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Abstract

Switching Linear Dynamic System (SLDS) models are
a popular technique for modeling complex nonlinear dy-
namic systems. An SLDS has significantly more descriptive
power than an HMM, but inference in SLDS models is
computationally intractable. This paper describes a novel
inference algorithm for SLDS models based on the Data-
Driven MCMC paradigm. We describe a new proposal
distribution which substantially increases the convergence
speed. Comparisons to standard deterministic approximation
methods demonstrate the improved accuracy of our new
approach. We apply our approach to the problem of learning
an SLDS model of the bee dance. Honeybees communi-
cate the location and distance to food sources through a
dance that takes place within the hive. We learn SLDS
model parameters from tracking data which is automatically
extracted from video. We then demonstrate the ability to
successfully segment novel bee dances into their constituent
parts, effectively decoding the dance of the bees.

Introduction
Switching Linear Dynamic System (SLDS) models have
been studied in a variety of problem domains. Representa-
tive examples include computer vision (Northet al. 2000;
Pavlovíc et al. 1999; Bregler 1997), computer graphics
(Y.Li, T.Wang, & Shum 2002), speech recognition (Rosti &
Gales 2004), econometrics (Kim 1994), machine learning
(Lerner et al. 2000; Ghahramani & Hinton 1998), and
statistics (Shumway & Stoffer 1992). While there are sev-
eral versions of SLDS in the literature, this paper addresses
the model structure depicted in Figure 3. An SLDS model
represents the nonlinear dynamic behavior of a complex
system by switching among a set of linear dynamic models
over time. In contrast to HMM’s, the Markov process
in an SLDS selects from a set of continuously-evolving
linear Gaussian dynamics, rather than a fixed Gaussian
mixture density. As a consequence, an SLDS has potentially
greater descriptive power. Offsetting this advantage is the
fact that exact inference in an SLDS is intractable, which
complicates estimation and parameter learning (Lerner &
Parr 2001).
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Inference in an SLDS model involves computing the
posterior distribution of the hidden states, which consist
of the (discrete) switching state and the (continuous) dy-
namic state. In the behavior recognition application which
motivates this work, the discrete state represents distinct
honeybee behaviors while the dynamic state represents
the bee’s true motion. Given video-based measurements
of the position and orientation of the bee over time,
SLDS inference can be used to obtain a MAP estimate
of the behavior and motion of the bee. In addition to
its central role in applications such as MAP estimation,
inference is also the crucial step in parameter learning via
the EM algorithm (Pavlovíc, Rehg, & MacCormick 2000).
Approximate inference techniques have been developed to
address the computational limitations of the exact approach.

Previous work on approximate inference in SLDS mod-
els has focused primarily on two classes of techniques:
stage-wise methods such as approximate Viterbi or GPB2
which maintain a constant representational size for each
time step as data is processed sequentially, and structured
variational methods which approximate the intractable ex-
act model with a tractable, decoupled model (Pavlović,
Rehg, & MacCormick 2000; Ghahramani & Hinton 1998).
While these approaches are successful in some application
domains, such as vision and graphics, they do not provide
any mechanism for fine-grained control over the accuracy
of the approximation. In fields such as biology where
learned models can be used to answer scientific questions
about animal behavior, scientists would like to characterize
the accuracy of an approximation and they may be willing
to pay an additional computational price for getting as close
as possible to the true posterior.

In these situations where a controllable degree of accu-
racy is required to support a diverse range of tasks, Markov-
Chain Monte-Carlo (MCMC) methods are attractive. Stan-
dard MCMC techniques, however, are often plagued by
extremely slow convergence rates. We therefore explore
the use of Rao-Blackwellisation (Casella & Robert 1996)
and the Data-Driven MCMC paradigm (Tu & Zhu 2002)
to improve convergence. We describe a novel proposal
distribution for Data-driven MCMC SLDS inference and
demonstrate its effectiveness in learning models from noisy
real-world data. We believe this paper is the first to ex-
plore Data-Driven MCMC techniques for SLDS models.
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Fig. 1. (Left) A bee dance is in three patterns :waggle, left turn,
and right turn. (Right) Green boxes are tracked bees.

