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Abstract 
We present an enhanced direct linear discriminant analysis 
(EDLDA) solution to effectively and efficiently extract 
discriminatory features from high dimensional data. The 
EDLDA integrates two types of class-wise weighting terms 
in estimating the average within-class and between-class 
scatter matrices in order to relate the resulting Fisher 
criterion more closely to the minimization of classification 
error.  Furthermore, the extracted discriminant features are 
weighted by mutual information between features and class 
labels. Experimental results on four biometric datasets 
demonstrate the promising performance of the proposed 
method. 

1. Introduction   
Fisher’s linear discriminant analysis (LDA) is one of the 
most popular supervised feature extraction techniques. 
LDA seeks an optimal set of discriminant projection 
vectors [ ]dϕϕ  ,...,1=W , to map the original data space onto a 
lower dimensional feature space, by maximizing the Fisher 
criterion: ( ) WSWWSWW wbFJ TT= . Here, bS  and wS  are 
the between-class and within-class scatter matrices of the 
training sample group respectively, and are estimated as 
follows:               
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where C , iP , im , m  and iS  represent the number of 
pattern classes, a priori probability of pattern class iω , the 
mean vector of the samples in class iω , the mean vector of 
all samples and the covariance matrix of samples in class 

iω , respectively. The between-class scatter matrix bS  can 
be expressed by both the original definition and its 
equivalent pairwise decomposition form (Loog, Duin, & 
Haeb-Umbach, 2001). The total scatter matrix tS  is the 
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summation of bS  and wS , estimated as 
( )( )∑ −−=

=
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TmXmXS . We can easily verify that: 
 

( ) ( )CNnrank w −≤ ,minS  
 

( ) ( )1,min −≤ Cnrank BS  
 

( ) ( )1,min −≤ Nnrank tS  
 

where n and N  denote the dimensionality and the total 
number of sample vectors, respectively. 
 
However, the LDA may encounter difficulties if applied to 
problems involving high dimensional data, such as images. 
Usually, the vectorization of images results in very high 
dimensional data vectors, e.g. the vector representation of 
images of size 100100× leads to a 10000 dimensional 
feature space. Since the LDA technique operates on the 
very high dimensional scatter matrices constructed from 
the high dimensional datasets, computational challenge 
(sometimes intractable) will be introduced to the eigen-
analysis. Moreover, those scatter matrices are always 
singular in these high dimensional cases unless the number 
of training samples is more than the number of dimensions, 
which is usually impossible in applications such as face 
recognition, palmprint recognition and so on.  
 
Many approaches (Belhumeur, Hespanha, & Kriegman, 
1997; Chen, Liao, & Ko et al., 2000; Yu & Yang, 2001; Lu, 
Plataniotis, & Venetsanopoulos, 2003a; Lu, Plataniotis, & 
Venetsanopoulos, 2003b; Price & Gee, 2005; Thomaz, 
Gillies, & Feitosa, 2004) have been proposed to deal with 
the above difficulties. Belhumeur et al. proposed a two 
stage PCA+LDA method (Belhumeur, Hespanha, & 
Kriegman, 1997), which first applied the Principle 
Component Analysis (PCA) to project the high 
dimensional data onto an intermediate lower dimensional 
space where the average within-class scatter matrix wS  is 
guaranteed to be non-singular, then the LDA can be 
executed to further reduce the dimensionality. Although 
this method has been widely used in many applications, 
especially in the face recognition field, it has a major 
problem that the PCA step used to make the wS  non-
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degenerate simultaneously removes the null space of wS , 
which usually includes most important discriminatory 
information (Chen, Liao, & Ko et al., 2000).  Chen et al. 
proposed a null space based LDA (NLDA) technique 
(Chen, Liao, & Ko et al., 2000), where the sample vectors 
are firstly projected to the null space of the wS  and then the 
optimal set of discriminant vectors is extracted from this 
null space by maximizing the between-class scatter matrix 

bS  by the PCA. The NLDA technique suffers from high 
computation complexity because the high dimensionality 
of wS  places high computational demand when extracting 
the null space of wS . Further, NLDA is sensitive to the 
number of pattern classes and the number of training 
samples per class since these two numbers determine the 
dimension of the null space of wS .  The Direct LDA 
(DLDA) method (Yu & Yang, 2001), proposed by Yu and 
Yang, employed a computational technique (described in 
section 2), to operate on scatter matrices of much smaller 
scale, usually CC × , which dramatically reduce the 
computational complexity and avoid singularity problem 
related to the traditional LDA procedure. It is worth noting 
that DLDA is equivalent to traditional LDA on problems 
of low dimensionality, where all scatter matrices are non-
singular.  
 
