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Abstract

Our current understanding of the primate cerebral cor-
tex (neocortex) and in particular the posterior, sensory
association cortex has matured to a point where it is
possible to develop a family of graphical models that
capture the structure, scale and power of the neocor-
tex for purposes of associative recall, sequence predic-
tion and pattern completion among other functions. Im-
plementing such models using readily available com-
puting clusters is now within the grasp of many labs
and would provide scientists with the opportunity to ex-
periment with both hard-wired connection schemes and
structure-learning algorithms inspired by animal learn-
ing and developmental studies. While neural circuits
involving structures external to the neocortex such as
the thalamic nuclei are less well understood, the avail-
ability of a computational model on which to test hy-
potheses would likely accelerate our understanding of
these circuits. Furthermore, the existence of an agreed-
upon cortical substrate would not only facilitate our
understanding of the brain but enable researchers to
combine lessons learned from biology with state-of-the-
art graphical-model and machine-learning techniques to
design hybrid systems that combine the best of biologi-
cal and traditional computing approaches.

Introduction
In the last decade, researchers have made significant
progress in understanding the structure and function of the
cerebral cortex and associated regions of the human/primate
brain. Multi-cell recordings and imaging techniques such as
fMRI have enabled scientists to build upon the foundational
work of Mountcastle, Hubel and Wiesel, and others. Exper-
imental studies have yielded insights not only concerning
low-level processing but higher-order cognitive functions as
well (see, for example, the review articles in a recent is-
sue ofScienceon encoding and retrieving of episodic mem-
ory (Miyashita 2004) and the role of the medial frontal cor-
tex in cognitive control (Ridderinkhofet al. 2004)).

We argue that current theoretical models of the neocortex
are sufficiently rich in their predictive power and detailed
in their specification that they warrant a concerted effort to
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implement and subject to computational experiment. In par-
ticular, we argue that the neocortex makes an ideal candidate
for implementation given its relatively homogeneous struc-
ture, the state of our knowledge concerning its function and
circuitry, and its powerful inferential capability.

While there has been substantial progress refining models
of individual neurons since the work of McCulloch and Pitts,
it is our contention that a more aggregate model of cortical
circuitry is necessary to instantiate a model that approaches
the scale and complexity of the human cortex. And, more-
over, that only at this scale and complexity will the instan-
tiated model be useful as a basis for experimental study and
as a potential component in more general, hybrid compu-
tational architectures. To that end we adopt a Bayesian,
graphical-models approach (Jordan 1998) for its expressive
modeling capability and potential integration with other in-
ferential components based on graphical models.

Several researchers have developed mathematical models
of the neocortex that accord well with experimental results
and provide directions for implementation, e.g., (Anderson
2003; George & Hawkins 2005; Lee & Mumford 2003;
Rao & Ballard 1996; Zemel 2000). In this paper, we gen-
eralize Lee and Mumford’s (2003) model of hierarchical
Bayesian inference in the visual cortex and borrow from
Anderson and Sutton’s (1997)Network of Networksmodel
for ideas about learning and connectivity in large graphi-
cal models. The challenge is to design and build a com-
posite generative graphical model that combines top-down
and bottom-up hierarchical inference, employs invariant and
compositional representations for encoding and retrieving
patterns, and supports associative recall, pattern completion
and sequence prediction among other functions.

Graphical Models of the Neocortex
In the early 1990s, Mumford (1991; 1992), proposed a com-
putational theory of the neocortex. Building on this work he
subsequently described (1994; 2002) how Grenander’s pat-
tern theory (Grenander 1993) could potentially model the
brain in terms of a generative model in which feedback is
used to resolve ambiguities. Dayanet al’s Helmholtz ma-
chine(1995) provided a first approximation to realizing this
approach by using feedback-implementing priors. However
feedback in the Helmholtz machine is utilized only in sup-
port of learning and not as an integral part of inference. Rao
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Figure 1: The first four regions of the visual cortex are
shown on the left as a stack depicting its hierarchical orga-
nization; regions higher in the stack capture general visual
features while those lower in the stack capture specific —
typically more transient — features. The alternative depic-
tion on the right underscores the fact that the regions are
physically arranged as patches on a planar cortical sheet.

and Ballard’s (1996) predictive coding Kalman filter model
employs feedback during inference, but their approach is
limited due to its reliance on linear models.