Moreover, we believe that these techniques are broadly-
applicable to problems in time series and behavior model-
ing.

The application domain which motivates this work is
a new research area which enlists visual tracking and
AI modeling techniques in the service of biology (Balch,
Khan, & Veloso 2001). The current state of biological
field work is still dominated by manual data interpreta-
tion, a time-consuming and error-prone process. Automatic
interpretation methods can provide field biologists with
new tools for quantitative studies of animal behavior. A
classical example of animal behavior and communication
is the honeybee dance, depicted in a stylized form in Fig. 1.
Honeybees communicate the location and distance to food
sources through a dance that takes place within the hive.
The dance is decomposed into three different regimes: “turn
left”, “turn right” and “waggle”.

Previously, we developed a vision system that auto-
matically tracks the dancer bees, which are shown with
green rectangles in Fig.1. Tracks from multiple bee dances,
extracted automatically by our system, are shown in Fig.7,
where the different dance phases are illustrated in different
colors. We apply the Data-Driven MCMC techniques that
we have developed to this bee dance data and demonstrate
successful modeling and segmentation of dance regimes.
These experimental results demonstrate the effectiveness
of our new framework.

Related Work
Switching linear dynamic system (SLDS) models have been
studied in a variety of research communities ranging from
computer vision (Pavlović et al. 1999; Northet al. 2000;
Bregler 1997; Soatto, Doretto, & Wu 2001), computer
graphics (Y.Li, T.Wang, & Shum 2002), and speech recog-
nition (Rosti & Gales 2004) to econometrics (Kim 1994),
machine learning (Lerneret al. 2000; Ghahramani & Hin-
ton 1998), and statistics (Shumway & Stoffer 1992).

Exact inference in SLDS is intractable (Lerner & Parr
2001). Thus, there have been research efforts to derive
efficient but approximate schemes. The early examples in-
clude GPB2 (Bar-Shalom & Li 1993), and Kalman filtering
(Bregler 1997). More recent examples include a variational
approximation (Pavlović, Rehg, & MacCormick 2000), ex-
pectation propagation (Zoeter & Heskes 2003), sequential
Monte Carlo methods (Doucet, Gordon, & Krishnamurthy
2001) and Gibbs sampling (Rosti & Gales 2004).

The Data-Driven MCMC approach has been success-
fully applied in computer vision, e.g., image segmenta-
tion/parsing (Tu & Zhu 2002) and human pose estimation in
still images (Lee & Cohen 2004). In data-driven approach,
the convergence of MCMC methods (Gilks, Richardson,
& Spiegelhalter 1996) is accelerated by incorporating an
efficient sample proposal which is driven by the “cues”
present in the data.

SLDS Background
A switching linear dynamic systems (SLDS) model de-
scribes the dynamics of a complex physical process by the
switching between a set of linear dynamic systems (LDS).

Linear Dynamic Systems

Fig. 2. A linear dynamic system (LDS)

An LDS is a time-series state-space model that comprises
a linear Gaussian dynamics model and a linear Gaussian
observation model. The graphical representation of an LDS
is shown in Fig.2. The Markov chain at the top represents
the state evolution of the continuous hidden statesxt.
The prior densityp1 on the initial statex1 is assumed to
be normal with meanµ1 and covarianceΣ1, i.e., x1 ∼
N (µ1,Σ1).

The statext is obtained by the product of state transition
matrix F and the previous statext−1 corrupted by the ad-
ditive white noisewt, zero-mean and normally distributed
with covariance matrixQ:

xt = Fxt−1 + wt wherewt ∼ N (0, Q) (1)

In addition, the measurementzt is generated from the
current statext through the observation matrixH, and
corrupted by white observation noisevt:

zt = Hxt + vt wherevt ∼ N (0, V ) (2)

Thus, an LDS modelM is defined by the tupleM
∆=

{(µ1,Σ1), (F,Q), (H,V )}. Exact inference in an LDS can
be done exactly using the RTS smoother (Bar-Shalom &
Li 1993).

