Value Functionsfor RL-Based Behavior Transfer: A Comparative Study

Matthew E. Taylor, Peter Stone, and Yaxin Liu
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188
{mtaylor, pstone, yxlig@cs.utexas.edu

Abstract Value-based TD methods learn to estimateahue function
_) for each possible state. The learner is then able to select th
Temporal difference (TD) learning methods (Sutton & Barto action which it believes will return the highest value in kbeg
1998) have become popular reinforcement learning techniquesyn Qver time the learned value function approaches tte tru
in recent years. TD methods, relying on function approxima- ya|ye of each state by comparing the expected value of a state
tors to generalize learning to novel situations, have had someith the actual value received from that state. Value-bagd
experimental successes and have been shown to exhibit somg,ethods typically utilize dunction approximatoso that the
desirable properties in theory, but have often been found slowyg|ye function can be approximated for novel situationss Th
in practice. This paper presents methods for further generaliz-gnnhroximation becomes critical as the number of situatioas
ing across tasksthereby speeding up Iee_trnmg, via a novel form agents could be in grows, or becomes infinite.
of behavior transfer We compare learning on a complex task "1, this paper we study the effect béhavior transfer(Tay-
with three function approximators, a CMAC, a neural network, |5 ¢ "Stone 2005) on the learning rates of value-based TD
and an RBF, and demonstrate that behavior transfer works Well|eamers_ Behavior transfer allows a TD learner trained on
with all three. Using behavior transfer, agents are able to leamqne ta5k to learn significantly faster when training on aeoth
one task and then markedly reduce the time it takes to learn g,qk with related. but different. state and action spacess T
more complex task. Our algorithms are fully implemented and athod is more éeneral than the previously referenced meth-
tested in the RoboCup-soccer keepaway domain. ods because it does not preclude the modification of theitrans
) tion function, start state, or reward function. We will coang
Introduction the efficacy of using behavior transfer to speed up learning

; : i agents that utilize three different function approxioraf a
Temporal difference learning methods (Sutton & Barto 199?\/%(:’ a neural network, and an RBF, on a single reinforce-

have shown some success in different reinforcement legarn ent learning problem.

tasks because of their ability to learn where there is lichit The kev technical chall f behavior t fori .
prior knowledge and minimal environmental feedback. How- ' '€ K€Y lechnical challenge of behavior transier IS mapping

ever, in practice, current TD methods are somewhat slowdd/2/ue function in one representation to a meaningful value
' y function in another, typically larger, representationeThap-

produce near-optimal behaviors. Many techniques existhvhi = ™" ;
attempt to speed up the learning process. ping is nec_essarlly dependent on bofthhthe t?skfand ;kr)\e func-
For example, Selfridge et al. (1985) usdicected training 1ON ap%r?r?l([n?htorbs Lepr_es?ntatl]gn f the_ va ue_”ugctl ml'
to show that a learner can train faster on a task if it has fi g E’Os' It'al te ke avao][ra?s er lec n[quet Wi Te;]app Ic
learned on a simpler variation of the task. In this paradigen t gl.m# 'pﬁ a% shan_ unc |c:cn a_pproxmalors. As gape
state transition function, which is part of the environmean cStaolishes that behavior transier is general enough ta wor
change between tasksearning from easy missiorgasadaet effectively with multiple function approximators, in padlar
al. 1994) is a technique that relies on human input to modi&ntelural networktrl]n a?fgjltlon t(f) agl\'/\lﬂp'?‘cc TS'S paperl alsto dl-k
the starting state of the learner over time, making it in@em Ctﬁ’ compares Fellcacy 0 ta . and a neural networ
tally more difficult for the learner. Both of these methods r&" € SaME compiex iearning tasx.
duce the total training time required to successfully legam ;
final task. However, neither allow for changes to the state or Behavior Transfer Methodology
action spaces between the tasks, limiting their applitgbil To formally define behavior transfer we first review the rein-
Reward shapin¢Colombetti & Dorigo 1993; Mataric 1994) forcement learning framework that conforms to the gengrall
allows one to bias a learner’s progress through the statespaccepted notation for Markov decision processes (Puterman
by adding in artificial rewards to the environmental reward$994). There is a set of possible perceptions of the current
Doing so requires sufficient knowledge about the envirortmesiate of the worldS, and a learner has an initial starting state,
a priori to guide the learner and must be done carefully $¢,itic;. When in a particular statg there is a set of actions,
avoid unintended behaviors. While it is well understood how, which can be taken. The reward functiGghmaps each
to add this type of guidance to a learner (Ng, Harada, & Ryserceived state of the environment to a single number which
sell 1999), we would prefer to allow the agent to learn fasttsrthe instantaneous reward for the state. The transitino-fu
by training on different (perhaps pre-existing) taskseathan tion, 7', takes a state and an action and returns the state of the
creating easier, artificial tasks. environment after the action is performed. If transitions a
non-deterministic the transition function is a probabpililis-
Copyright(© 2005, American Association for Artificial Intelligencetribution function. A learner is able to sensgand typically
(www.aaai.org). All rights reserved. knows A, but may or may not initially knows, R, orT.

