypotheses learned following the change.

Using entropy as a qualitative prediction measure
provides a mechanism to infer future events from the
current observation history. For making predictions, a
simple entropy computation is insufficient because it is
biased toward selecting those hypotheses with a small
number of occurrences. For example, a hypothesis that
has only occurred once will have a single prediction-
set element, producing a computed entropy value of
zero. A more reliable entropy measure is obtained by
re-computing the prediction-set entropy with the ad-
dition of a single, hypothetical false-positive element
which represents an implicit prediction of “something
else.” This procedure yields a reliable entropy measure,
that discounts infrequently occurring hypotheses.

To make a prediction given a sequence of observa-
tions, we locate the hypotheses in the HSpace which
are consistent with the current contents of the obser-
vation history and rank them according to the reliable
entropy measure. Given a history of length n, the max-
imum number of matching hypotheses is 2n − 1. The
most frequently occurring prediction (maximum likeli-
hood) from the single hypothesis with the lowest reli-
able entropy is the best prediction that can be made
from the current observations.

Statistical structure in the observation space leads to
efficient pruning: if the temporal stream of observations
is truly random, resulting in the inability to predict fu-
ture events, then ELPH will continually prune and add
new hypotheses (i.e. thrash). However, most interest-
ing domains possess regularities that ELPH efficiently
exploits.

Using the ELPH algorithm to observe the actions of
another agent, we can learn the predictive elements of
that agent’s policy. In the case of game playing, this ca-
pability can be used to exploit the learned policy of the
opponent to select superior plays in those cases where
the opponent is acting predictably. The overall strategy
is to ascertain predictability bias in the opponent’s play,
predict what the opponent is most likely to do next, and
choose a play that is superior to that predicted for the
opponent. If the opponent exhibits predictable behav-
ior, the policy learning agent can exploit that bias and
achieve a statistical edge.

Methods and Experimental Results

We pitted the ELPH algorithm against a collection of
both synthetically generated agents and human play-
ers in the game of Rock-Paper-Scissors. The synthetic
agents produced a series of 1,000 plays according to a
completely stochastic policy, or a non-stationary series
of either deterministic or stochastic policies. ELPH, us-
ing a short-term memory of length 7, was used to learn
the non-stationary policy of the agents. The choice of

n = 7 was arbitrary. The inspiration came from the
work by Miller (1956).

ELPH against Synthetic Agents

Stochastic Agents. The simplest agent class is one
in which all plays are purely random. In this case, we
simply generated a series of 1,000 plays from a 3 × 3
uniformly random transition matrix U . This agent is
playing a stationary policy at the Nash equilibrium.
In this case, the best policy that ELPH can employ
is also random. The number of wins/losses as well as
ties should be roughly equal for both ELPH and the
synthetic agent. Figure 1 shows that ELPH and the
opponent approximately break even, each winning 1/3
of the trials in this case.
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Figure 1: ELPH accumulated wins over time against a
stochastic synthetic agent. Results are for 100 trials of
1000 plays. We show the mean and plus/minus twice
the standard deviation.

Non-stationary Deterministic Agents. This syn-
thetic agent class generated a series of 1,000 plays from
a non-stationary collection of randomly chosen deter-
ministic policies. A specific policy was chosen at ran-
dom and used to generate n consecutive plays, where
n itself was also chosen randomly from a Poisson dis-
tribution with µ = 20. After generating the n plays, a
new policy and new n were chosen. This process was
repeated until a total of 1,000 plays were generated.

Each specific policy was constructed by filling a 3×3
deterministic transition matrix D with exactly one “1”
in each row, where the column position of each “1”
was chosen at random uniformly from the set {1, 2, 3}
corresponding to the states {rock, paper, scissors}. All
the remaining matrix entries were set to 0. The result-
ing transition matrices, though deterministic, are not
ergodic. They may be cyclic and/or reducible. They
could produce degenerate cases such as a fixed play (i.e.
rock, rock, rock . . . ).

When ELPH was matched against the non-stationary
deterministic synthetic opponent, it was able to both
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Figure 2: ELPH accumulated wins over time against
a synthetic agent playing from a non-stationary set of
randomly selected deterministic policies. Results are
for 100 trials of 1000 plays.
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Figure 3: ELPH accumulated wins over time against a
synthetic agent that plays from a non-stationary set of
stochastic policies of the form (1). Results shown for
100 trials of 1000 plays.

quickly learn the opponent’s active policy and rapidly
adapt to the individual policy changes. Note, the proce-
dure used to generate the synthetic agent’s play results
in a uniform distribution of actions from an overall fre-
quency point of view, but due to the deterministic na-
ture of each individual policy, there is significant smaller
scale structure. ELPH exploits this structure by rapidly
adapting to the policy changes and quickly learning the
new policy. This behavior is detailed in Figure 2, where
ELPH wins nearly 90% of the plays, even though the
agent is changing policies approximately every 20 plays.