Lee and Mumford’s (2003) model for hierarchical infer-
ence in the visual cortex provides a significant step forward
by taking advantage of the confluence of ideas from statis-
tics, neuroscience and cognitive and computational science.
Specifically, they propose a generative model of the visual
cortex based on hierarchical Bayesian inference; their model
emphasizes the role of feedback and meets head on the chal-
lenge of coping with the combinatorial explosion of con-
flicting interpretations. In the remainder of this section, we
present Lee and Mumford’s model emphasizing its hierar-
chical structure and pattern of feedback required to facilitate
simultaneous top-down and bottom-up inference.

Figure 1 shows the first four regions of the visual cortex
arranged on the left as a hierarchy of increasingly abstract
visual features and their associated processing units, and
on the right schematically as they appear distributed across
the cortical sheet. The figure also depicts the postulated in-
teraction between regions implementing both top-down and
bottom-up communication. The bottom-up communications
are used to combine more primitive features into more ab-
stract ones and the top-down communications are used to
exploit expectations generated from prior experience.

The basic feed-forward and feedback circuitry is depicted
in a highly schematic form in Figure 2. Feed-forward pro-
jections originate in Layer 3 and terminate in Layer 4 while
feedback projections originate in Layers 5 and 6 and termi-
nate in Layer 1. The exact circuitry is more complicated but
it does appear that the cortex is fully capable of implement-
ing information flows of the sort shown in Figure 1.

Lee and Mumford provide a Bayesian account of the hi-
erarchical inference implied in Figure 1. When applied to
vision, Bayes’ rule enables us to combine previous experi-
ence in the form of aprior probabilityP (x1|xB) on x1 —
the hidden variable — andxB — the context or background
knowledge — with an imaging modelP (xO|x1, xB) relat-
ing the observationsxO to the other variables:

P (xO, x1|xB) = P (xO|x1, xB)P (x1|xB) (1)

Typically we assume that the imaging model does not de-
pend on the background knowledge, thereby allowing us to
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Figure 2: A cross section of the cortical sheet depicting
the columnar structure and the six layers of the cerebral
cortex. The triangles in Layers 2 and 3 represent supra-
granular pyramidal cells, the circles in Layer 4 spiny stel-
late cells, and the triangles in Layers 5 and 6 infra-granular
pyramidal cells. Black dots represent dendrites. The cells on
the left schematically represent a region consisting of many
columns at one level in a hierarchy of features communicat-
ing with a second region — shown on the right — at a higher
level in the hierarchy (after (Braitenberg & Schuz 1991)).

rewrite Equation 1 as:

P (x1|xO, xB) =
P (xO|x1, xB)P (x1|xB)

P (xO|xB)
where theP (xO|xB) is the normalizing factor,Z1, required
so thatP (x1|xO, xB) is a proper probability distribution.

In the case of early vision,xO denotes the output of the
lateral geniculate nucleus (LGN),x1 denotes the features
computed by V1, andxB denotes all the other information
— contextual and background — available at the time of
inference. Thus V1 computes the most likely values ofx1

by finding thea posteriori estimate ofx1 that maximizes
P (x1|xO, xB).