AAAI-05 / 880

A policy © : S — A defines how a learner interacts with Keepaway a subproblem of RoboCup soccer, is the chal-
the environment by mapping perceived environmental statesge where one team, theepersattempts to maintain pos-
to actions.w is modified by the learner over time to improvesession of the ball on a field while another team, thieers
performance, i.e. the expected total reward, and it coralyletattempts to gain possession of the ball or force the ball but o
defines the behavior of the learner in an environment. In theunds, ending agpisode Keepers that make better decisions
general case the policy can be stochastic. The success oélaput their actions are able to maintain possession of tie ba
agent is determined by how well it maximizes the total rewaldnger and thus have a longer average episode length. Figure
it receives in the long run while acting under some policy depicts three keepers playing against two takers.
An optimal policy, 7, is a policy which does maximize this As more players are added to the task, keepaway be-
value (in expectation). Any reasonable learning algoritttm comes harder for the keepers because the field becomes more
tempts to modifyr over time so that the agent’s performancerowded. As more takers are added there are more players
approaches that of*. to block passing lanes and chase down any errant passes. As
In this paper we consider the general case wltgre So, more keepers are added, the keeper with the ball has more
and/orA; # A, for two tasks. To use the learned policy fronpassing options but the average pass distance is shortisr. Th
the first taskm(1, finar), @s the initial policy for a TD learner reduced distance forces more passes and often leads to more
in a second task, we must transform the value function so tlestors because of the noisy actuators and sensors. Foethis r
it can be directly applied to the new state and action spaces@n keepers in 4 vs. 3 keepaway (i.e. 4 keepers and 3 takers)
behavior transfer functional(r) will allow us to apply a pol- take longer to learn an optimal control policy than in 3 vs. 2.
icy in a new task. The policy transform functionaheeds to The hold time of the best policy for a constant field size also
modify the policy and its associated value function so thatdecreases when adding an equal number of keepers and takers.
acceptsS; as inputs and allows fad, to be outputs. A policy The time it takes to learn a policy which is near a handcoded
generally selects the action which is believed to accuraul&olution roughly doubles as each additional keeper and take
the largest expected total reward; the problem of trandfoym is added (Stone, Sutton, & Kuhimann 2005).
a policy between two tasks reduces to transforming the value .
function. In this paper we will therefore concentrate omsra L earning Keepaway

ferring the state action values, Q, from one learner to anmot he kee P
LS ; : pers use episodic SMDP Sak3gSutton & Barto
g:;lg;glg]geﬁg(;i%c;t:yaﬁs%Q? key technical challenge to enab 98), a well understood temporal difference algorithm, to
One measure of succéss in speeg learn their task. In one implementation, we use linear tile-
ing uo learning usina this method coding function approximation, also known as CMACs, which
'sgtha? o ag o gt e has been successfully used in many reinforcement learning
IS that gi PONCYT (1, final), systems (Albus 1981). A second implementation of our agents
training time for =, to reach some use neural networks, another method for function approxima
performance threshold ~decrease tion that has had some notable past successes (Crites & Barto
when replacing the initial policy in 1996; Tesauro 1994). The third implementation uses a ra-
task 2,72 initiar), WIth p(7(1, finar))- e dial basis function (RBF) (Sutton & Barto 1998). The keep-
This criterion is relevant when task \& ers choose not from primitive actions (turn, dash, or kick)
1 is given and is of interest in its oo but higher-level actions implemented by the CMUnited-99
own right or if m(y rina) Can be Figure 1: This diagram depicts team (Stone, Riley, & Veloso 2000). A keeper without the ball
used repeatedly to speed up multiplfe 13 state varables used for 5 romatically attempts to move to an open area (the receive
related tasks. A stronger measure Qe e e memasaction). A keeper in possession of the ball has the freedom to
success is that the training time foko players and the center of the decide whether to hold the ball or to pass to a teammate.
both tasks using behavior transfer igeld, as wellas 2anglesalong Qur CMAC and RBF agents are based on the keepaway
shorter than the training time to learrpassing lanes. benchmark players distributed by UT-Austiwhich are de-
the second task from scratch. This scribed in (Stonet al. 2005). These benchmark players are
criterion is relevant when task 1 is created for the sole @s&p pyjit on the UvA Trilearn team (de Boer & Kok 2002) and the
of speeding up learning via behavior transfer adyin.) IS CMUnited-99 team (Stone, Riley, & Veloso 2000), whereas
not reused. previous publications (Stone, Sutton, & Kuhlmann 2005) and
. our neural network players are built on the CMUnited-99 play
Testbed Domain ers alone. The newer benchmark players have better low-leve
To test the efficacy of behavior transfer with different fundunctionality and are thus able to hold the ball for longerth
tion approximators we consider the RoboCup simulated sdee CMUnited-99 players, both before and after learning, bu
cer keepaway domain using a setup similar to past tBe learning and behavior transfer results are very sindar
search (Stone, Sutton, & Kuhlmann 2005). RoboCup siithe older players.
ulated soccer is well understood as it has been the basis dEMACSs allow us to take arbitrary groups of continuous state
multiple international competitions and research chaésn variables and lay infinite, axis-parallel tilings over thésee
The multiagent domain incorporates noisy sensors and adtigure 2). Using this method we are able to discretize the
ators, as well as enforcing a hidden state so that agents cantinuous state space by using tilings while maintainirey t
only have a partial world view at any given time. While precapability to generalize via multiple overlapping tilingshe
vious work has attempted to use machine learning to learamber of tiles and width of the tilings are hardcoded ansl thi
the full simulated soccer problem (Andre & Teller 199%ictates which state values will activate which tiles. Taed-
Riedmilleret al. 2001), the complexity and size of the problertion approximation is learned by changing how much each tile
have proven prohibitive. However, many of the RoboCup sub-
Pr0b|em5_ have been |_50|ated and SOIVed_ using machine Ieam;"Flash file demonstrations, source code, documentation, and mailing listecan b
ing techniques, including the task of playing keepaway. found athttp://www.cs.utexas.edu/users/AustinVilla/sim/keepaway/

