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Abstract

We propose a novel scheme for function-based clas-
sification of objects in 3D images. The classification
process calls for constructing a generic multi-level hi-
erarchical description of object classes in terms of func-
tional components. Functionality is derived from a large
set of geometric attributes and relationships between
object parts. Initially, the input range data describing
each object instance is segmented, each object part is
labeled as one of a few possible primitives, and each
group of primitive parts is tagged by a functional sym-
bol. Connections between primitive parts and functional
parts at the same level in the hierarchy are labeled as
well. Then, the generic multi-level hierarchical descrip-
tion of object classes is built using the functionalities
of a number of object instances. During classification,
a search through a finite graph using a probabilistic fit-
ness measure is performed to find the best assignment
of object parts to the functional structures of each class.
An object is assigned to a class providing the highest fit-
ness value. The scheme does not require a-priori knowl-
edge about any class. We tested the proposed scheme on
a database of about one thousand different 3D objects.
The results show high accuracy in classification.

Introduction

The problem of object classification from sensory data is de-
fined, in the literature, as the association of visual input to a
name or a symbol. Although much research on the topic has
been published, the community still lacks usable vision sys-
tems that can classify a large number of objects (natural or
man-made). We propose a new scheme that is able to clas-
sify objects from range images.

There is a plethora of object recognition approaches. The
first approaches dealt with single object models in the in-
put. They were based on geometric modelling. Later on, the
parameterized geometric modelling was introduced (Ullman
1995). A fundamentally different approach was introduced
by Gibson (Gibson 1979), who considered that the human
mind classifies objects according to usage, i.e., by the func-
tions that an object may fulfil.

The first systems using function-based classification were
(Winston et al. 1983) and (DiManzo et al. 1989). An impres-
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sive number of results in the function-based classification
field were demonstrated with the GRUFF and OMLET sys-
tems (Stark & Bowyer 1994; Sutton, Stark, & Bowyer 1994;
Woods et al. 1995). The following issues were addressed:
reuse of a limited set of knowledge primitives in defining an
expanded domain of competence, computing an association
measure for the appropriateness of a shape that can be com-
pared across categories so that different interpretations of a
shape can be rank ordered, and learning membership func-
tions from 3D objects. The learning phase aims augmenting
functions that are defined in a human-driven preprocessing.
To the best of our knowledge, GRUFF and OMLET were
tested on raw images that included chairs that were artifi-
cially built from boxes.

In (Rivlin, Dickinson, & Rosenfeld 1995), the authors
presented a theory of function-based recognition that is a
natural extension of the part-based shape recognition ap-
proach. Following (Rivlin, Dickinson, & Rosenfeld 1995),
in (Froimovich, Rivlin, & Shimshoni 2002), the authors pro-
posed a system for function-based classification. The classi-
fication approach, performed on range images of real 3D
objects, assumes a-priori knowledge of the objects.

We propose a novel scheme for function-based classifica-
tion of objects using 3D images. The classification process
calls for constructing a generic multi-level hierarchical de-
scription of object classes in terms of functional compo-
nents. The multi-level hierarchy provides a nesting mech-
anism for functional parts and has unbounded depth. In this
context, the construction of the generic multi-level hierarchy
can be thought of as a learning phase.

In the learning phase the input range data describing each
object instance is segmented, each object part is labeled as
one of a few possible primitives, and each group of primi-
tive parts is tagged by a functional symbol. Connections be-
tween primitive parts and functional parts at the same level
in the hierarchy are labeled as well. Then, the multi-level
hierarchy, which is a probabilistic model of an object class,
is defined using histograms built from the functionalities of
a number of object instances. Our scheme is able to auto-
matically build the description of any new object class from
labeled examples.

During classification, a search through a finite graph using
a probabilistic fitness measure is performed to find the best
assignment of parts of an object to the functional structures
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of each class. An object is assigned to a class providing the
highest fitness value.

Function-based approaches offer the advantage of granu-
lar learning. This means that functional parts that have the
same geometry and are shared between different classes do
not have to be learnt with each new class. This fact enables
marked acceleration of the learning phase. To the best of our
knowledge, no such sharing was used nor described in exis-
tent systems.

We tested the proposed scheme on a database of about one
thousand different 3D objects. As far as we have been able
to determine, no other classification (or recognition) scheme
has yet been tested on hundreds of range images of real ob-
jects captured in range images. In so far as we know, this is
the first scheme that performs function-based classification
that involves a learning phase and does not require a-priori
knowledge about any class.