Lee and Mumford extend this simple model to account
for processing at multiple regions in the temporal cortex in-
cluding V1, V2, V4 and the inferotemporal cortex (IT). We
assume that each of these regions is responsible for com-
puting features at different levels of abstraction. Using the
chain rule and the simplifying assumption that in the se-
quence(xO, xV1, xV2, xV4, xIT) each variable is independent
of the other variables given its immediate neighbors in the
sequence, we write the equation relating the four regions as
P (xO, xV1, xV2, xV4, xIT) =

P (xO, xV1)P (xV1, xV2)P (xV2, xV4)P (xV4, xIT)P (xIT)
resulting in an undirected graphical model or Markov ran-
dom field (MRF) based on the chain of variables:

xO ↔ xV1 ↔ xV2 ↔ xV4 ↔ xIT

From this it follows that
P (xV1|xO, xV2, xV4, xIT) = P (xO|xV1)P (xV1|xV2)/Z1

P (xV2|xO, xV1, xV4, xIT) = P (xV1|xV2)P (xV2|xV4)/Z2

P (xV4|xO, xV1, xV2, xIT) = P (xV2|xV4)P (xV4|xIT)/Z4

AAAI-05 / 939



P(x0| x1)P(x1| x2)/Z1

P(x1| x1)

x0 x3x2x1

P(x2| x3)P(x3| x4)/Z3P(x1| x2)P(x2| x3)/Z2

P(x3| x4)P(x2| x3)

. . .

Figure 3: A schematic of the hierarchical Bayesian frame-
work proposed by Lee and Mumford (2003). The regions
of the visual cortex are linked together in a Markov chain.
The activity in theith region is influenced by bottom-up
feed-forward dataxi−1 and top-down probabilistic priors
P (xi|xi+1) representing feedback from regioni + 1. The
Markov property plays an important computational role by
allowing units to depend only on their immediate neighbors
in the Markov chain.

and, given that in graphical models you need only potentials
φ(x1, x2) indicating the preferred pairs of values of the di-
rectly linked variablesx1 andx2, we have

P (xV1|xO, xV2, xV4, xIT) = φ(xO|xV1)φ(xV1|xV2)/ZO,V2

P (xV2|xO, xV1, xV4, xIT) = φ(xV1|xV2)φ(xV2|xV4)/ZV1,V4

P (xV4|xO, xV1, xV2, xIT) = φ(xV2|xV4)φ(xV4|xIT)/ZV2,IT

whereZi,j = Z(xi, xj) is required for normalization.
The potentials must be learned from experience and are

essential to the model. Roth and Black (2005) have taken
ideas from the sparse coding of image patches and ap-
plied them to homogeneous Markov random fields to ob-
tain translation-invariant models of local image statistics.
Exploiting the Products-of-t-distributions model (Welling,
Hinton, & Osindero 2003) and contrastive divergence (Hin-
ton 2002), they learn a Gibbs distribution with a rich set of
potentials defined using learned filters. In contrast to pre-
vious approaches that use a pre-determined set of filters,
the translation-invariant learning method produces filters, as
well as other distribution parameters, that properly account
for spatial correlations in the data.

The resulting prior is trained using a generic database of
natural images and can be exploited in any Bayesian in-
ference method that requires a spatial prior. They demon-
strate a denoising algorithm that is remarkably simple (about
20 lines of Matlab code), yet achieves performance close
to the best special-purpose wavelet-based denoising algo-
rithms. The advantage over the wavelet-based methods lies
in the generality of the prior and its applicability across dif-
ferent vision problems.

The Roth and Black learning algorithm is a batch method
and their Markov random field model is not hierarchical.
By contrast, George and Hawkins (2005) present a sim-
ple on-line algorithm that learns the parameters (conditional
probability density functions) of a hierarchical (three-level,
tree-structured) model level-by-level starting from the low-
est level. They demonstrate the translation invariant recog-
nition capabilities of their model on simple32 × 32 line
drawings. The results of Roth and Black and George and
Hawkins provide evidence that it is possible to learn the pa-
rameters for the Lee and Mumford model.

