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A bstract
W e p rop ose a nov el schem e for function-b ased clas-
sification of ob jects in 3 D im ages. The classification
p rocess calls for constructing a generic m ulti-lev el hi-
erarchical d escrip tion of ob ject classes in term s of func-
tional com p onents. F unctionality is d eriv ed from a large
set of geom etric attrib utes and relationship s b etw een
ob ject p arts. Initially, the inp ut range d ata d escrib ing
each ob ject instance is segm ented , each ob ject p art is
lab eled as one of a few p ossib le p rim itiv es, and each
group of p rim itiv e p arts is tagged b y a functional sym -
b ol. C onnections b etw een p rim itiv e p arts and functional
p arts at the sam e lev el in the hierarchy are lab eled as
w ell. Then, the generic m ulti-lev el hierarchical d escrip -
tion of ob ject classes is b uilt using the functionalities
of a num b er of ob ject instances. D uring classification,
a search through a finite grap h using a p rob ab ilistic fit-
ness m easure is p erform ed to find the b est assignm ent
of ob ject p arts to the functional structures of each class.
A n ob ject is assigned to a class p rov id ing the highest fit-
ness v alue. The schem e d oes not req uire a-p riori k now l-
ed ge ab out any class. W e tested the p rop osed schem e on
a d atab ase of ab out one thousand d ifferent 3 D ob jects.
The results show high accuracy in classification.

I ntroduction
The p rob lem of ob ject classification from sensory d ata is d e-
fined , in the literature, as the association of v isual inp ut to a
nam e or a sym b ol. A lthough m uch research on the top ic has
b een p ub lished , the com m unity still lack s usab le v ision sys-
tem s that can classify a large num b er of ob jects (natural or
m an-m ad e). W e p rop ose a new schem e that is ab le to clas-
sify ob jects from range im ages.

There is a p lethora of ob ject recognition ap p roaches. The
first ap p roaches d ealt w ith single ob ject m od els in the in-
p ut. They w ere b ased on geom etric m od elling. L ater on, the
p aram eteriz ed geom etric m od elling w as introd uced ( U llm an
1 9 9 5 ) . A fund am entally d ifferent ap p roach w as introd uced
b y G ib son (G ib son 1 9 7 9 ) , w ho consid ered that the hum an
m ind classifies ob jects accord ing to usage, i.e., b y the func-
tions that an ob ject m ay fulfil.

The first system s using function-b ased classification w ere
(W inston et al. 1 9 8 3 ) and ( D iM anz o et al. 1 9 8 9 ) . A n im p res-
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siv e num b er of results in the function-b ased classification
field w ere d em onstrated w ith the G R U F F and O M L E T sys-
tem s ( S tark & B ow yer 1 9 9 4 ; S utton, S tark , & B ow yer 1 9 9 4 ;
W ood s et al. 1 9 9 5 ) . The follow ing issues w ere ad d ressed :
reuse of a lim ited set of k now led ge p rim itiv es in d efining an
ex p and ed d om ain of com p etence, com p uting an association
m easure for the ap p rop riateness of a shap e that can b e com -
p ared across categories so that d ifferent interp retations of a
shap e can b e rank ord ered , and learning m em b ership func-
tions from 3 D ob jects. The learning p hase aim s augm enting
functions that are d efined in a hum an-d riv en p rep rocessing.
To the b est of our k now led ge, G R U F F and O M L E T w ere
tested on raw im ages that includ ed chairs that w ere artifi-
cially b uilt from b ox es.

In (R iv lin, D ick inson, & R osenfeld 1 9 9 5 ) , the authors
p resented a theory of function-b ased recognition that is a
natural ex tension of the p art-b ased shap e recognition ap -
p roach. F ollow ing (R iv lin, D ick inson, & R osenfeld 1 9 9 5 ) ,
in (F roim ov ich, R iv lin, & S him shoni 2 0 0 2 ) , the authors p ro-
p osed a system for function-b ased classification. The classi-
fication ap p roach, p erform ed on range im ages of real 3 D
ob jects, assum es a-p riori k now led ge of the ob jects.

