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Abstract

In this paper, we apply spectral techniques to clustering bio-
logical sequence data that has proved more difficult to clus-
ter effectively. For this purpose, we have to (1) extend spec-
tral clustering algorithms to deal with asymmetric affinities,
like the alignment scores used in the comparison of biolog-
ical sequences, and (2) devise a hierarchical algorithm that
can handle many clusters with imbalanced sizes robustly.
We present an algorithm for clustering asymmetric affinity
data, and demonstrate the performance of this algorithm at
recovering the higher levels of the Structural Classification of
Proteins (SCOP) on a data base of highly conserved subse-
quences.

Introduction
The problem of clustering data items into related groups
based on similarity is an extremely common problem aris-
ing in a variety of disciplines and applications, and clus-
tering algorithms for various applications have been studied
for decades. Such algorithms depend upon the knowledge
or acquisition of similarity information to relate data items
to each other, e.g. the affinity between points in Euclidean
space. Spectral techniques, which make use of information
obtained from the eigenvectors and eigenvalues of a matrix,
have attracted increasing research attention with respect to
clustering in recent times.

Here we present a method to apply spectral techniques
to the clustering of biological sequence data. The points
in the data used represent proteins, considered as amino
acid sequences, and the affinities between sequences are
evaluated using an algorithm for sequence comparison, like
BLAST (Altschul et al. 1997) or the Smith-Waterman algo-
rithm (Smith & Waterman 1981). The pairwise alignment
scores for biological sequences differ from the the similar-
ities usually considered by spectral clustering algorithms in
that they are not necessarily symmetric: the affinity between
sequences a and b may not be the same as the similarity be-
tween b and a for several reasons, including the different
lenghts of the sequences as well as the fact that the (amino
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acid) substitution matrices on which the scores are based can
be themselves asymmetric.

The breakdown of this work is as follows: First, we will
introduce preliminary concepts and notation, a discussion
of the techniques used to partition this data, and a brief
overview of the SCOP hierarchy. We then present the al-
gorithm used to cluster this protein data by class and fold,
and then discuss some related work. Next, we will present
the results of experiments on this data against other common
techniques. Finally, we present conclusions and suggest fu-
ture directions of study on the subject.

Preliminaries
Notation and Spectral Clustering
We are concerned with a set of data items which will be
viewed as vertices in a weighted directed graph G = (V, E).
Say |V | = n. The weight on an edge (i, j) ∈ E represents
the affinity from i to j according to some measure. (Since
G is directed, note that (i, j) may not be equal to (j, i).) Let
S ∈ R

n×n be the matrix of affinities between items, i.e. Sij

is the affinity of i for j. A clustering of G will be defined
as a partition ∆ = (C1, C2, ...CK) of the vertices V in G,
where each Ci ⊂ V . We can also define a clustering in terms
of a set of indicator vectors x1, x2, ...xK where xk(i) = 1 if
point i is in cluster k and 0 otherwise.

We will define d
(o)
i =

∑

j Sij to be the outdegree of i and

d
(i)
i =

∑

j Sji to be the indegree of i. Let D(o) and D(i)

be the diagonal matrices whose ith diagonal entries are d
(o)
i

and d
(i)
i , respectively.

Consider the matrix P = D(o)−1

S. Let u1, u2, ...un be
the eigenvectors and λ1 ≥ λ2 ≥ ... ≥ λn the corresponding
eigenvalues of P . Note that λ1 = 1. When S is symmetric
the components of each ui are all real (Meila & Shi 2001);
if P is asymmetric, however, these values may be complex.

The SCOP Data Set
The SCOP database is a collection of protein sequences used
for evolutionary classification; a detailed description of its
features can be found in (Andreeva et al. 2004). The pro-
teins have been classified in terms of similarity in conserved
structural features, and divided into the following groups,
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Class No. of samples No. of folds
1 804 128
2 950 87
3 694 93
4 737 166
5 54 25
6 121 10
7 992 52

Figure 1: The number of proteins and folds in each class of
the selected SCOP data.