Figure 3 derives from Figure 1 modeling cortical regions
as local experts, each encoding knowledge about the proba-
bilistic relationships among features in a hierarchy of such
features. Each expert seeks to maximize the probability
of its computed features (often referred to asbeliefs) by
combining bottom-up, feed-forward feature selections with
top-down, feedback expectations (priors). As information
propagates up and down the hierarchy, the top-down and
bottom-upmessageschange to reflect the combined exper-
tise within the hierarchy.Loopy belief propagation(Mur-
phy, Weiss, & Jordan 2000) — related toturbo decod-
ing (Berrou, Glavieux, & Thitimajshima 1993) and Pearl’s
belief-propagation algorithm (Pearl 1986a; 1986b) — seems
particularly appropriate for inference in networks of the sort
illustrated in Figure 3. In loopy belief propagation, local
messages propagate up and down the hierarchy as the sys-
tem moves toward a global equilibrium state.

Particle filtering is another candidate for inference in Lee
and Mumford’s hierarchical Bayesian model; particle fil-
tering generalizes the Kalman filter and dispenses with the
restrictive requirements of Gaussian noise and linear dy-
namics. Particle filtering operates much like Pearl’s belief-
propagation algorithm in which regions corresponding to
random variables in the graphical model communicate by
message passing. Communication can be asynchronous pro-
viding a computationally simple framework not unlike that
hypothesized for communication among regions in the vi-
sual cortex. By combining belief propagation with parti-
cle filtering, Lee and Mumford anticipated algorithms for
approximate inference via non-parametric belief propaga-
tion (Isard 2003; Sudderthet al. 2003).

Instead of inferring a single preferred feature valuexi for
theith region in the cortical hierarchy, particle filtering gen-
erates a set ofn values{x(1)

i , x
(2)
i , ..., x

(n)
i }, one for each

region. Then values constitute a sample of the distribution
associated withith region and serve as a proxy for the full
distribution thereby avoiding the problem of keeping track
of the potentially exponential number of possible states of
the system. Lee and Mumford relate the algorithmic behav-
ior of particle filtering to the ideas of Zemel and others on
population coding (Zemel 2000).

The same basic organization of linked regions illus-
trated in Figure 1 and the same forward-backward, belief-
propagation algorithm that serves for inference involving
hierarchically arranged visual features serves equally well
in processing time-series data of the sort arising in lan-
guage and sequences of data from other sensory modali-
ties. Variants of the cortical model outlined above can be
used to represent hierarchical hidden Markov models (Fine,
Singer, & Tishby 1998), factored Markov decision pro-
cesses (Boutilier, Dean, & Hanks 1999) and hierarchical re-
inforcement learning models (Barto & Mahadevan 2003).

Architectural Issues
One of the biggest challenges in implementing and applying
the above model arises inwiring the cortical regions corre-
sponding to variables (or, more likely, sets of variables) in
the graphical model. If we imagine starting with a large, un-
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Figure 4: Architecture illustrating the spatial layout of the
columns responsible for sequence prediction and those re-
sponsible for inferring high-level (compositional) features
from lower-level features.

differentiated Markov random field, the task seems nigh on
hopeless. If, however, we start with a roughly planar topol-
ogy and regular neighborhood structure, there are a variety
of strategies we can use to institute non-local connections.

As mentioned earlier, the cortex consists of a layered
sheet with a more-or-less uniform cellular structure. Neu-
roanatomists have identified what are calledcolumnscor-
responding to groups of local cells running perpendicular
to the cortical surface (see Figure 2). In a special issue
of the journalCerebral Cortexdevoted to cortical columns,
Mountcastle (2003) writes “The basic unit of cortical op-
eration is theminicolumn[...] [containing] on the order of
80-100 neurons [...] The minicolumn measures of the order
of 40-50 µm in transverse diameter, separated from adja-
cent minicolumns by vertical cell-sparse zones which vary
in size in different cortical areas.” These minicolumns are
then grouped into cortical columns which “are formed by
the binding together of many minicolumns by common in-
put and short-range horizontal connections.”