The DLDA method has achieved good performance (Yu & 
Yang, 2001; Lu, Plataniotis, & Venetsanopoulos, 2003a; 
Lu, Plataniotis, & Venetsanopoulos, 2003b; Price & Gee, 
2005) in face recognition tasks. However, as the Fisher 
criterion used is not directly related to the minimization of 
classification error, it suffers from two deficiencies: 1) 
from the equivalent pairwise decomposition expression of 
the bS  matrix in Eq. (1), we can observe that the class 
pairs with large distances between them are 
overemphasized in eigen-analysis of the pairwise formula 
(Loog, Duin, & Haeb-Umbach, 2001). Hence, the obtained 
discriminant projection directions attempt to preserve the 
distances of already well-separated classes while causing 
larger overlap between pairs of classes that are not well 
separated in the original space. Consequently, the 
discriminant directions to well separate the neighboring 
classes cannot be obtained if there are some outlier classes 
that are far away and well separated from some other 
classes. 2) The estimation of the average within-class 
scatter matrix wS  in Eq. (1) assumes that all classes have 
the same covariance matrix, which is usually violated in 
reality. Therefore, classes with largely deviating 
covariance matrices may dominate the eigen-
decomposition of wS . If those dominated covariance 
matrices coincidently belongs to the outlier classes far 
away from all the other classes, the resulting projection 
directions attempt to minimize the spread of the outlier 
classes while neglecting the minimization of the 
covariance matrices that indeed impacts the classification 
error. 
 
In this paper, we propose an enhanced direct linear 
discriminant analysis (EDLDA) solution integrating two 

types of class-wise weighting terms: class-pair weights and 
within-class weights in estimating the between class scatter 
matrices and average within class in order to relate the 
resulting Fisher criterion more closely to the minimization 
of classification error.  Furthermore, the extracted 
discriminant features are weighted by the mutual 
information between features and class labels. 
Experimental results on one Palmprint dataset and three 
face image datasets (Yale, Pix and AR) demonstrate the 
very good performance of the proposed method. 

2. Enhanced Direct LDA 

2.1 Direct LDA Solution 
Due to low computational complexity, no singularity 
problem, and promising performance, the DLDA technique 
has been successfully applied in face recognition. The core 
idea behind the DLDA is to simultaneously diagonalize the 
between-class scatter matrix bS  and the average with-class 
scatter matrix wS  while taking the order as first 
diagonalizing bS , and then wS . In the first step of bS  
diagonalization, the null space of bS  is removed and the 
training sample vectors are projected from original data 
space nR  onto the 1−C  column spaces of bS . This requires 
the computation of the eigenvectors of bS  corresponding 
to non-zero eigenvalues. Although the dimensionality of 

bS  is very high ( nn× ), since the matrix bS  can be 
expressed as: 

( )( ) TUUmmmmS =−∑ −=
=

T

1
i

C
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where ( ) ( )[ ]mPmP cc −−= mmU ,...,11 , the eigenvectors 
corresponding to non-zero eigenvalues of bS  can be 
computed through the eigen-analysis of a generally much 
smaller1 CC ×  matrix UUT  as follows:  
 

( ) ( ) ( )λλ UVUVUUVVUU TT =→=      
 
where V  and λ  are an eigenvector and the corresponding 
eigenvalue of matrix UUT , and the UV  denotes an 
eigenvector of TUUS =b  with the corresponding eigenvalue 
λ . We take 1−C  eigenvectors [ ]111 ,..., −= CUVUVΨ  
corresponding to non-zeros eigenvalues [ ]111 ,..., −= CλλΛ  of 

bS  and project all training sample vectors from nRX∈  to 
( ) 1

1
21

1
−− ∈ CRXΨΛ T . After the projection, bS  is whitened and 

the second step of ( ) ( )21
111

21
1

~ −−= ΛΨSΨΛS T
ww  diagonalization 

proceeds. Since the matrix wS
~  is of size 11 −×− CC , the 

computational complexity of the wS
~  eigen-decomposition 

is low. Thus we take the m eigenvectors 2Ψ  corresponding 
to m lowest (possibly zero) eigenvalues 2Λ . The projection 
matrix 2

21
11 ΨΛΨ −  should be normalized along columns to 

conform to orthonormality. 
 