Non-stationary Stochastic Agents. This synthetic
agent was constructed like the preceding one, but using
stochastic policies, as follows. Randomly select a deter-
ministic transition matrix D according to the same pro-
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Figure 4: ELPH accumulated wins over time as in
Fig. 3, but with λ = 0, 1 chosen randomly, each with
probability 1/2. Results shown for 100 trials of 1000
plays.

cedure as before. Define U to be the uniformly random
transition matrix (all entries equal to 1/3). Construct
T as the convex sum of D and U :

T = (1 − λ)(D) + (λ)(U) (1)

where λ is a pseudo-random number chosen uniformly
from the interval (0, 1]. The matrix T will always be
ergodic even though, for λ near 0, the matrix will be
highly deterministic.

Figure 3 details results for play against a non-
stationary agent that is randomly selecting mixed poli-
cies at the same rate as in Fig. 2. Here the performance
is degraded, but ELPH is still able to exploit the times
when the λ value is small and wins more plays than the
opponent in every case.

For this agent, we experimented also with different
ways of switching between the stochastic and determin-
istic processes. Figure 4 shows the results when λ is
restricted to take on extreme values 0 and 1. Figure 5
shows the effect of rapidly alternating between stochas-
tic and deterministic processes. Each policy was played
for a randomly selected time chosen from a Poisson dis-
tribution with µ = 3. ELPH performance suffers, but
still outperforms the opponent.

ELPH against Human Opponents

Play against human opponents involved an interactive
version of Rock-Paper-Scissors. If a human opponent
plays rationally, according to the Nash equilibrium,
he/she should ultimately play randomly to maximize
return. However, humans have great difficulty acting
randomly. The observed behavior appears to rather be
one of constantly trying “different” approaches in an ef-
fort to “fool” the opponent. The working hypothesis in
this case is that humans will exhibit biased play which
can be exploited by an agent that is able to quickly
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Figure 5: ELPH accumulated wins over time as in Fig. 4
except that each policy was played for a randomly se-
lected time chosen from a Poisson distribution with µ
= 3. Results shown for 100 trials of 1000 plays.
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Figure 6: ELPH accumulated wins over time against a
human opponent. Results shown for a single match.

learn and adjust to the non-stationarity of the overall
policy.

In this case, a multiple-context ELPH approach
was used to learn two separate temporal observation
streams in parallel. The first stream consisted of the
consecutive plays of the opponent and was used to pre-
dict the opponent’s subsequent play. The second stream
was used to predict the opponent’s next play based on
the sequence of ELPH’s plays. In this way, if the op-
ponent exhibits biased patterns related to his/her own
play, the first stream provides predictors, whereas if the
opponent attempts to exploit perceived patterns related
to the machine’s play, that bias will be detected and
exploited. The approach is simple: observe, make two
predictions of the opponent’s next play based on the
separate observation streams, and select the play that
has the lowest reliable entropy measure.

The results against human opponents are less pro-
nounced, but demonstrate ELPH performance when
confronted by a non-stationary policy in which the time
scale and selection process is completely unknown and
uncontrolled. In this case ELPH is able to exploit pre-
dictive bias in the human opponent’s play. Figure 6 de-
tails one representative match. As shown in this exam-
ple, an advantage was gained following approximately
35 − 40 plays. ELPH adapts to the changing play of
the opponent and quickly exploits predictive patterns
of play.

Discussion
Statistical estimation methods such as WoLF-PHC act
according to their best estimate of the optimal policy
and then modify that estimate based on the observed
outcome. In multiagent environments, that outcome
(reward) is a function of the opponent’s policy, and is
assumed to change over time. Owing to this depen-
dency, these learning methods are, in effect, forming
an indirect estimate of the opponent’s policy over time.
The indirect estimate of the opponent’s policy is learned
through an exploratory or “probative” process of try-
ing some action and observing the opposing agent’s re-
sponse. In a non-stationary domain, this process may
never fully arrive at an adequate estimate of the op-
ponent’s (instantaneous) policy. These methods also
require some stated prior estimate on the policy space.
In most cases, the initial estimate of the optimal policy
is assumed to be a uniform distribution over actions.
If infinitesimal gradient ascent is employed, it usually
takes an unacceptably long time to converge to the op-
timal policy.