Learning and Classifying Functionalities

The proposed scheme consists of two phases: a learning
phase and a classification phase. Each of these phases re-
ceives as input segmented images. The objects are seg-
mented and labeled into constituents: primitive and func-
tional parts. The primitive parts (also known in the literature
as geons (Biderman 1987), (Dickinson et al. 1997)) that we
consider are sticks, plates, and blobs. A functional part is de-
fined as an object part that could provide a certain function,
and usually comprises several primitive parts; for example,
a ground support of a chair consists of four parallel stick
primitive parts. Note that (Biderman 1987) and (Dickinson
et al. 1997) stated that thousands of objects can be mapped
to a low number of primitive parts. The immense number of
objects in nature is the result of the combinatorial number of
interrelationships between the primitive parts.

In the learning phase, several instances (objects) of a
class are input. The learning phase computes the values of
the geometric attributes of the constituents and the relation-
ships between them. Once the learning phase is finished, the
generic representation has accumulated enough information
for classification - the next phase.

Segmentation

The learning as well as the classification phases receive as
input primitive parts as detected from a segmentation algo-
rithm, which is a variation on UE (Hoover et al. 1996). The
segmentation provides representation models for the primi-
tive parts. We do not elaborate on the details of the imple-
mented segmentation technique due to space limitations.

Multi-Level Hierarchy Functional Structure

The classification process comprises an analysis both of
the detected primitive parts and the relationships that ex-
ist among them. We call the relationships between primi-
tive parts primitive-to-primitive connections. We have gen-
eralized the mechanism of decomposition into parts and
primitive-to-primitive connections into a multi-level ap-
proach in the following sense. Each primitive part or group
of primitive parts and the primitive-to-primitive connections

Functional Part

Arm—chair

Funct art Functional Part Functional Part
Back Support Sittable Ground Support

Figure 1: The multi-level hierarchy functional structure.
F (Arm-chair) = {Arm Support, Chair} . The arms represent a
simple functional part with the functionality of supporting the
arms, while the chair is a high level functional part due to the fact
that it describes a more complex functionality.

among them that can fulfil a certain functional task are clas-
sified as a functional part. Further, several functional parts
and the relationships among them can define a functional
task and can form a higher level functional part. The pro-
posed hierarchy can be as complex as one wishes. This ap-
proach is known in the literature as recognition/classification
by functional parts.

A relationship between a pair of functional parts is called
a functional-to-functional connection. Whenever it is clear
from the context, we use the term connection to denote
a primitive-to-primitive or functional-to-functional connec-
tion. Each level in the functional hierarchy has a clique struc-
ture and each pair of functional parts (in the clique) are char-
acterized by a relationship expressed in terms of geomet-
ric attributes. For example, in Fig. 1, each pair of functional
parts "Back Support”, ”Sittable”, and ”Ground Support” are
connected, thus forming a clique. Note that these three nodes
have the common ancestor ”Chair”.

The multi-level hierarchy functional structure of an ob-
ject class is implemented by a layered tree structure. For any
functional part f, define P (f) and F (f) the set of imme-
diate primitive or functional constituents of f and C (f) the
set of connections between the elements of P (f)J F (f);
see Fig. 1. Note that only one of P (f) or F'(f) is not empty
for any functionality f.

For any symbolic primitive part, functional part, or
connection a, we associate GP (a), a set of geomet-
ric attributes. If a is a primitive or a functional part
then GP (a) includes, among other properties, inertia
moments, stability, and regularity. If a is a connec-
tion, GP (a) includes, among other properties, ratio
of volumes and context-based stability. (We define the
context-based stability attribute of a connection being
the stability of the ensemble of the parts related to this
connection.) The full description of the geometric attributes
we have considered is relatively large and can be found at
www.cs.technion.ac.il/~mpechuk/ProjectOCLS/index.html.

Each geometric attribute is associated with a histogram
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of measured values. The histograms are built employing
B-spline functions (Farin 1996) (we use uniform knot se-
quences and employ cubic B-splines in this work) . These
B-spline functions allow the computation of hypotheses
with relationship information about the primitive/functional
parts. The multi-level hierarchy of each learnt class is stored
in a database.