If we take the cortical column (not the minicolumn) as
our basic computational module as in (Anderson & Sutton
1997), then the gross structure of the neocortex consists
of a dense mat of inter-columnar connections in the outer-
most layer of the cortex and another web of connections at
the base of the columns. The inter-columnar connectivity
is relatively sparse (something on the order of1015 con-
nections spanning approximately1011 neurons) and there
is evidence (Sporns & Zwi 2004) to suggest that the in-
duced inter-columnar connection graph exhibits the proper-
ties of asmall-world graph(Newman, Watts, & Strogatz
2002); in particular, that it has low diameter (the length
of the longest shortest path separating a pair of vertices in
the graph) thereby enabling low-latency communication be-
tween any two cortical columns. Even simple local connec-
tivity of the sort suggested in Anderson and Sutton’s (2003)
Network of Networksmodel provides a straightforward ar-
chitecture that allows us to simultaneously handle temporal
sequences of sensor input and support a hierarchy of increas-
ingly abstract (compositional) features as suggested in the
Lee and Mumford visual cortex model.

Figure 4 illustrates how sensor sequences and hierarchies

Figure 5: Representing multiple modalities by simply repli-
cating the architecture shown in Figure 4.

of increasingly abstract features might be handled using just
local connections. This architecture would allow us to im-
plement hidden Markov models rather easily. Of course,
the “elbow pipe” shown in Figure 4 labeled “sensory in-
put and output mappings” masks additional dimensions that
give rise to the need for longer connections. Retinotopically
mapped visual input has its own spatial relationships to pre-
serve while other sensor modalities have similar representa-
tional requirements. One might imagine a separate patch of
cortex with local connections as in Figure 4 for each sensor
modality and for each effector modality.

Assuming the obvious replication of structure, the archi-
tecture shown in Figure 5 illustrates the need for more than
simply local connections. Different modalities would be
linked by longer-range connections thereby allowing us to
notice correlations across neural activity corresponding to
sensors and effectors occurring over time. In implementing
a multi-modal architecture, it may be useful to take a hint
from nature and selectively emphasize different regions in
a computational analog of blood flow and cellular ATP de-
pletion. There’s a danger in thinking that if the body had
unlimited energy reserves it would perform global rather
than energy-mediated local optimizations; the economics of
blood flow and energy conversion may have an important
role in both expediting learning and avoiding over-fitting and
diffuse, hard-to-handle models.

The primate brain consumes more energy than any other
organ, but even so we can only afford to activate a small frac-
tion of our total complement of neurons, and for any given
cognitive task the active cortical structures tend to be clus-
tered rather than uniformly distributed over the entire cortex.
Moreover, when faced with a new task to learn — one for
which no existing, healthy structure can easily be adapted
and generalized to cover — the brain tends to co-opt under-
utilized cortical structures. These two principles — any task
can require only a fraction of the total processing units and
new tasks are assigned underutilized and spatially separate
units — might serve to direct wiring over time and impose
a constraint to avoid over fitting, analogous to the use of
minimum-description-length (MDL) priors in statistical ma-
chine learning.
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Representational Issues

The Lee and Mumford model addresses the basic struc-
ture of hierarchical inference in the visual cortex but pro-
vides little detail concerning how information is represented
within and between the different levels in the hierarchy.
We continue to underestimate the importance of design-
ing — or, preferably, learning — hierarchical representa-
tions for solving problems involving perceptual inference
and image, speech and text processing in particular. Cog-
nitive scientists, linguists, neural modeling experts and ma-
chine vision researchers generally agree on the need to find
a way to exploit the compositional structure of language
and natural scenes in order to avoid searching in the com-
binatorial space of possible interpretations (Chomsky 1986;
Grenander 1993). It may be somewhat optimistic, but there
appears to be a consensus opinion emerging at least as re-
gards the compositional structure of a representational solu-
tion (Geman, Potter, & Chi 2002; Jackendoff 2002).