ELPH, on the other hand, attempts to learn the op-
ponent’s policy directly, without exploration. It learns
over a space of observed behavior hypotheses. This is
a decidedly distinct way of approaching the problem.
Assuming the opponent is playing according to some
policy (rational or otherwise), ELPH generates a col-
lection of hypothetical states from the observed action
sequence and selects those that prove consistent with
the estimate of the opponent’s policy.

ELPH requires no notion of “winning” or “losing”.
When a policy change occurs, new hypotheses are
formed with lower entropy that quickly supplant the
old hypotheses that are now inconsistent. This yields
substantial advantages in the non-stationary domains
presented here. When the opponent plays his/her op-
timal strategy (random play), ELPH will respond by
playing randomly. But ELPH will quickly pick up on
some non-random structure in the opponent’s play.

We played WOLF-PHC vs. ELPH, but with trivial
results. Since WOLF starts playing at the Nash equi-
librium, ELPH matches it and they consistently play
to a draw. WOLF requires playing millions of games
before converging on the policy and so it does poorly
with respect to ELPH given the non-stationary policy
switches (approximately every 20 plays) and the (rela-
tively) short games of 1000 plays.
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Related Work

N -gram learning approaches have been studied exten-
sively in the area of natural language processing (Man-
ning & Schütze 1999). However much of this work
assumes the underlying generative process is station-
ary. By introducing the notion of on-line pruning based
on n-gram prediction quality, ELPH retains the rapid
learning of standard n-gram methods, while achieving
the ability to adapt in non-stationary environments.

The ELPH algorithm can be viewed as a method to
learn a sparse representation of an order-n Markov pro-
cess via pruning and parameter tying. Because sub-
patterns occur more frequently than the whole, the re-
liable entropy measure preferentially prunes larger pat-
terns. Because prediction is then performed via the best
sub-pattern, this effectively ties probability estimates of
all the pruned patterns to their dominant sub-pattern.

Previous approaches to learning sparse representa-
tions of Markov processes include variable memory
length Markov models (VLMMs) (Guyon & Pereira
1995; Ron, Singer, & Tishby 1996; Singer 1997) and
mixture models that approximate n-gram probabilities
with sums of lower order probabilities (Saul & Jordan
1999). VLMMs are most similar to our approach in that
they use a variable length segment of the previous input
stream to make predictions. However, VLMMs differ in
that they use a tree-structure on the inputs, predictions
are made via mixtures of trees, and learning is based
on agglomeration rather than pruning. In the mix-
ture approach, n-gram probabilities p(ot|ot−1 . . . ot−n)
are formed via additive combinations of 2-gram compo-
nents. Learning in mixture models requires the iterative
EM method to solve a credit assignment problem be-
tween the 2-gram probabilities and the mixture param-
eters. ELPH does not require any iterative algorithm
at each step.

Rock-Paper-Scissors is one of the stochastic games
used by Bowling and Veloso (Bowling & Veloso 2002)
as a demonstration of their WoLF algorithm. WoLF
(Win Or Learn Fast) applies a variable learning rate
to gradient ascent over the space of policies, adapting
the learning rate depending on when a specific policy
is winning or losing. The WoLF principle is to learn
quickly when losing and more cautiously when winning.
In contrast to this work, ELPH completely ignores the
reward or whether it is winning or losing. ELPH simply
makes predictions based on past observations and dis-
cards past knowledge if it fails to predict future play. If
the opponent exhibits any predictability in play, ELPH
will exploit it and choose an action that will better the
opponent with a frequency matching the statistical bias.
If the opponent plays purely randomly, then ELPH is
capable of playing to a draw.

Conclusions and Future Work

We have shown an approach to learning temporal se-
quences that is robust to non-stationary generative pro-
cesses, and demonstrated a simple application of the

approach in playing 2-player zero-sum matrix games.
ELPH is shown to exhibit both rapid learning and rapid
adaptation to non-stationary policies, even when the
policy and the time period are chosen randomly. Al-
though this simple environment has been chosen for
demonstration purposes, the method is not limited to
zero-sum games and is applicable to more complex do-
mains.

Future work on ELPH will focus on extension to
increasingly complex domains and on learning higher-
order sequences that repeat in time periods greater than
7 events.
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