W e p rop ose a nov el schem e for function-b ased classifica-
tion of ob jects using 3 D im ages. The classification p rocess
calls for constructing a generic m ulti-lev el hierarchical d e-
scrip tion of ob ject classes in term s of functional com p o-
nents. The m ulti-lev el hierarchy p rov id es a nesting m ech-
anism for functional p arts and has unb ound ed d ep th. In this
contex t, the construction of the generic m ulti-lev el hierarchy
can b e thought of as a learning p hase.

In the learning p hase the inp ut range d ata d escrib ing each
ob ject instance is segm ented , each ob ject p art is lab eled as
one of a few p ossib le p rim itiv es, and each group of p rim i-
tiv e p arts is tagged b y a functional sym b ol. C onnections b e-
tw een p rim itiv e p arts and functional p arts at the sam e lev el
in the hierarchy are lab eled as w ell. Then, the m ulti-lev el
hierarchy, w hich is a p rob ab ilistic m od el of an ob ject class,
is d efined using histogram s b uilt from the functionalities of
a num b er of ob ject instances. O ur schem e is ab le to auto-
m atically b uild the d escrip tion of any new ob ject class from
lab eled ex am p les.

D uring classification, a search through a finite grap h using
a p rob ab ilistic fitness m easure is p erform ed to find the b est
assignm ent of p arts of an ob ject to the functional structures
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of each class. An object is assigned to a class providing the
highest fi tness value.

Function-based approaches offer the advantage of granu-
lar learning. This means that functional parts that have the
same geometry and are shared between different classes do
not have to be learnt with each new class. This fact enables
marked acceleration of the learning phase. To the best of our
knowledge, no such sharing was used nor described in exis-
tent systems.

We tested the proposed scheme on a database of about one
thousand different 3D objects. As far as we have been able
to determine, no other classifi cation (or recognition) scheme
has yet been tested on hundreds of range images of real ob-
jects captured in range images. In so far as we know, this is
the fi rst scheme that performs function-based classifi cation
that involves a learning phase and does not require a-priori
knowledge about any class.

Learning and Classifying Functionalities
The proposed scheme consists of two phases: a learning
phase and a classifi cation phase. Each of these phases re-
ceives as input segmented images. The objects are seg-
mented and labeled into constituents: primitive and func-
tional parts. The primitive parts (also known in the literature
as geons (Biderman 1987), (Dickinson et al. 1997)) that we
consider are sticks, plates, and blobs. A functional part is de-
fi ned as an object part that could provide a certain function,
and usually comprises several primitive parts; for example,
a ground support of a chair consists of four parallel stick
primitive parts. N ote that (Biderman 1987) and (Dickinson
et al. 1997) stated that thousands of objects can be mapped
to a low number of primitive parts. The immense number of
objects in nature is the result of the combinatorial number of
interrelationships between the primitive parts.

In the learning phase, several instances (objects) of a
class are input. The learning phase computes the values of
the geometric attributes of the constituents and the relation-
ships between them. Once the learning phase is fi nished, the
generic representation has accumulated enough information
for classifi cation - the next phase.

Segmentation
The learning as well as the classifi cation phases receive as
input primitive parts as detected from a segmentation algo-
rithm, which is a variation on UE (Hoover et al. 1996 ). The
segmentation provides representation models for the primi-
tive parts. We do not elaborate on the details of the imple-
mented segmentation technique due to space limitations.