AAAI-05 / 881

contributes to the output of the function approximator. By dthe episode starts, the three keepers attempt to keep kohtro
fault, all the CMAC's weights are initialized to zero. Thig-a the ball by passing amongst themselves and moving to open
proach to function approximation in the RoboCup soccer dpesitions. The keeper with the ball has the option to either

main is detailed by Stone and Sutton (2002). pass the ball to one of its two teammates or to hold the ball. In
An RBF is a generalization of this taskA = {hold, passToTeammatel, passToTeamnjate2
the tile coding idea to a contin- ~—mmen S js defined by 13 state variables, as shown in Figure 1. When
uous function (Sutton & Barto nmgse @ taker gains control of the ball or the ball is kicked out of
1998). In the one-dimensional § the field’s bounds the episode is finished. The reward to the
case, an RBF approximator is g : Sarsal) algorithm for the keeper is the number of time steps
a linear function approximator © the ball remains in play after an action is taken. The episode
f(z) = 3, wifi(x), where the is then reset with a random keeper placed near the ball.
basis functions have the form Dimension #1 All weights in the CMAC function approximator are ini-

fix) = ¢(|z — cil), z is the Figue 2 Tile-coding feature sets tially set to zero. Similarly, all weights and biases in tlein
current state, and; is the cen- are formed from multiple overlapping ral network are set to Sma”_ random n_umbers'_ We use a 13-
ter of featurei. A CMAC tiings and state variables are used t020-4 network where the choice of 20 hidden units was chosen
is a degenerate case of RBetermine the activated tile in each of via experimentation? As training progresses, the weights of

. . 3 the different tilings. Every activated i i
approximator withe;’s equally iie contributes a weighted value to the the function approximator are changed by Saxya¢ that the

spaced ang(z) a step function. total output of the CMAC for the given @V€rage hold time of the keepers increases. Throughout this
Here we use Gaussian radial bastate. Increasing the number of tilings process, the takers use.a static han(;l—coded .pollcy to qttemp
sis functions, wherep(z) = allows better generalization while de- to capture the ball as quickly as possible. Policy evalmaso

2 , creasing the file size a"O;NS more a¢very noisy do to high environmental randomness.
eXp(—m), and the same;’'s as curate representations of smaller de-

a CMAC. The Iearning for RBF t;:lnse Note that we primarily use one- Learning 4vs. 3

S " nsional tilings but that the princi-
networks is identical to that for pies apply in the n-dimensional case. Holding the field size constant we now add an additional
CMACs except for the calcula- keeper and an additional takerR and 7' are essentially
tion of state-action values where the RBFs are used. Asyischanged from 3 vs. 2 keepaway, but noWw= {hold,
the case for CMACs, the state-action values are computed a&asToTeammatel, passToTeammate2, passToTeammate3
sum of one-dimensional RBFs, one for each feature. By tUihdS is made up of 19 state variables due to the added players.
ing o, the experimenter can control the width of the Gaussigme 4 vs. 3 task is harder and the learned average hold times
function and therefore the amount of generalization over thfter 20 hours of training with a CMAC function approximator
state space. In our implementation, a valuerof 0.25 cre- |earning from scratch decrease by roughly 32% from 3 vs. 2 to
ates a Gaussian which roughly spans 3 CMAC tiles. We triad;s. 3. The neural network used is a 19-30-5 network, where
3 different values for this parameter but more tuning mayehashe use of 30 hidden units was chosen under the assumption
reduced our learning times. that the 4 vs. 3 task is more complex than the 3 vs. 2 task,