                                                 
1 The number of classes is usually much smaller than the number of 
training samples and the number of dimensions in high dimensional 
problems 

AAAI-05 / 852



We note that the between-class scatter matrix (Eq.1) used 
in the DLDA is constructed by only the class means, which 
would not be optimal unless the covariance matrices of all 
classes are equal. Although this condition is actually hard 
to satisfy in real applications, the DLDA does demonstrate 
good performance in face recognition tasks. We explain 
this fact as follows: because the sample vectors in face 
recognition tasks are characterized by high dimensionality 
and small size, the covariance matrix of each class cannot 
be well estimated by any technique. Therefore, why could 
not we assume that all classes have the same covariance 
matrix where only a very small number of data vectors 
have been sampled into the training set? Justifying in this 
manner, we may regard the usage of only class means to 
estimate the bS  be reasonable in the DLDA. 
 
However, as stated in (Loog, Duin, & Haeb-Umbach, 
2001), the Fisher criterion employed in the traditional LDA 
technique is not an optimal approximation of the 
minimization of the Bayes error especially when outlier 
classes (described in the introduction section) exist. This 
shortcoming is inherited by the DLDA without any 
improvements. In the next section, we propose a Class-
weighted Direct LDA solution (CwDLDA) introducing the 
class-pair and within-class weights in the estimation of bS  
and wS  to handle this problem. 

2.2 Class-wise Weighted Direct LDA Solution 
The Fisher criterion employed in the traditional LDA is 
only a sub-optimal approximation of the Bayes error but it 
is easy to implement due to the non-iterative eigen-
decomposition technique. Two major deficiencies 
associated with the original Fisher criterion are: 1) it 
attempts to find the linear transformation to maximize the 
distance between the classes in the projected low 
dimensional space, which is not directly related to the 
minimization of misclassification. Therefore, class pairs 
with large distances would dominate the eigen-
decomposition of bS  such that the obtained discriminatory 
directions attempt to preserve the distances of already well-
separated classes. Therefore, the discriminant directions to 
well separate the neighboring classes cannot be obtained if 
there exist outlier classes well separated from the other 
classes. 2) The expression of the average within-class 
scatter matrix wS  in Eq. 1 has an implicit assumption that 
all classes have the same covariance matrix. If it is not 
true, those significantly deviating covariance matrices may 
dominate the eigen-decomposition process of wS . 
Therefore, the LDA may fail when the dominating 
covariance matrices belong to outlier classes since the 
obtained transformation attempt to minimize the within-
class scatter of the outlier classes while neglecting the 
minimization of those classes’ covariance matrices 
impacting the classification error. 
 
To tackle the above deficiencies in the DLDA, we devised 
a Class-weighted Direct LDA (CwDLDA) solution by 
introducing class-pair weights and the within-class weights 

in the estimation of the between-class and within-class 
scatter matrices bS  and wS , respectively.  
 
For each pair of classes in the pairwise decomposed 
definition of bS  in Eq. 1, we introduce a class-pair 
weighting factor, suggested in (Loog, Duin, & Haeb-
Umbach, 2001), ( ) ( ) ( )2221 2 derfddwc

ij = , where 
( ) ( ) dtexerf x t∫= −

0
2

2 π  is related to the pairwise approximated 
Bayesian accuracy. Therefore, the neighboring class pairs, 
not well separated in the original feature space, can have 
increased influence in the computation of bS  than those 
already well separated. The bS  in Eq. 1 is thus modified to: 
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where ( ) ( )jiwjiijd mmSmm −−= −1T  is the Mahalanobis 
distance between classes iω  and jω . Since the within-class 
weighting term is used to eliminate the influences form the 
possible outlier classes, it can be calculated based on the 
class-pair weighting factors as: ( )∑=

=

C

j
ij

c
ij

w
i dww

1
.  

 
Therefore, the outlier classes with small class-pair 
weighting factors to the other classes also receive small 
weights in the estimation of the weighted average within-
class scatter matrix expressed as: 
 
                                       ∑=

=

C

i
i

w
iiw wP

1

~
SS                               (3) 

 
As pointed out and proven in (Price & Gee, 2005), 
assuming that the class-pair weights are always above zero, 
the null space of the non-weighted bS  is equal to the 
weighted one bS

~ . Therefore, we could remove the null 
space of bS

~  by projecting all training samples on the 
column space of bS , where the projection directions can be 
obtained by the eigen-decomposition of a CC ×  matrix. 
The weighting term ( )dwc

ij  and w
iw  are calculated in the 

transformed 1−C  dimensional space. 
 