Consider a multi-level hierarchy and let P and F
be the set of all the symbolic primitives and func-
tional parts, respectively, the hierarchy includes. De-
fine A = {(a,9)|ac€ F|UP,g€ GP(a)} and B =
User{(c,9)| c€C(f),9 € GP(c)}. Then, the multi-
level hierarchy of a functionality f induces a function H; :
AUB — H, where H = {h|h: R — [0..1]} is the set
of all (normalized) histograms that can be implemented as
B-spline functions (see next section) .

Learning Functionalities

Fig. 2 (upper part) shows the flow of the learning phase of
our scheme. The input of the learning phase is a set of func-
tional labeled objects. Each functional and primitive part
is labeled with a symbol or a generic name. Examples of
functional and primitive part symbols are ”ground support”
and “’stick”, respectively. For each input object, the proposed
scheme calculates the values for all the pre-defined geomet-
rical attributes. Further, these attributes are subject to an
RBF-like (radial-based function) learning (Mitchell 1997).
We mention that, unlike (Mitchell 1997), we chosen to im-
plement histograms via B-spline functions and not Gaussian
ones due to a slightly better accuracy offered by B-spline
functions. The accuracy issue was tested on some prelimi-
nary experiments that we do not provide here due to space
limitations.

In the learning phase, the scheme builds histograms for
geometric properties of the functional parts as well as for
the connections between the functional parts. The contin-
uous domain of measured values for geometric properties
is approximated by discrete accumulation values which are
provided as the coefficients to B-spline functions that imple-
ment the histograms. The scalar coefficients are normalized
such that the maximum coefficient equals 1.0. Note that this
process is automatic, does not require other operator inter-
vention but labeling.

Once the geometric properties of the primitive parts are
pre-evaluated, the reasoning is conducted via histograms
based grades, to be defined in the next section. For each
functional part, the set of histograms of its constituents,
functional (sub)-parts and connections, represents the sig-
nature of the functional part.

Function-based approaches offer the advantage of gran-
ular learning, that is, functional parts that have the same
geometry and are shared between different classes do not
have to be learnt with each new class. We exploit this advan-
tage in speeding up the scheme for learning new objects; that
is, we design the learning sequences from objects with func-
tional parts having different geometry. Repetition of geomet-
rically similar functional parts is not necessary. Neverthe-
less, it can be used to dictate a bias in classification.

Learning Flow

Functional Snmmnd\/
Ot Ranee s s
Functional .
l Input }—»l 3D Scanner }»»l Segmentor }»» qnetionsl gl Learning

Classification Flow
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Figure 2: Learning and classification flows.

Classification

Fig. 2 (lower part) shows the flow of the classification phase
of our scheme. In the classification mode, the input consists
of a set of primitive parts, the connections between them,
and the multi-level hierarchy provided by the learning phase.
The classification phase computes a vector of grades that de-
scribes how an object offers class functionalities. Each ele-
ment of the vector represents a grade relative to one class.

The class with the highest fitness grade is chosen as the
best match found by our scheme. For each one of the learnt
classes the scheme tries to find the best realization for the
multi-level hierarchy functional structure out of the given set
of primitive parts and the connections between them. (By re-
alization we mean a partition for which we have evaluated its
grades’ vector of fitness.) A fitness grade is then computed
for each such realization. Thus, we reduce the problem of
classifying a new object to the problem of finding the multi-
level hierarchy functional structure realization with the high-
est fitness grade, which in fact relies on computing a parti-
tion. More specifically, we define a partition as a set of prim-
itive parts sub-sets, each set representing a functional ele-
ment in the multi-level hierarchy. The following subsections
describe the fitness grade computation process and several
partitioning algorithms.

Fitness Grades Computation Assume we want to evalu-
ate the fitness grade for functionality f and F'H is a multi-
level hierarchy computed for f. Let P;,, an input set of prim-
itive parts which are to be partitioned in the functional parts
of F'H in order to recover f. Let P be the set of all hy-
pothetic partitions of P;, in a F'H structure and for any
s € F(f)UUP(f) let p(s) be the sub-set of the partition
p relative to s. Define

grade (f,p)

= > nto® ]I

9EGP()) se(FiHUow)

grade (s,p (s))
if P (f) is empty and

> Hi(f9) @)

gEGP(f)

grade (f,p) =

> w(s,g) grade(s,5(s))
se(PinJow)
otherwise. Here, w (s, g) is a weight function that is pro-
portional with the standard deviation (Kenney & Keep-

ing 1962) of the histogram function itself correspond-
ing to s and ¢ (not the histogram’s range) and Hy (s, g) (P)