The neural network function approximator likewise allowghich had fewer inputs, hidden units, and outguts.
a learner to select an action given a set of state variab®h E' |, order to quantify how fast an égent in 4 vs. 3 learns

input to the neural network is set to the value of a state vajjn get 3 target performance of 9.0 seconds for CMAC and

able and each output corresponds to an action. The legal g¢yra| network learners, while RBF learners have a target of
tion with the highest activation is selected. We use a feeffy o seconds. Thus. when a group of four CMAC keepers

edge, this work presents the first application of a function ane RBF learners learn more quickly, they required a higher
proximator other than a CMAC in the keepaway domain. target performance. Note that our behavior transfer result
For the purposes of this paper, it is particularly importapbiq for other (higher) threshold times as well. By averagin

to note the state variables and action possibilities useti®y oyer many trials we can measure the effectiveness of legirnin
learners. The keepers’ states comprise distances andsangle, different situations.

the keeperd<; — K, the takersl, — T, and the center of
the playing region C (see Figure 1). Keepers and takers are Behavior Transfer in Keepaway

ordered by increasing distance from the ball. Note that @s ‘i_he . . :
; arning on one task and transferring the behavior to a sepa-
number of keepers and the number of takeraincrease, the e useful task can reduce the training time. In the keepawa

number of state variables also increase so that the more cQi\=. ; f
plex state can be fully describedd must change (e.g. there ain,A and$ are determined by the current keepaway task

are more distances to players to account for) jafjdncreases and thhu%rdr;]ﬁ; |r f&?f?ygﬁ:agrceeetf?egis\fgrCf&é??éhfé (Str:]aiis
as there are more teammates for the keeper with possesg; %S andA cyhan es. R andl ghan e by definition
of the ball to pass to. Full details of the keepaway dom 9€sinitial, M, ge by y

. : P t in practice,R is always defined as 1 for every time step
and a player implementation similar to ours are documen ’ Y ; _
elsewhere (Stone, Sutton, & Kuhimann 2005). t the keepers maintain possession, &ighi, and T are

always defined by the RoboCup soccer simulation.
Learning 3vs. 2 —
. e . Five different network sizes were tested, from 15 to 25 hidden nodes and the differ-
On a 25m x 25m field, three keepers are initially placed iices in performance were very small.

three corners of the field and a ball _iS placed near one of the3Again, other networks with different numbers of hidden units were tried, Hait t
keepers. The two takers are placed in the fourth corner. Whfarences in learning times were not significant.

AAAI-05 / 882

In the keepaway domain we are able to intuit the mappin8sss. 2 into similar actions and states in 4 vs. 3, following th
between states and actions in the two tagkdased on our same schema as iy 4¢-
knowledge of the domain. Our choice for the mappings is sup-Constructing

ported by empirical evidence showing that using thwith p,.,..; is Partial Description Opcimac

behavior transfer decreases training time. Other domaihs imilarly ey S, 2o varabe
A - N e 1, ist(K1, C)

not necessarily have such straightforward transforms dtw intuitive. dist%Kg, o) dist(Ks, C)

tasks of different complexity. Finding a general method tbhe 13-20- g:;(ﬁsg)) gz;ggsgg

specify p is outside the scope of this paper and will be fol network is —in(azst (7 77y dist(Ks To), T Min(dist (s To)

mulated in future work. One of the main future challengesigmented | dist(k>, Ts)) _ dist(Kz, T2))

will be identifying general heuristics for mapping statesla by adding | Yin(is! (fss 1), dist (s, T2). o MRSt T).

actions between two related tasks. A primary contributibn 6 inputs, | Min(dist(Ka, T1), dist(Ka, T5), | Min(dist(Ks. T1),

this paper is demonstrating that there exist domains and fud0 hidden [déist(Xa, Ts)) dist(Ks, Ts))

tion approximators for whicky can be constructed and therhidden Table 1: This table describes part of (g, .. transform in keep-

used to successfully decrease learning times. nodes, and away. We denote the distance between a anddiaga, b). Rele-

. . . . vant points are the center of the fi€lt] keeperd<; - K4, and takers
The naive approaCh of dlreCtIy using the value function fro OUtpm T1-T5. Keepers and takers are ordered in increasing distance from

T (3vs2, final) fails becauseS and A have changed. Keeping innOC_ie- The the ball and state values not present in 3 vs. 2 are in bold.