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

Figure 2: Image of the distance matrix for class 1 of the SCOP
data.

from most general to most specific: class, fold, superfamily,
family, and domain.

For our experiments, we used data collected from version
1.53 of the SCOP database and compiled for the experi-
ments in (Liao & Noble 2002), which contained 4,352 pro-
teins, seven classes, 564 folds, and 859 superfamilies. Sim-
ilarities between proteins were calculated using the Smith-
Waterman algorithm. The number of proteins in the sub-
divisions along each level of the hierarchy can vary wildly,
which can present another issue for clustering algorithms;
some contain very few items indeed, and thus are more dif-
ficult to cluster. Information on the number of proteins and
folds in each of the seven classes is contained in Figure 1.
Figure 2 contains an image of the distance matrix for the
first class in SCOP data; note that the clusters vary in size
and that the matrix is somewhat asymmetric.

Spectral mapping for asymmetric data
P is a stochastic matrix which can be considered to repre-
sent the transition matrix for a random walk along G; from
vertex i, the probability of moving to vertex j under such a
process will be Sij

d
(o)
i

. This random walks model will be the

basis for our spectral clustering. This random walks model
of spectral clustering problems is introduced and further de-
tailed in (Meila & Shi 2001). It should be noted that the
model we are presenting here allows for the use of an asym-
metric affinity function, like that computed by BLAST or
the Smith-Waterman algorithm.

Spectral algorithms for clustering data with symmetric
affinities have been detailed in many other sources, e.g.
(Meila & Shi 2001), (Shi & Malik 2000), and (Ng, Jordan, &
Weiss 2002). In (Meila & Xu 2003) it is shown that several
spectral clustering algorithms minimize the multiway nor-
malized cut, or MNCut, induced by a clustering ∆ on G,
measured as

MNCut(∆, G) =

K
∑

k=1

∑

i,j∈E xixjSij

∑

i∈V d
(o)
i

These guarantees, however, have not been shown to apply
to asymmetric data. Therefore we will assume here that the
data we are dealing with is sufficiently concentrated in the
diagonal blocks representing the true clusters to allow one to
use the first K eigenvectors of P to recover the clustering.
This hypothesis is plausible for biological sequence data, be-
cause we expect that two sequences that are highly similar
to a third will also be sufficiently similar to each other, but
we will further verify it in our experiments.

Now we prove a result that allows us to proceed with spec-
tral clustering of asymmetric data and make sense of the re-
sults. The following proposition is an extension of a result
proved in (Meila & Shi 2001) for symmetric data.

We define a vector v to be piecewise constant (PC) rel-
ative to a partition ∆ = (C1, C2, . . . Ck) of V iff vi = vj

for i, j in the same set Cs, s = 1, . . . k. Note that the first
eigenvector of P , being 1, is always piecewise constant.

Proposition 1 Let P be a matrix with rows and columns in-
dexed by V that has independent eigenvectors. Let ∆ =
(C1, C2, . . . CK) be a partition of V . Then, P has K eigen-
vectors that are piecewise constant w.r.t. ∆ if and only if the
sums Pis =

∑

j∈Cs
Pij are constant for all i ∈ Cs′ and all

s, s′ = 1, . . .K.

The proof is given in the extended version of the paper.
Intuitively, Proposition 1 says that a stochastic matrix has
piecewise constant eigenvectors if the Markov chain repre-
sented by P can be aggregated into a Markov chain with
state space ∆ = {C1, . . . CK} and transition probability
matrix P̂ . If we look at the transition probability from a
point i ∈ Cs to any of the clusters Ck denoted PiCk

, this
probability is equal to P̂CsCk

and it is the same no matter
which i ∈ Cs is chosen. Hence, when the eigenvectors of P
are PC, even though complex, we can say that the data points
are being clustered based on how similarly they transition to
each of the clusters.