AAAI-05 / 952



means the value of the geometric property histogram
for s implemented following partition p. If p is a
primitive part then the fitness grade grade (p,p(p)) =

> gecp(p) Hy (f:9) (B (p)) . If cis a connection, then

grade(c,p) = Y w(c,9)Hs(c,9) (D).
gEGP(c)

Moreover, for any functionality f, the fitness grade is de-
fined as
grade (f) = max grade (.5).
pEP

The weights are used to emphasize the geometric at-
tributes that have a higher potential to characterize a specific
class. We assume that this potential is higher in geometric
attributes that have histograms with peaks than in ones that
have constant value. In order to determine the best geomet-
ric attributes we compute the weights as standard deviations
(Kenney & Keeping 1962) of the histograms values. Note
that the weights mechanism can eliminate unnecessary con-
nections in cliques.

The classification phase is a search and validation like al-
gorithm over a finite graph of partitions. The main difficulty
in the classification phase is to efficiently select the best par-
titions of the input objects’ primitive parts into functional
parts. We focus on the question ”"What function could this
part fulfil?” For example, if we take a chair, several plates
could serve as its seat, its back support, and one of its legs
(as part of its ground support) . This motivates our interest
in designing algorithms for partitioning.

Matching Partitions to Functionalities We define the
matching of partitions to functionalities as a search in a fi-
nite graph problem. The nodes and edges of the search graph
are described below.

A function that associates a list of primitive parts to each
functional part defines a partition. In addition, we define a
”non-partitioned” set that contains all not matched primitive
parts. Each node of the graph contains the above sets. We
assume that the input 3D model consists of n primitive parts
whereas the analyzed class consists of m functional parts.
The search space is a graph with (m + 1)" nodes. The first
state of the graph is always the “empty” state, i.e., all the
primitive parts are located in the ’non-partitioned” section.
The children’s generation function takes a state of level k—1
in the graph and generates all possible realizations for the k-
th functional part from the “non-partitioned” primitive parts
set. It assumes that the previous k — 1 functional parts are al-
ready realized. Thus, the last level contains all possible par-
titions of the object. The goal is to find the state with the
highest fitness grade.

We used a heuristic search with a pruning branch-and-
bound approach. Define the partial fitness grade of a primi-
tive part, a functional part, or connection a relative to parti-
tion p be

. d p) if fi ioned
partiat(f.) :{ gredeth el e

where n is a node in the search graph. For searching pur-
poses we use partial fitness grades. From (1) , it follows that

when the search reaches a leaf, the partial grade equals the
fitness grade.

Following (Grimson 1991), the algorithm searches the
states’ graph starting from the “empty” state. The algorithm
searches for the partition that has the highest fitness grade,
which represents the classification result. We have, however,
changed the identification of primitive parts into comparing
signatures of functional parts with geometrical attributes of
the functional part candidates.

In our tests we used an exhaustive search algorithm as
well as a genetic search algorithm. Although the genetic al-
gorithm erred in 10% of the classifications, it has the advan-
tage that is time bounded.

Experiments

We tested our scheme on a database comprising synthetic
models of 200 forks, 216 spoons, 200 stools, and 200 spec-
tacles. We also tested our scheme on a database comprising
100 forks, 100 spoons, 97 chairs, and 100 spectacles, of real
range images. Partial sets of the forks, spoons, chairs and the
spectacles, that we used in experiments, are shown in Fig. 5
and 6. The objects in the range images were captured with a
Cyberware range scanner (http://www.cyberware.com) .

We performed four types of experiments aiming to check
model strength, cross validation, receiver operating charac-
teristic (ROC) and accuracy, and classification in cluttered
scenes. In all the tests, the learning phase was performed
on images that contain only one object. In model strength
checking, cross validation, and ROC and accuracy tests, we
used the proposed scheme to classify objects from 3D im-
ages that contain only one object. In the cluttered scene tests,
partial views of several objects were used.

Model Strength Checking In the model strength check-
ing experiment, two sets of objects were used: a learning set
and a test set. The graph in Fig. 3 (a) shows the test set aver-
age grades as a function of the size of the training set. Here,
the lowest curve represents the average of the grades of the
classified objects and the higher curve shows the percentage
of the test set’s average grade from the maximal grades in
the test set. In the experiment shown in Fig. 3 (a) the learn-
ing sets consisted of real scanned objects. The set used for
classification is constant per experiment and comprised all
the scanned objects.