mind thatr : S — A, we see that the new state vectors whicheights))
describe the learner's environment would not necessasly gnnecting inputs 1-13 to hidden nodes 1-20 are copied over
correctly used, nor would the new actions be correctly evafiiom the 13-20-4 network. Likewise, the weights from hidden
ated by (3,52, finat)- TO USE the learned policy we modify ithodes 1-20 to outputs 1-4 are copied over. The new weights
to handle the new actions and new state values in the secBﬁm’een the input and hidden layers, i.e. those not present
task so that the player can reasonably evaluate them. momethlg |§gu? t%emggléh ?;?/esret-rtﬁéhnee\?vv\?vﬁgﬁtlseg(rart]vevgg;etlﬁgt
tio-rl;h:ngMggrggnfﬁggfggfeﬂr?gg{ rtgvlf/?i?d? s_}%tg %r;c:naer; den and output layers are set to the average learnedtseigh

; ; the hidden to output layer. Every weight in the 19-30-5
evaluate each potential action for the current state and t - o ;
user to choose one. We CONstructa,q. and utilize it S0 twork is set to an initial value based on the trained 13+20-

; : : : etwork. Because,,,.; copies the average into the weights
mg;greeggg%?glgﬁ ﬁ]\sltse.;’:dagleoil’;“tgg"\gg(ljghts forfthe agl_tg/a om the input to hidden layer, it is in some sense simplentha
molish this. w weiahts from thfqﬁfﬂ“’&zv?ﬁ”h woull mac, Which initializes the weights for the new state variables
accomplish this, we copy weights from the tiles which woulth’siniar old state variables. We explore this simplgf, qc
be activated for a similar actionin 3vs. 2 into the tiles\ated suggest that there are multiple ways to formufat&uture
for every new action in 4 vs. 3. The weights corresponding {4 “\ill attempt to determine a priori what type pfwill
the tiles that are activated for the “pass to teammate 208cti i pest for a given function approximator and pair of tasks
are copied into the weights for the tiles that are activated t Having constructedps which handle the new states
evaluate the “pass to teammate 3" actiony,ss,imiuia) Will - ang actions for function approximators, we can now set
initially be unable to dlstlngwsh between these. two action T(avss.initial) = P(T(3vs2.rimar)) TOT all three sets of agents.
To handle new state variables we follow a similar strategye do not claim that these initial value functions are cdrrec
The 13 state variables which are presentin 3 vs. 2 are alre%i,yd empirically they are not), but instead that they allbe t

handled by the CMAC's weights. The weights for tiles actiaarners to more quickly discover a near-optimal policy.
vated by the six new 4 vs. 3 state variables are initialized to

values of weights activated by similar 3 vs. 2 state vargble Results and Discussion
For instance, weights which correspond to “distance to team In Tables 2 and 3 we see that

mate 2" values in the state representation are copied igto tho\mMAC Learning Results a CMAC, an RBF, and a neu-

weights for tiles corresponding to “distance to teammate 3fsr3vs Zave 4vs. 3 Ave ol | ral network successfully allow
state values. This is done for all six new state variablesa As ep'godes t'mfs(g%urs t'melggtém) independent players to learn to
final step, any weights which have not been initialized ate se 12.29 1229 | hold the ball from opponents
to the average value of all initialized weights. This exteps 0 10.96 1005 | when learning from scratch.
provides an larger benifit when fewer 3 vs. 2 episodes are usedy 402 42 However, the training times for
and is studdied elsewhere (Taylor & Stone 2005). The 3 vs. 2250 3.77 4.3 agents that use neural networks
o, ; ; 500 3.99 5.05 g

training was not exhaustive and therefore some weightstwhic 1500 372 5as is significantly longer? Previ-
may be utilized in 4 vs. 3 would otherwise remain uninitial- 3000 242 foa | s research has shown that a
ized. Tiles which correspond to every value in the new 4 Vs.1g000 154 9801 | CMAC function approximator

3 state vector have thus been initialized to values det@mniy. = "o (i showing that leam-was able to successfully learn
via training in 3 vs. 2. See Table 1 for examples. Identifying; veepaway with a CMAC and apply- in this domain (Stone, Sutton
similar actions and states between two tasks is essentialif@behavior transfer can reduce training & Kuhlmann 2005) but to our.
constructinge and may prove to be the main limitation whetime. Minimum leaming times are bold. knowledge no other function
attempting to apply behavior transfer to different domains approxing]ators had been tested

prBE 1S analogous tpoyac. The main difference be- j, keepaway. This work confirms that other function approxi-
tween the RBF and CMAC function approximators are hoWaiors can be successfully used and that a CMAC is more effi-
weights are summed together to produces values, but ghent than a neural network, another obvious choice. Wet posi

weights have similar structure in both function approxiongt a¢ thjs difference is due to the CMAC's propertylotality.
For a given state variable, a CMAC summs one weight per

tiling. An RBF differs as it sums multiple weights for each™ 4 .

- . S . . Note that these neural network results use an older version of the agentsedan us
t”'ng where We|ghts are mUIt_|pI|ed by the GaUSS|an fumuopy the CMAC or RBF. However, the newer version of the neural network plaalecs
o(x — ¢;). We thus copy weights from actions and states iurn much slower than the CMAC and RBF players.