Practically, we will not use complex eigenvectors in our
experiments, but vectors of the form ũ = Re(u) + Im(u).
Recalling that for every complex eigenvector u of a real ma-
trix P the complex conjugate ū is also an eigenvector of
P , and that ˜̄u = Re(u) − Im(u), we see that the preceed-
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ing operation preserves all the original information about the
eigenvectors.

In the next section we discuss how we use the eigenvec-
tors for clustering. In the remainder of this section we of-
fer an example contrasting our choice of computing eigen-
vectors with the popular approach of transforming S into a
symmetric matrix, then using standard spectral clustering on
the new S.

Hierarchical Clustering with the Eigenvectors
We adopt a hierarchical strategy, in which will we begin
with one large cluster containing all data points and repeat-
edly partition clusters into smaller clusters. We will assume
that the “real” clusters in the data are represented by nearly
piecewise constant segments of the eigenvectors of P .

Because the data itself has a hierarchical classification
we prefer to use a recursive partitioning method similar to
(Shi & Malik 2000; Vempala, Kannan, & Vetta 2000) and
to use one eigenvector (the second largest) at every step.
This method is also convenient as more robust to noise:
When the number of clusters K is relatively large, the more
eigenvectors one considers for clustering data the noisier the
R

K clustering problem becomes. In (Meila & Verma ) the
advantages of recursive partitioning for noisy affinities are
demonstrated experimentally.

To extract the PC parts of an eigenvector u, we smooth it
with a Gaussian kernel obtaining the (continuous) function

Φu(x) =
1

nh

n
∑

j=1

exp

[

−
1

2
(
(x − u(j))2

h2

]

The parameter h represents the kernel width; a proper
choice of kernel width will vary depending on the range of
the eigenvectors’ components and the closeness of the clus-
ters. A choice of h too high will not produce the correct
peaks in the data, while a value of h too low will decrease
resistance to noise. We selected a value of approximately
1
26 (maxj uj −minj uj) for our experiments. We then select
a threshold T , and form a cluster from the points covered by
each of the peaks found in Φu(x). This is demonstrated in
Figure 4. The points j for which Φ(uj) < T are consid-
ered outliers and not assigned to any cluster. In our exper-
iments we have chosen T = 2/(2πnh) which ensures that
no cluster with less than 3 points is formed, but preserves
larger, more spread clusters well; this value may be altered
as appropriate to a particular data set. Note that making T
dependent on h effectively reduces our parameter choices to
one: that of the width h.

While this process does extract clusters that are nearly
piecewise constant in this eigenvector, it is not foolproof;
peaks may emerge in this function from multiple real clus-
ters sharing very similar values in this particular eigenvec-
tor, and thus possibly appearing to represent a single cluster.
Therefore we must check if the obtained clusters cannot be
recursively split. If a cluster produces no further split, we
consider that cluster to be “terminal”. We found this to be a
generally effective partitioning strategy in practice.

To partition a cluster into smaller clusters, we compute
this KDE function Φ with respect to the components of the

a

b

c

d

Figure 3: Structure loss by symmetrization: A transition matrix P

obtained from an asymmetric S (a). The first eigenvector of P is
constant since P is stochastic. The second and third eigenvectors
are piecewise constant and complex conjugate. The real part of one
of them is plotted in (b) vs the data points, demonstrating that there
are 3 clusters in the data. The transition matrix P̃ obtained from
the symmetrized affinity S̃ = S

T
S (c). The matrix P̃ , representing

a reversible Markov chain, has real eigenvectors. The clustering in
P is partly effaced in P̃ . The eigenvectors of P̃ are not piecewise
constant (d). Therefore, spectral clustering algorithms working on
P̃ are unlikely to discover this clustering. (Here only the second
eigenvector is plotted, but all of them have been examined).
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Figure 4: The function produced for an eigenvector for the P
matrix of one class of protein data using a Gaussian kernel.
Points whose corresponding components in the eigenvector
occur in regions above the threshold, denoted by the dotted
line, are assigned to a new cluster, while those below the
threshold are considered outliers.

eigenvector in that cluster. Note that at each step, we do not
consider the points outside of the cluster being split when
we compute Φ(x). We thus produce a new set of clus-
ters c1, c2, ...cr, where each ci is the set of points within a
distinct peak (region exceeding the threshold) of the kernel
function. The points in the set c(u) = V −

⋃

i=1..r ci will
still be unclustered.