The calculation of the Mahalanobis distance between a pair 
of classes involving the inversion of the average within-
class scatter matrix that is a non-weighted estimation in the 

1−C  dimensional space. To avoid the occasional 
singularity problem of 11 −×−∈ CC

w RS , we employ a recently 
proposed covariance matrix estimation technique called 
maximum entropy covariance selection method (Thomaz, 
Gillies, & Feitosa, 2004) to re-estimate the wS  when it is 
singular. The procedure of re-estimation of the matrix wS  
is shown in Table 1. 
 
Table 1. The Maximum Entropy Covariance Selection 
Algorithm 
 
1. Find eigenvectors Φ  and corresponding eigenvalues Λ  

of 11 −×−∈ CC
p RS , where ( )CNwp −= SS is the unbiased 

estimation wS  
 
2. Calculate the average eigenvalue λ  of pS  
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3. Form a new diagonal eigenvalue matrix as : 
( ) ( )( )λλλλ ,max,...,,max 11 −=Λ C

new diag  
 
4. Form the new average within-class scatter matrix as 

( ) ( ) ( )CNCN newnew
p

new
w −⋅=−⋅= TΦΦΛSS  

 
 
The detailed description of the CwDLDA solution is listed 
in Table 2 without performing the step 6. 

2.3 Enhanced Direct LDA Solution 
Compared with the original DLDA algorithm, the Fisher 
Criterion in the CwDLDA with the weighted estimation of 
between and within class scatter matrices is more related to 
the minimization of classification error. However, since it 
is still a suboptimal solution to approximate the Bayes 
error criterion, the extracted features may not retain the 
complete discriminatory power. Hence, we consider 
assigning each extracted feature ( ) N

iNiii ffff R∈=   ..., ,2,1  
mi ..., 1,=  with different weights mii 1,..., , =κ . The mutual 

information is a nonlinear metric to evaluate the correlation 
between two random variables, which has demonstrated 
good performance in measuring the salience of features 
(Kwak & Choi, 2002). Therefore, in our paper, we choose 
the normalized mutual information ),( CifI  between  if and 
the corresponding class label { }{ }CcNic ii ,...,1|,...,1 , ∈==C to 
weight features As suggested in (Kwak & Choi, 2002), we 
evenly discretize each feature into 10 equal intervals 
between ]*2 ,*2 [ iiii δµδµ −− , where iµ  and iδ  are the mean 
and standard deviation of if  respectively, and then count 
the sample frequency in each interval as the probability. 
Therefore, ),( CifI  is calculated as:  
 
          ( )∑∑−=

= =

C

s t
itititi sPfPsfPsfPfI

1

10

1
))()(),(log(),(),( C           (4) 

 
where ),( sfP it  is the joint probability of itf  and s  and itf  
is the tth interval of feature if . Consequently,  iκ can be 
expressed as: 
 
            mifIfI

m

j
jii ,...,1 ,),(),(

1
=∑=

=
CCκ                              (5) 

 
If mutual information between  if and C  is large, it means 
that  if and C  are closely related, and vice versa. 
 
By combining the above step with the CwDLDA solution, 
an Enhanced Direct LDA (EDLDA) solution is devised. 
The outline of the EDLDA method is described in Table 2. 
 
Table 2. The algorithmic description the Enhanced Direct 
LDA 

 
1. Find a set of 1−C  orthonormal eigenvectors 1Φ  and the 

corresponding non-zero eigenvalues of the between-
class scatter matrix bS  defined in the original data space 