AAAI-05 / 883

Neural Network and RBF Learning Results when compared to training 4 vs. 3 from scratch. Not only is

P isouse | Ave.Stme | tomltme | 4ve 3tme | toul fme the time to train the 4 vs. 3 task decreased when we first train

A 39716 3716 202 1202 on 3 vs. 2, but the total training time is less than the time to

50 24007 54017 709 723 train 4 vs. 3 from scratch. We can therefore conclude that

100 22189 2208 753 FE in the keepaway domain training first on a simpler task can
= R 20552 728 I increase the rate of learning enough that the total traiting
1,000 357.32 359.45 6.90 10.13 is decreased when using a CMAC function approximator.

Table 3: Results from learning keepaway with different amounts of 3 vs. 2 tegiinie To verify that the 4 vs. 3 CMAC players were benefiting
(in hours) indicates behavior transfer can reduce training time for neural network (ff@m behavior transfer and not from having non-zero initial
second threshold) and RBF players (10.0 second threshold). weights, we initialized CMAC weights uniformly to 1.0 in one

)] . _ set of experiments and then to random numbers from 0.0-0.5
When a particular CMAC weight for one state variable is upn a second set of experiments. The learning time gvaater
dated during training, the update will affect the outputieadf than learning from scratch in both experiments. Haphayardl
the CMAC for other nearby state variable values. The widthitializing CMAC weights may hurt the learner but systemat
of the CMAC tiles determines the generalization effect angally setting them through behavior transfer is beneficial
outside of this tile width, the change has no effect. Coftras Taple 3 shows the average training time in 4 vs. 3 for differ-
this with the non-locality of a neural network. Every weight ent amount of 3 vs. 2 training using a neural network function
used for the calculation of a value function, regardlessoo¥ h approximator. All numbers reported are averaged over at lea
close two inputs are in state space. Any update to a weighB® independent trials. Not only is the 4 vs. 3 training time
the neural network must change the final output of the netwgikeded to reach the 9.0 second target performance reduced by
for every set of inputs. Therefore it may take the neural ngjsing behavior transfer, but the total training time cao &l
work longer to settle into an optimal configuration. The RBFreduced. A t-test confirms that the difference in total train
function approximator had the best performance of the thrggy times between using behavior transfer and training from
The RBF shares the CMAC's locality benefits, but is also abd@ratch is statistically significant when using fewer th&0 5
to generalize more smoothly due to the Gaussian summatgpg - episodes (g 1.2 + 10~2). Notice that the 4 vs. 3
of weights. When comparing the times of the RBF functiopyining time increases as more 3 vs. 2 episodes are added. We
approximator to that of the CMAGC, it is important to note thgissit this is due to overtraining, as the weights become more
the CMAC was only learning to hold the ball for an average cific to the 3 vs. 2 tagk.Table 3 also has results for the

9.0 second in 4 vs. 3. For example, when the 4 vs. 3 thresh
is set to 10.0 seconds for the CMAC, behavior transfer fro. F players. All numbers reported are averaged over at least

: o028 independent trials; both 4 vs. 3 time and total time can be
1000 3v2 episodes takes 8.41 hours to learn 4 vs. 3, a 44% uced with behavior transfer. A t-test confirms that all be
crease over the time to learn a 9.0 second hold time, and 2 Qior transfer results differ from scratch€p1.4 + 10-)
longer thar;ltheﬁequ?len; RBF;‘ vs. 3 tram:cng tlr_nhe. | We would like to be able to determine the optimal amount
3 Jg tzes\}atlu?a ?ur?g[ic?n u\;sv'g%rgﬁ] ZV;%rttg?r&segr:rlg fc?r gegﬂ ‘ftime needed to train on an easier task to speed up a more
. PR €ep ; icult task. Determining these training thresholds fasks
ber of 3 vs. 2 episodes, save the function approximato

: different domains is currently an open problem and will be
WeIgNtS (3052, sinan)) from a random 3 vs. 2 keeper, and usg, subject of future research, but our results suggesthbat

the weights to initialize all four keepérsn 4 vs. 3 so that amount of time spent on the first task should be much smaller
P(T(3vs2, final)) = T(4vs3,initial)- 1NEN W train on the 4 vs. 3than the amount of time spent learning the second task.
keepaway task until the average hold time for 1,000 episodes

is greater than 9.0 seconds. Note that in our experiments we Related Work

set the agents to havesao" field of view although agents OIOThe concept of seeding a learned behavior with some initial