Switching Linear Dynamic Systems
An SLDS is a natural extension of an LDS, where we
assume the existence ofn distinct LDS modelsM

∆=
{Mi|1 ≤ i ≤ n}, where each modelMi is defined by the
LDS parameters. The graphical model corresponding to an
SLDS is shown in Fig.3. The middle chain, representing
the hidden state sequenceX

∆= {xt|1 ≤ t ≤ T}, together

with the observationsZ
∆= {zt|1 ≤ t ≤ T} at the bottom,
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Fig. 3. Switching linear dynamic systems (SLDS)

is identical to an LDS in Fig.2. However, we now have
an additional discrete Markov chainL

∆= {lt|1 ≤ t ≤ T}
that determines which of then modelsMi is being used
at every time-step. We calllt ∈M the label at time t and
L a label sequence.

In addition to a set of LDS modelsM , we specify two
additional parameters: a multinomial distributionπ(l1) over
the initial label l1 and ann × n transition matrixB that
defines the switching behavior between then distinct LDS
models, i.e.Bij

∆= P (lj |li).

Learning in SLDS via EM
The EM algorithm (Dempster, Laird, & Rubin 1977) can
be used to obtain the maximum-likelihood parametersΘ̂.
The hidden variables in EM are the label sequenceL and
the state sequenceX. Given the observation dataZ, EM
iterates between the two steps as in Algorithm 1.

Algorithm 1 EM for Learning in SLDS
• E-step : Inference to obtain the posterior distribution

f i(L, X) ∆= P (L,X|Z,Θi) (3)

over the hidden variablesL and X, using a current
guess for the SLDS parametersΘi.

• M-step : maximize the expected log-likelihoods

Θi+1 ← argmax
Θ

〈log P (L, X, Z|Θ〉fi(L,X) (4)

Above, 〈·〉W denotes the expectation of a function(·)
under a distributionW . The intractability of the exact E-
step in Eq.3 motivates the development of approximate
inference techniques.

Markov Chain Monte Carlo Inference
In this section, we introduce a novel sampling-based
method that theoretically converges to the correct posterior
distributionP (L,X|Z,Θ). Faster convergence is achieved
by incorporating a data-driven approach where we intro-
duce proposal priors and label-cue models.

Rao-Blackwellised MCMC
In our solution, we propose to pursue the Rao-
Blackwellised posteriorP (L|Z,Θ), rather than the joint

posteriorP (L,X|Z,Θ). The effect is the dramatic reduc-
tion of sampling space fromL,X to L. This results in an
improved approximation on the labelsL, which are exactly
the variables of interest in our application. This change is
justified by the Rao-Blackwell theorem (Casella & Robert
1996). The Rao-Blackwellisation is achieved via the ana-
lytic integration on the continuous statesX given a sample
label sequenceL(r). In this scheme, we can compute the
probability of ther th sample labelsP (L(r)|Z) up to a
normalizing constant via the marginalization of the joint
PDF :

P (L(r)|Z) = k

∫
X

P (L(r), X, Z) wherek
∆=

1
P (Z)

(5)

Note that we omit the implicit dependence on the model
parametersΘ for brevity. The joint PDFP (L(j), X, Z) in
the r.h.s. of Eq.5 can be obtained via the inference in the
time-varying LDS with the varying but known parameters.
Specifically, the inference over the continuous hidden states
X in the middle chain of Fig.3 can be performed by RTS
smoothing (Bar-Shalom & Li 1993). The resulting posterior
is a series of Gaussians onX and can be effectively
integrated out.

To generate samples from arbitrary distributions we can
use the Metropolis-Hastings (MH) algorithm (Metropoliset
al. 1953; Hastings 1970), a MCMC (Gilks, Richardson, &
Spiegelhalter 1996). All MCMC methods work similarly :
they generate a sequence ofsampleswith the property that
the collection of samples approximates the target distribu-
tion. To accomplish this, aMarkov chainis defined over the
space of labelsL. The transition probabilities are set up in a
very specific way such that thestationary distributionof the
Markov chain is exactly the target distribution, in our case
the posteriorP (L|Z). This guarantees that, if we run the
chain for a sufficiently long time, the sample distribution
converges to the target distribution.