Cross Validation We employ the whole data base in cross
validation experiments. The learning (training) group repre-
sented 80% of the object class set whereas the classification
(or testing) group consists of the rest of the data base. The
result of the classification consists of computing grades: the
classified objects are evaluated as fork, mug, spoon, stool,
and spectacles. The grades are averaged and presented as
textured bars in a graph, that is shown in Fig. 3 (b). The
graph comprises five groups of five object class grades. For
example, the first group relates to forks that were classified
as forks, mugs, spoons, stools, or spectacles in this order.
In Fig. 3 (b), the forks, the spoons, and the spectacles were
range images. The tests on real data revealed that, although
we can differentiate between forks and spoons, the degree
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Figure 3: Experiments: (a) Learning and -classifying
real spoons. (b) Cross validation on the whole data
base, which includes forks, mugs, spoons, stools, and
spectacles. (¢) A ROC on the whole data base for
stools  (the uppermost curve), forks, and spectacles
(the lowest curve). (d) The accuracy of stools versus
the rest of the data base. (¢) Overall accuracy.

of differentiation is quite low. This is mainly due to the fact
that spoons and forks have similar dimensions, forms, and
functionality (both have handles and are graspable) .

ROC and Accuracy Consider classifiers that work on
components of the vector fitness grades (the classifiers do
not perform maximum on components) . In Fig. 3 (¢), we
show the ROC superimposed curves of stools, forks, and
spoons. In Fig. 3 (d), we show the accuracy of the classi-
fier of stools versus the data base. In Fig. 3 (e), unlike in
Fig. 3 (¢) and (d), we show the accuracy of the classifier
that performs maximum on vector grades, targeting all five
tested classes and the whole data base.

Cluttered Scenes In the cluttered scene tests, the learn-
ing phase consisted of images that included only one chair.
In the classification phase we tested our scheme using two
types of 3D images. The first type of images included a chair
and a table in a room while the second one included chairs
and spoons (see Fig. 4 for examples of first type of images) .
We tested our scheme on six images of the first type and
thirty images of the second type. In five of the images from

Figure 4: Two cluttered scenes of a chair and a table in a
room. (a) and (b) represent two examples of the first type of
image. Fig. (¢) and (d) represent results of segmentation of
the scenes in (a) and (b) , respectively. The primitive parts
sticks and plates are shown as they are detected and mod-
elled in the segmentation phase. Fig. (e) and (f) represent
results of classifications of the scenes in (a) and (b) , respec-
tively. (e) and (f) show the resulting functional parts — the
back support, seat, and the ground support — with different
textures.
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Figure 5: Images of some chairs used in the experiments.
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the first type and in all the images of the second type, our
system correctly classified a valid chair.

Conclusions

In this work, we have presented a novel function-based
scheme for classification of 3D objects. The input objects
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Figure 6: Images of some forks, spoons, and spectacles used
in our experiments.

are full 3D descriptions of objects. The proposed scheme
employs an object functional structure, consisting of a multi-
level hierarchy of functional parts. The multi-level approach
offers a higher degree of freedom for real object modelling
as compared to classical systems and can be seen as a learn-
ing phase. The learning phase builds the multi-level hier-
archy by analyzing primitive parts in the input images and
their geometric attributes.

Our approach was tested on a database of about one
thousand different 3D objects employing several algorithms
for searching and pruning. To the best of our knowledge,
no other classification (or recognition) scheme was tested
on hundreds of range images of real objects captured in
range images. The graphs show the quality achieved by our
scheme. They also provide an insight into the dimensions of
the learning sets that are required so as to reach a certain
degree of classification accuracy. Our work appears to be
the first scheme that performs function-based classification
that involves a learning phase and does not require a-priori
knowledge about any class.

Automatic segmentation usually suffers from over-
segmentation. This phenomenon does not influence the ac-
curacy of the proposed solution, however, it could produce
an increase of the time complexity of the searching phase.
The proposed solution is clearly parallelizable. We believe
that employing concurrent or parallel variants of the al-
gorithms, and/or implementing the classification evaluation
schemes on dedicated hardware, could greatly speed up the
classification process.

Part of our future work consists of enlarging the data base
of the testing objects. Specifically, we intend to introduce
more categories of objects captured in range images in the
experiments. In addition, we are going to use more expres-
sive approximation models for primitive parts. The more
exact the approximation models are, the more accurate the
classification is expected to be.
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