also learn with a more realisti)° field of view. Allowing the . ol
agents to se60° speeds up the rate of learning and increasg&Pl€ behavior is not new. There have been approaches to
the learned hold time, reducing data collection time. simplifying reinforcement learning by manipulating thartr
Table 2 reports the average time spent training in 4 vs3aio" funﬁuon, the agents initial stat?f, and/or the resviainc-
with CMAC players to achieve a 9.0 second average hold ti 25 such as directed training (Selfridge, Sutton, & Barto
), learning from easy missions (Asagtaal. 1994), and

for different amounts of 3 vs. 2 training. Column two repor ; : : : :
; e " : ward shaping (Colombetti & Dorigo 1993; Mataric 1994),
the time spent training on 4 vs. 3 while the third column sho discussed in the Introduction. The “transfer of learhing

the total time to train 3 vs. 2 and 4 vs. 3. As can be seen fr : : P
P P " proach (Singh 1992) applies specifically to temporally se
the table, spending time training in the simpler 3 vs. 2 dom ntial subtasks. The subtasks must all be very similar in

fﬁ:ﬁause the time learning 4 vs. 3 to decrease. To overc % they have the same state spaces, action spaces, and envi
_ igh amounts of noise in our evaluation we run at least fohment dynamics, although the reward functigrmay dif-
'nq%%?gdzegag\ﬂstﬁ)é e%?gn?ﬁatlaogotl)gthr;\ﬁgrrttergnsfer We ufer. While these four methods allow the learner to spend less
a t-test to determine t%at the differences in the distringi ttal time training, they rely on a human modifying the task t

4 3 training fi d total training fi h . create artificial problems to train on. We contrast this wigh
of # vs. s lraining times and total training imes w (':'_qlus'qgawor transfer where we allow the state and/or action space
behavior transfer are statistically significant<{pb.7 « 10™"") to change between actual tasks. This added flexibility gsrmi
- behavior transfer to be applied to a wider range of domains

®We do so under the hypothesis that the policy of a single keeper repretiests as well as allowing independent modification of the traaaiti

the keepers’ learned knowledge. Though in theory the keepers could be learning dif‘fef@mction' the start state, or the reward function.

policies that interact well with one another, so far there is no evidence #atith One

pressure against such specialization is that the keepers’ start positions areiraaddm

earlier informal experiments, there appeared to be some specialization when each keepe?Such an effect may be due to the particular neural network or player implementation
started in the same location every episode. used. We saw a similar effect before when using a CMAC with the CMUnitede8@rs.

AAAI-05 / 884

In some problems where subtasks are clearly defined by fe@elombetti, M., and Dorigo, M. 1993. Robot Shaping: Developing
tures, the subtasks can be automatically identified (Druntmo Situated Agents through Learning. Technical Report TR-92-040,
2002) and leveraged to increase learning rates. Learned sufternational Computer Science Institute, Berkeley, CA.
routines have been successfully transfered in a hieradotd@e Crites, R. H., and Barto, A. G. 1996. Improving elevator perfor-
inforcement learning framework (Andre & Russell 2002). Bymance using reinforcement learning. In Touretzky, D. S.; Mozer,
analyzing two tasks, subroutines may be identified which caM- C.; and Hasselmo, M. E., ed#dvances in Neural Information
be directly reused in a second task that has a slightly modfrocessing Systems 8ambridge, MA: MIT Press.
fied state space. For tasks which can be framed in a relatioriég Boer, R., and Kok, J. R. 2002. The incremental development of a
framework (Dzeroski, Raedt, & Driessens 2001), there is resynthetic multi-agent system: The uva trilearn 2001 robotic soccer
search (Morales 2003) which suggests ways of speeding li‘ﬁnulatlon team. Master’s thesis, University of Amsterdam, The
learning between two relational reinforcement learnirggga |~ Netneriands. . _

Imitation is another technique which may transfer knowl-2rummond, C. 2002. Accelerating reinforcement learning by com-
edge from one learner to another (Price & Boutilier 2003)R0%09 Islolutlllc_)ns of %Jtomanﬂc]zél_lggdfg‘t{ned subtaskiournal of
However, there is the assumption that “the mentor and o wrtificia _me Igence Researcis.5>3-104. _
server have similar abilities” and thus may not be direcfly a Dzeroski, S.; Raedt, L. D.; and Driessens, K. 2001. Relational
plicable when the number of dimensions of the state spacgnforcementleamingviachine Learningt3:7-52. o
changes or the agents have a qualitatively different asan Fem, A.; Yoon, S.; and Givan, R. 2004. Approximate policy it-
Other research (Fern, Yoon, & Givan 2004) has shown that rcartt!)cl’I?op\;\?thBa gg's'cﬁ('ja\‘/g%%%%eir?'ﬁféurg] mgmaﬁansgr”&és-;siﬁgd
is possible to learn policies for large-scale planning sablat Y amarmhria .
generalize across different tasks in the same domain. Systems L&-ambridge, MA: MIT Press.