Algorithm 2 Pseudo-code for Metropolis-Hastings (MH)

1) Start with a valid initial label sequenceL(1).
2) Propose a new label sequenceL(r)′ from L(r) using

a proposal densityQ(L(r)′ ;L(r)).
3) Calculate theacceptance ratio

a =
P (L(r)′ |Z)
P (L(r)|Z)

Q(L(r);L(r)′)
Q(L(r)′ ;L(r))

(6)

whereP (L|Z) is the target distribution.
4) If a >= 1 then acceptL(r)′ , i.e., L(r+1) ← L(r)′ .

Otherwise, acceptL(r)′ with probability min(1, a).
If the proposal is rejected, then we keep the previous
sample, i.e.,L(r+1) ← L(r).

We use the MH algorithm to generate a sequence of
samplesL(r)’s until it converges. The pseudo-code for the
MH algorithm is shown in Algorithm 2 (adapted from
(Gilks, Richardson, & Spiegelhalter 1996)). Intuitively, step
2 proposes “moves” from the previous sampleL(r) to the
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next sampleL(r)′ in spaceL, which is driven by a proposal
distribution Q(L(r)′ ;L(r)). The evaluation ofa and the
acceptance mechanism in steps3 and4 have the effect of
modifying the transition probabilities of the chain in such
a way that its stationary distribution is exactlyP (L|Z).

However, it is crucial to provide an efficient proposal
Q, which results in faster convergence (Andrieuet al.
2003). Even if MCMC is guaranteed to converge, a naive
exploration through the high dimensional state spaceL
is prohibitive. Thus, the design of a proposal distribution
which enhances the ability of the sampler to efficiently
explore the space with high probability mass is motivated.

Temporal Cues and Proposal Priors
We propose to useData-Drivenparadigm (Tu & Zhu 2002)
where the cues present in the data provide an efficient
MCMC proposal distributionQ. Our data-driven approach
is consisted of two phases : Learning and Inference.

In the learning phase, we first collect the temporal cues
from the training data. Then, a set of label-cue models are
constructed based on the collected cues. By atemporal cue
ct, we mean a cue at timet that can provide a guess for
the corresponding labellt. A cue ct is a certainstatistic
obtained by observing the data within the fixed time range
of zt. We put a fixed-sized window on the data and obtain
cues by looking inside it. Then, a set ofn label-cue
modelsLC

∆= {P (c|li)|1 ≤ i ≤ n} are learned from the
classified cues where the cues are classified with respect
to the training labels. Here,n corresponds to the number
of existing patterns, the number of LDSs in our case. Each
label-cue modelP (c|li) is an estimated generative model
and describes the distribution of cuec given the labelli.

In the inferencephase, we first collect the temporal cues
from the test data without access to the labels. Then, the
learned label-cue models are applied to the cues and the
proposal priors are constructed. Aproposal prior P (l̃t|ct)
is a distribution on the labels, which is a rough approx-
imation to the true posteriorP (lt|Z). When a cuect is
obtained from a test data, we construct a corresponding
proposal priorP (l̃t|ct) as follows :

˜P (lt|ct)
∆=

P (ct|li)∑n
i=1 P (ct|li)

(7)

In Eq.7, a proposal priorP (l̃t|ct) is obtained from the
normalized likelihoods of all labels. The prior describes the
likelihood that each label generates the cue. By evaluating
all the proposal priors across the test data, we obtain a full
set of proposal priorsP (L̃) ∆= { ˜P (lt|ct)|1 ≤ t ≤ T} over
the entire label sequence. However, the resulting proposal
priors were found to be sensitive to the noise in the
data. Thus, we smooth the estimates and use the resulting
distribution. The proposed approach is depicted graphically
in Fig.4,5,6 for the case of the bee dance domain.