At each step of the algorithm, we consider all the clusters
currently discovered, beginning with one cluster for the en-
tire data set, and extract the ci sets above. We then cluster the
points in ci by creating a new random walk matrix Pci

, con-
sisting of the normalized distances between all points in ci,
and recursively clustering them. We then cluster all points in
cu recursively as well, combining the clusterings produced
by the recursive calls. If no sets ci exist, or we have no un-
clustered points and all points are above the threshold, we
simply return a single cluster; this is a terminal condition of
the algorithm.

Upon completion of this process, there are often many
points that have not been placed in a cluster. We complete
the algorithm by then placing each of these points into a
cluster containing only itself, and then performing iterations
of the single linkage algorithm on the resulting clustering
until the desired number of clusters is achieved. Note that
this process may merge some of the clusters produced by
the recursive divisions.

Clustering Algorithm
The pseudocode for the recursive portion of our hierarchical
clustering algorithm to cluster G with random walk matrix
P is as follows. We assume an appropriate choice of kernel
width h here, as described.

RHC(P )

• Find the second eigenvector u2 of P .

• Calculate KDE function Φu2(x).

• Find all regions of maximal size (ai, bi) of Φu2(x) such
that Φu2(x) ≥ T for all ai ≤ x ≤ bi.

• Place all u2(x) such that ai ≤ u2(x) ≤ bi into sets ci, and
all other points into the set c(u). Return a single cluster if
no ci exist, or only one ci exists and c(u) is empty.

• Calculate the matrix Pci
for each ci and run RHC(Pci

) to
cluster the points in ci.

• Run RHC(Pcu
) to cluster c(u).

• Combine the clusterings of all ci and c(u) to produce the
clustering ∆.

After this process, we then place each point never as-
signed to a ci into a new cluster containing only itself, and
then run single linkage beginning from this clustering of the
data, as described above.

Related Work
An early example of a spectral clustering algorithm is the
Shi/Malik algorithm for spectral segmentation (Shi & Malik
2000), which uses a matrix of affinities between regions and
partitions the regions based on the components of the sec-
ond smallest eigenvector of L. Our algorithm is similar to
the Shi/Malik algorithm in its use of the second eigenvector
of the matrix P ; in the symmetric case, the eigenvectors of
P and L can be easily shown to be related. Our algorithm
differs in its method of selecting a partition of a cluster and
in its use of a kernel function rather than simply sorting the
components of the eigenvector.

In (Meila & Shi 2001), a random walks view of spectral
segmentation was proposed which presented a k-clustering
algorithm based on the use of the eigenvectors correspond-
ing to the k largest eigenvalues of a normalized affinity ma-
trix; this model is used in the algorithm described here as
well. (Ng, Jordan, & Weiss 2002) presents a similar algo-
rithm using the eigenvectors of the Laplacian. (Vempala,
Kannan, & Vetta 2000) contains a theoretical analysis of
spectral clustering algorithms and provides worst-case guar-
antees on performance.

Finally, the issue of clustering biological sequence data
has attracted intense interest in recent years - examples are
(Yeung et al. 2001) and (Yeung & Ruzzo 2001), among
many others. As of yet, however, little research has been
performed on applying spectral algorithms to this problem.