While implementing a cortical model along the lines de-
scribed above does not directly address the representation
problem, an agreed-upon substrate and the existence of fast,
scalable implementations will serve science in three ways.
First and most obviously, building upon a standard founda-
tion promotes sharing. Some of the most interesting experi-
ments are likely to involve combining theories regarding dif-
ferent modalities, and hence will require combining repre-
sentations from experts in different areas; these experiments
will be facilitated by having initially developed these repre-
sentations separately in a shared framework. Second, there
is every reason to believe that size does matter in gleaning
secrets from the brain; whether the representational compo-
nents consist of new primitive features or composition rules
in a suitable pattern language, it is likely to require a large
number of such components to span the gap from raw input
to abstract concepts, and the computation required to exhibit
even the most basic competence will easily swamp the capa-
bilities of standard workstations. Third, while the architec-
ture is sure to evolve, the existence of an agreed-upon stan-
dard will focus effort on synthetic and biologically-inspired
representations, contributions that are often discouraged as
being ad hoc unless embedded in a shared framework.

There is evidence to suggest that the brain makes exten-
sive use of invariant representations particularly in the vi-
sual system where retinal circuits are largely contrast in-
variant, cells in V1 and V2 exhibit invariance with respect
to position and size, and receptive fields in IT are sensi-
tive across a wide range of poses. Invariants are impor-
tant in enabling the visual cortex to capture essential charac-
teristics while ignoring irrelevant details (Fukushima 1980;
Riesenhuber & Poggio 1999) and it is likely that invariants
play a role in processing other sensory modalities. Unfortu-
nately, invariant representations can mask differences reduc-
ing selectivity (Geman 2004). The whole point of designing
compositional hierarchical representations is to increase se-
lectivity and reduce search by combining top-down expec-
tations and bottom-up inference. Managing the tradeoff be-
tween invariance and selectivity is just one of the represen-
tational challenges faced in building an artificial cortex.

Implementation Issues
In terms of actually implementing a cortex-scale archi-
tecture, immediate progress can be made using medium-
sized (100-200 processors running on 50-100 nodes with
Myrinet/Gigabit interconnect) computing clusters and exist-
ing interconnect technologies to support109 intermediate-
scale functional units, each unit accounting for several thou-
sand neurons in aggregate and arranged hierarchically in
columns with virtual connections allowing upwards of1014

unit-to-unit communications per millisecond. MPI codes
accelerating local message passing should provide reason-
able performance for a wide range of experiments (see Jo-
hansson and Lansner (2003) for a discussion of implement-
ing cortex-sized artificial neural networks on clustered com-
puters). Somewhat smaller, but still large-enough-to-be-
interesting networks should fit on smaller clusters. While
not discounting the technical challenges involved in imple-
menting high performance cortex-sized models, these chal-
lenges are surmountable now, and will become increasingly
simple to manage with continuing improvements in the per-
formance of affordable hardware.

Conclusions
The neocortex represents a set of capabilities and a level of
robustness that artificial intelligence researchers have long
aspired to. Our understanding of the neural basis for infer-
ence in the cortex has advanced to a point where computa-
tion and representation are taking center stage and computer
scientists can contribute to and draw inspiration from the
work on neural modeling. Our choice of mathematical tools
exploits the fact that Bayesian principles and graphical mod-
els have become common within the neural modeling com-
munity due to their providing clear semantics and an expres-
sive medium for capturing neural function at multiple levels
of detail. The time is opportune for creating a computational
framework based on statistical techniques for modeling the
neocortex and tools for implementing cortex-scale models
on available hardware. This framework could serve much
the same role in developing biologically-inspired compu-
tational architectures as the Bayesian reformulation of the
Quick Medical Reference model (Shweet al. 1991) did in
pushing computer-aided medical diagnosis, while simulta-
neously advancing research on learning and inference algo-
rithms for very-large graphical models.
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