In the honeybee dance, the change of heading angles
is derived as a cue based on prior knowledge. From the
stylized dance in Fig.1, we observe that the heading angles
will jitter but stay constant on average during the waggling,

——————- time : 660 frames —————————————————->

Left turn˜N(−5.77; 2.72) WaggleÑ(−0.10; 3.32) Right turnÑ(5.79; 2.83)

Fig. 4. Learning phase. Three label-cue models are learned from
the training data. See text for detailed descriptions.

Fig. 5. Raw proposal priors. See text for descriptions.

Fig. 6. Final proposal priors and the ground truth labels.

but generally increase or decrease during the right turn or
left turn phases. Note that the heading angles are measured
clockwise. Thus, a cuect for a frame is set to be the change
of heading angles within the corresponding window.

In the learning phase, a cue window slides over the entire
angle data while it collects cues as shown at the top of
Fig.4. Then, the collected cues are classified according to
the training labels. The label-cue(LC) models are estimated
as the three Gaussians in our example, as shown at the
bottom of Fig.4. The estimated means and the standard
deviations show that the average change of heading angles
are -5.77, -0.10 and 5.79 radians, as expected. In our
example, the window size was set to 20 frames.

In the testing phase, the cues are collected from the data
as shown at the top of Fig.5. Then, the proposal priors
are evaluated based on the collected cues using Eq.7. The
resulting label priors are shown in Fig.5. A slice of colors at
t depicts the corresponding proposal priorP (l̃t|ct). The raw
estimates overfit the test data. Thus, we use the smoothed
estimates as the final proposal priors, shown in Fig.6. At the
bottom of Fig.6, the ground truth labels are shown below
the final proposal priors for comparison. The obtained
priors provide an excellent guide to the labels of the dance
segments.

Data-Driven Proposal Distribution

The proposal priorsP (L̃) and the SLDS discrete Markov
transition PDFB constitute the data-driven proposalQ. The
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Fig. 7. Six dataset. 660, 660, 1054, 660, 609 and 814 frames

proposal scheme comprises two sub-procedures. First, it
selects a local region to update based on the proposal priors.
Rather than updating the entire sequence of a previous
sampleL(r), it selects a local region inL(r) and then
proposes a locally updated new sampleL(r′). The local
update scheme improves the space exploration capabilities
of MCMC and results in faster convergence. Secondly, the
proposal priorsP (L̃) and the discrete transition PDFB
are used to assign the new labels within a selected region.
The second step has the effect of proposing a sample which
reflects both the data and Markov properties of SLDSs. The
two sub-steps are described in detail below.

In the first step, scoring schemes are used to select a
local region within a sample. First, the previous sample
labelsL(r) are divided into a set of segments at a regular
interval. Then, each segment is scored with respect to the
proposal priorsP (L̃), i.e. the affinities between the labels
in each segment and the proposal priors are evaluated.
Any reasonable affinity and scoring schemes are applicable.
Finally, a segment is selected for an update via sampling
based on the inverted scores.

In the second step, new labelsl′t’s are sequentially
assigned within a selected segment using the assignment
function in Eq.8 whereBl′t|l′t−1

∆= P (l′t|l′t−1). The implicit

dependence of̃lt on ct is omitted for brevity.

P (l′t) = βδ(lt) + (1− β)

{
Bl′t|l′t−1

P (l̃′t)∑n
l′t=1 Bl′t|l′t−1

P (l̃′t)

}
(8)

Above, the first term with the sampling ratioβ denotes
the probability to keep the previous labellt , i.e. l′t ← lt.
The second term proposes a sampling of a new labell′t.
The Markov PDFB adds the model characteristics to a new
sample. Consequently, the constructed proposalQ proposes
samples that nicely embrace both the data and the intrinsic
Markov properties. Then, MH algorithm balances the whole
MCMC procedure in such a way that the MCMC inference
on P (L|Z) converges to the true posterior.