Experiments
We compared the performance of our algorithm on the
SCOP data set against four other techniques: a single-
linkage (nearest neighbor) hierarchical algorithm, MDS
with single-linkage to cluster the points in the lower dimen-
sion, SVD with single-linkage to cluster singular vectors,
and the Meila/Shi algorithm of (Meila & Shi 2001). Exper-
iments were also performed on the last three methods using
k-means instead of single linkage, but results were compa-
rable or worse. For MDS and Meila/Shi, which require a
symmetric affinity function in their traditional form, we first
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Figure 5: Plot of performance of each algorithm on cluster-
ing the folds of one class of the SCOP protein data.

symmetrized the SCOP affinity matrix by creating a matrix
S′, where S′

ij =
Sij+Sji

2 , then computing the equivalent
stochastic matrix P ′ and using this affinity matrix for our
calculations. We tested these algorithms by clustering the
folds within each of the seven classes of the SCOP data. The
single linkage clustering used in each technique was termi-
nated when the number of clusters in the original data was
obtained.

To measure the difference between clustering, we use the
variation in information (VI) criterion to compare each clus-
tering to the true clustering of the data by folds; a full de-
scription of this criterion may be found in (Meila 2003).
Here, when compared against the true clustering of the pro-
tein data, a higher VI value indicates a clustering less similar
to the true clustering, and thus a clustering of lower quality.
A VI of 0 indicates a perfect reproduction of the true clus-
tering.

Results
A plot of the performance of each of the algorithms on each
of the seven classes can be seen in Figure 5. We refer to the
algorithm described above as RHC. We see that RHC out-
performs the other methods of clustering the data, providing
the closest clustering to the original.

One likely explanation for this is that RHC is particularly
effective at finding disproportionately large clusters. The
largest clusters in each class are usually extracted from the
data within the first few iterations of the algorithm, while
other algorithms were more likely to break these clusters up
inappropriately.

The recusrive procedure used by the algorithm is less ef-
fective at finding smaller, more isolated clusters, many of
which would often be clustered together regardless of dis-
tance; these clusters were presumably not large enough to
produce a peak in Φu2 . However, the single linkage itera-
tions used in the final step of the algorithm can be effective

at finding these clusters.
The algorithm also has some problems with handling data

with clusters of considerably different “tightness”. Some
clusters in the data consist of very dense subclusters with
some distance between them, while other clusters may have
greater distance between their points; currently the algo-
rithm is apt to further divide clusters with dense components
into smaller clusters, at the expense of finding sparser clus-
ters. Addressing this problem can be difficult, but could per-
haps be addressed with an appropriate scheme to alter kernel
width and threshold in recursive runs of the algorithm.

Conclusions and Future Work
The algorithm we have presented offers competitive perfor-
mance on the clustering of biological sequence data. It also
introduces to technical innovations of general applicability:
First, a extension of spectral methods to the clustering of
asymmetric affinity data; as this paper has been shown, sym-
metrizing the data may loose information relevant to clus-
tering. Second, a new hierarchical method of partitioning an
eigenvector which, using kernel smoothing, is more robust
to perturbations than the classical methods based on sorting
the eigenvector values.

Currently, the choice of kernel height and threshold pa-
rameters has been done manually; it would be preferable
were there an unassisted or more sophisticated means of de-
ciding upon these parameters. Other means of partitioning
or adaptively selecting a kernel could be explored.

Finally, the study of applying spectral techniques, or in-
deed any particular techniques, to clustering asymmetric
pairwise data has still not been well explored ((Ozawa 1983)
and (Wang & Kitsuregawa 2001) are exceptions). Develop-
ment of spectral clustering techniques for such data is more
challenging, as less is known about the behavior of eigen-
vectors of the distance matrix in such matrices; they can be
unpredictable, and the eigenvalues are susceptible to signif-
icant change with minor perturbation of the matrix as well.
The question of how to handle the clustering of such data,
which can emerge in other domains such as social networks
as well, is an interesting direction for both theoretical and
experimental research.
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