nR . Remove the null space of bS  by projecting all 
samples onto 1−CR , i.e. 1

1  −∈→∈ Cn RxΦRx T  
 

2. Calculate wS  in the reduced space 1−CR . If wS  is not 
singular, 1−

wS  is computed, otherwise it is re-estimated 
as new

wS  by method in Table 1 and the inverse of new
wS  is 

computed to replace 1−
wS  

 
3. Calculate, in 1−CR , the weighted between-class and 

within-class scatter matrices bS
~  and wS

~  using Eqs. 2 
and 3 

 
4. Whiten bS

~  by: 11
21

122
21

1122
~

  
~

−×−
−− Ι=→= CCbb ΛΦSΦΛΛΦSΦ TT  

and project all samples by transformation matrix 
TΦΛ 2

21
1
− . Thus, we have ( ) ( )21

122
21

1
~~~ −−= ΛΦSΦΛS T

ww  
 
5. Diagonalize wS

~~  by 233

~~
ΛΦSΦT =w  and take the m 

eigenvectors '
3Φ  from 3Φ corresponding to the m 

smallest eigenvalues. Therefore, the total projection 
transformation is obtained as:  

                mn RxΦΦΛΦRx TTT ∈→∈ −
12

21
1

'
3   

     which transforms data from nR  to mR  
 
6. Calculate the weights  1,.. , mii =κ  for each of the 

extracted features mif N
i 1,.. , =∈R  by Eqs. 4 and 5 

 

3. Experimental Results 
We applied our proposed CwDLDA and EDLDA methods 
on 4 real biometric datasets to evaluate their performances 
compared with the original DLDA. We do not list the 
comparison with results of other linear dimension 
reduction techniques since our current work focuses on the 
enhancement of the DLDA technique itself while the 
promising performance of the DLDA compared with other 
techniques has been illustrated in many literatures 
(Belhumeur, Hespanha, & Kriegman, 1997; Chen, Liao, & 
Ko et al., 2000; Yu & Yang, 2001; Lu, Plataniotis, & 
Venetsanopoulos, 2003a; Lu, Plataniotis, & 
Venetsanopoulos, 2003b; Price & Gee, 2005). It is worth 
noting that our proposed technique can also be easily 
generalized to other linear dimension reduction methods. 
The 4 datasets1 we used are: 1) NTU palmprint datasets, 
which contains 10 different right hand palmprint images of 
40 persons, for a total of 400 images with the size of 

200200× . 2) Yale face image dataset comprising 165 
images with 11 images for each of 15 subjects. All images 
are centered and cropped to the size 99127× . 3) Pix face 
image datasets is composed of 300 images with 30 
subjects. Each subject has 10 face images of a size 

512512× , which are sub-sampled to the size of 100100×  in 
our experiments. 4) AR face image dataset is a large and 
complex one. Here we use a subset of AR that contains 
1638 face images with 13 images for 133 persons. All 
images are sub-sampled from the original size 576768×  to 
a smaller size of 4060×  for our experiments. 
 
                                                 
1 The three face image datasets used are publicly available. 
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In our experiments, we randomly choose 5, 5, 5 and 7 
sample images of each person from the dataset to be the 
training set and the remaining samples constitute the 
testing set. The number of features extracted is defined as 

1−C  and the 1-nearest neighbor approach is used as the 
classifier. The experiments are repeated 20 times for each 
approach and two performance measures are employed. 
The first one is the average classification accuracy (CR) 
over 20 runs on the testing set. The second one is the 
average improvements of the classification rate (AveImp) 
of the proposed CwDLDA and EDLDA methods over the 
DLDA solution in terms of all possible numbers of 
extracted features from 1 to 1−C . The results are illustrated 
in Table 3. 
 
Table 3. Performance Comparison of DLDA, CwDLDA 
and EDLDA on 4 biometric datasets 
 

Dataset Perfor. 
Measure 

DLDA 
(%) 

CwDLDA 
(%) 

EDLDA 
(%) 

CR 93.43 95.67 96.40 Palm 
AveImp --- 2.47 2.46 

CR 74.72 76.39 78.00 Yale 
AveImp --- 3.47 3.69 

CR 95.77 96.50 97.37 Pix 
AveImp --- 1.86 2.15 

CR 34.84 63.83 75.01 AR 
AveImp --- 15.52 16.22 

 
It is clear that the CwDLDA solution outperforms the 
DLDA solution on both the average classification accuracy 
and the average improvement classification rate on all 4 
datasets, while the EDLDA approach further improves the 
CwDLDA. The improvements of the EDLDA and 
CwDLDA over the DLDA on the AR face image dataset is 
significant due to the existence of a large number of classes 
and the complex image sample distribution within this 
dataset.  

4. Conclusions 
In this paper, we proposed an enhanced direct LDA 
(EDLDA) solution incorporating the class-wise weights 
and the within-class weights into the estimation of the 
between-class and average within-classes scatter matrices, 
respectively. It may alleviate the influences from the 
possible outlier classes such that the resulting Fisher 
criterion is more closely related to the minimization of 
classification error.  Moreover, the extracted discriminant 
features are weighted by the normalized mutual 
information between each feature vector and the 
corresponding class label vector. Experimental results on 4 
biometric datasets (NTU palmprint, Yale, Pix and AR) 
demonstrate the promising performance of the proposed 
method. We note that the proposed schemes can also be 
easily generalized into other linear discriminant methods. 
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