Experimental results
The experimental results on real-world bee data show
the benefits of the new DD-MCMC framework. Six
bee dance tracks in Fig.7 are obtained using a vision-
based bee tracker. The observation data is a time-
series sequence of four dimensional vectorszt =
[xt, yt, cos(θt), sin(θt)]

T wherext,yt andθt denote the 2D
coordinates of bees and the heading angles. Note from Fig.7
that the tracks are noisy and much more irregular than the
idealized stylized dance shown in Fig.1. The red, green
and blue colors represent right-turn, waggle and left-turn
phases. The ground-truth labels are marked manually for
comparison and learning purposes. The dimensionality of
the continuous hidden states was set to four.

Given the relative difficulty of obtaining accurate data,
we adopted a leave-one-out strategy. The SLDS model
and the label-cue models are learned from five out of
six datasets, and the learned models are applied to the
left-out dataset for automatic labeling. We interpreted the
test dataset both by the proposed DD-MCMC method
and the approximate Viterbi method for comparison. We
selected the approximate Viterbi method as it known to
be comparable to the other methods (Pavlović, Rehg, &
MacCormick 2000). On average, 4,300 samples were used
until the convergence for all the datasets.

Fig.8 shows an example posterior distributionP (L|Z)
which is discovered from the first dataset using the pro-
posed DD-MCMC inference. The discovered posterior ex-
plicitly shows the uncertainties embedded in data. Multi-
hypotheses are observed in the regions where the overlayed
data shows irregular patterns. For example, around the two
fifths from the right in Fig.8, the tracked bee systematically
side-walks to the left due to the collision with other bees
around it for about 20 frames while it was turning right.
Consequently, the MCMC posterior shows the two eminent
hypotheses for those frames : 70% turn left (blue) and 30%
turn right (right) roughly.

Fig. 8. Posterior distribution is discovered from Data 1.

The DD-MCMC is a Bayesian inference algorithm.
Nonetheless, it can be used as a robust interpretation
method. The MAP label sequence are taken from the
discovered posterior distributionP (L|Z). The resulting
MCMC MAP labels, the ground-truth, and the approximate
Viterbi labels for Data 1 are shown from the top to
bottom in Fig. 9. It can be observed that DD-MCMC
delivers solutions that concur very well with the ground
truth. On the other hand, the approximate Viterbi labels at
the bottom over-segments the data (insertion errors). The
insertion errors of approximate Viterbi highlight one of
the limitations of the class of deterministic algorithms for
SLDS. In this respect, the proposed DD-MCMC inference
method is shown to improve upon the Viterbi result and
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Fig. 9. Data 1 : DD-MCMC MAP, ground truth, Viterbi labels.

Errors D 1 D 2 D 3 D 4 D 5 D 6
Insertions 7/14 5/6 2/5 3/4 1/1 0/0

TABLE I
MCMC MAP / V ITERBI ERROR STATISTICS

provide more robust interpretation (inference) capabilities.
The insertion errors induced by DD-MCMC MAP/Viterbi
for all six datasets are summarized in Table.I.

Some errors between the MAP labels and the ground
truth occur due to the systematic irregular motions of the
tracked bees. In these cases, even an expert biologist will
have difficulty figuring out all the correct dance labels soley
based on the observation data, without access to the video.
Considering that SLDSs are learned exclusively from the
observation data, the results are fairly good.

Conclusion
We introduced a novel inference method for SLDS. The
proposed method provides a concrete framework to a
variety of research communities. First, it can characterize
the accuracy of deterministic approximation algorithms.
Secondly, it serves as an inference method that can discover
true posteriors. This leads to a robust inference and learn-
ing. Finally, DD-MCMC delivers correct MAP solutions to
a wide range of SLDS applications.

The proposed method efficiently converges to the poste-
rior, overcoming a potential limitation of MCMC methods.
The efficiency is achieved via the sampling space reduc-
tion by Rao-Blackwellisation and the data-driven approach
where temporal cues and proposal priors are introduced to
construct an efficient proposal.

In terms of characteristics, DD-MCMC inference method
embraces data characteristics and model-based approaches.
The characteristics of data are effectively learned using the
temporal cues where the form of the cues are obtained from
prior knowledge.

The authors believe that this work is the first to explore
Data-Driven MCMC techniques for SLDS. Moreover, the
proposed framework is broadly-applicable to problems in
time series and behavior modeling.
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