: ; Guestrin, C.; Koller, D.; Gearhart, C.; and Kanodia, N. 2003. Gen-
Another approach (Guestriet al. 2003) uses linear pro- eralizing plans to new environments in relational mdpsinterna-

gramming to determine value functions for classes of simila;qa1 joint Conference on Artificial Intelligence (IJCAI-03)

agents. Using the assumption that T and R are si_milar amog\gataric M. J. 1994. Reward functions for accelerated learning. In
all agents of a class, class-based value subfunctions ate ug - o~ o -0 o on Machine Learningg1—189.

by agents in a new world that has a different number of ob- . . : ,

jects (and thus differen§ and A). However, as the authors Morales, E. F. 2003. Scaling up reinforcement learning with a

themselves state, the technique will not perform well in hetrelatlonal representation. Proc. of the Workshop on Adaptability
) . o in Multi-agent Systems

erogeneous environments or domains with “strong and con-

. : - » Ng, A.Y.; Harada, D.; and Russell, S. 1999. Policy invariance under
stant interactions between many objects (€.g. RoboCup). reward transformations: Theory and application to reward shaping.

Conclusions In Proc. 16th International Conf. on Machine Learning

. . . Price, B., and Boutilier, C. 2003. Accelerating reinforcement learn-
We have introduced the behavior transfer method of speedifgy through implicit imitation.Journal of Artificial Intelligence Re-

up reinforcement learning and given empirical evidenceétéor search19:569-629.

usefulness. We have trained CMAC and neural network agenterman, M. L. 1994. Markov Decision Processes: Discrete
using TD reinforcement learning in related tasks with diffe stochastic Dynamic Programmingohn Wiley & Sons, Inc.

ent state and action spaces and shown that not only is the tia&. ymiller M. Merke. A.: Meier. D.© Hoffman. A Sinner. A.:

to learn the final task reduced, but that the total trainin®ti Thate, 0.: and Ehrmann, R. 2001. Karlsruhe brainstormers—a
is reduced using behavior transfer when compared to simplginforcement learning approach to robotic soccer. In Stone, P;;
learning the final task from scratch. In the future we will €on Balch, T.; and Kraetszchmar, G., ed®gboCup-2000: Robot Soc-
tinue to explore how to apply behavior transfer to additlonacer World Cup IV Berlin: Springer Verlag.

function approximators. Additionally, we will work on id&n selfridge, O.; Sutton, R. S.; and Barto, A. G. 1985. Training and
fying tasks that are less directly related to each other filut s tracking in robotics. Proceedings of the Ninth International Joint

benefit from behavior transfer. Conference on Atrtificial Intelligencg@70-672.
Singh, S. P. 1992. Transfer of learning by composing solutions of
Acknowledgments elemental sequential taskglachine Learning3:323-339.

We would like to thank Gregory Kuhlmann for his help with keep- Stone, P.; Kuhimann, G.; Taylor, M.; and Liu, Y. 2005. Keepaway

away experiments described in this paper as well as Nick Jong, Rageccer: From machine learning testbed to benchmarlerdceed-

mond Mooney, and David Pardoe for helpful comments and suggeigs of RoboCup International Symposiufio appear.

tions. This research was supported in part by NSF CAREER awar. . Ri . P)

11S-0237699, DARPA grant HRO011-04-1-0035, and the UT.Ausunffgr?i’irﬁ-l;,E;Liy;;g“?nvs,[;’lggb“"m?.oggg;'ﬂj CMUnited-99 cham

MCD Fellowship. eds.,RoboCup-99: Robot Soccer World Cup. Berlin: Springer.
35-48.

References Stone, P.; Sutton, R. S.; and Kuhlmann, G. 2005. Reinforcement
Albus, J. S. 1981Brains, Behavior, and Roboticdeterborough, learning for RoboCup-soccer keepawasdaptive Behavior To
NH: Byte Books. appear.

Andre, D., and Russell, S. J. 2002. State abstraction for prdSutton, R. S., and Barto, A. G. 199@8itroduction to Reinforcement
grammable reinforcement learning agents. Phoceedings of the Learning MIT Press.

Eighteenth National Conference on Artificial Intelligent@9-125. Taylor, M. E., and Stone, P. 2005. Behavior transfer for value-
Andre, D., and Teller, A. 1999. Evolving team Darwin United. In function-based reinforcement learning.The Fourth International
Asada, M., and Kitano, H., edsoboCup-98: Robot Soccer World Joint Conference on Autonomous Agents and Multiagent Systems
Cup Il. Berlin: Springer Verlag. To appear.

Asada, M.; Noda, S.; Tawaratsumida, S.; and Hosoda, K. 1994esauro, G. 1994. TD-Gammon, a self-teaching backgammon pro-
Vision-based behavior acquisition for a shooting robot by using gram, achieves master-level plajleural Computatior6(2):215—
reinforcement learning. IRroc. of IAPR/IEEE Workshop on Visual 219.

Behaviors-1994112-118.

AAAI-05 / 885