Multi-Level H ierarchy Functional Structure
The classifi cation process comprises an analysis both of
the detected primitive parts and the relationships that ex-
ist among them. We call the relationships between primi-
tive parts primitive-to-primitive connections. We have gen-
eralized the mechanism of decomposition into parts and
primitive-to-primitive connections into a multi-level ap-
proach in the following sense. Each primitive part or group
of primitive parts and the primitive-to-primitive connections
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Primitive Part Primitive Part
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Figure 1: The multi-level hierarchy functional structure.
F (Arm-chair) = {Arm Support, Chair} . The arms represent a
simple functional part with the functionality of supporting the
arms, while the chair is a high level functional part due to the fact
that it describes a more complex functionality.

among them that can fulfi l a certain functional task are clas-
sifi ed as a functional part. Further, several functional parts
and the relationships among them can defi ne a functional
task and can form a higher level functional part. The pro-
posed hierarchy can be as complex as one wishes. This ap-
proach is known in the literature as recognition/classifi cation
by functional parts.

A relationship between a pair of functional parts is called
a functional-to-functional connection. Whenever it is clear
from the context, we use the term connection to denote
a primitive-to-primitive or functional-to-functional connec-
tion. Each level in the functional hierarchy has a clique struc-
ture and each pair of functional parts (in the clique) are char-
acterized by a relationship expressed in terms of geomet-
ric attributes. For example, in Fig. 1, each pair of functional
parts ”Back Support”, ”Sittable”, and ”Ground Support” are
connected, thus forming a clique. N ote that these three nodes
have the common ancestor ”Chair”.

The multi-level hierarchy functional structure of an ob-
ject class is implemented by a layered tree structure. For any
functional part f, defi ne P (f) and F (f) the set of imme-
diate primitive or functional constituents of f and C (f) the
set of connections between the elements of P (f)

⋃
F (f) ;

see Fig. 1. N ote that only one of P (f) or F (f) is not empty
for any functionality f.

For any symbolic primitive part, functional part, or
connection a, we associate G P (a) , a set of geomet-
ric attributes. If a is a primitive or a functional part
then G P (a) includes, among other properties, inertia
moments, stability, and regularity. If a is a connec-
tion, G P (a) includes, among other properties, ratio
of volumes and context-based stability. (We defi ne the
context-based stability attribute of a connection being
the stability of the ensemble of the parts related to this
connection.) The full description of the geometric attributes
we have considered is relatively large and can be found at
www.cs.technion.ac.il/∼mpechuk/P rojectOCLS/index.html.

Each geometric attribute is associated with a histogram
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of measured values. The histograms are built employing
B-spline functions (Farin 1996) (we use uniform knot se-
quences and employ cubic B-splines in this work) . These
B-spline functions allow the computation of hypotheses
with relationship information about the primitive/functional
parts. The multi-level hierarchy of each learnt class is stored
in a database.

Consider a multi-level hierarchy and let P and F
be the set of all the symbolic primitives and func-
tional parts, respectively, the hierarchy includes. De-
fi ne A = {(a, g) | a ∈ F

⋃

P, g ∈ GP (a)} and B =
⋃

f∈F {(c, g) | c ∈ C (f) , g ∈ GP (c)} . Then, the multi-
level hierarchy of a functionality f induces a function Hf :
A

⋃

B → H, where H = {h | h : R → [0..1]} is the set
of all (normalized) histograms that can be implemented as
B-spline functions (see next section) .

Learning Functionalities
Fig. 2 (upper part) shows the flow of the learning phase of
our scheme. The input of the learning phase is a set of func-
tional labeled objects. Each functional and primitive part
is labeled with a symbol or a generic name. Examples of
functional and primitive part symbols are ” ground support”
and ” stick” , respectively. For each input object, the proposed
scheme calculates the values for all the pre-defi ned geomet-
rical attributes. Further, these attributes are subject to an
RBF-like (radial-based function) learning (Mitchell 1997).
We mention that, unlike (Mitchell 1997), we chosen to im-
plement histograms via B-spline functions and not Gaussian
ones due to a slightly better accuracy offered by B-spline
functions. The accuracy issue was tested on some prelimi-
nary experiments that we do not provide here due to space
limitations.

In the learning phase, the scheme builds histograms for
geometric properties of the functional parts as well as for
the connections between the functional parts. The contin-
uous domain of measured values for geometric properties
is approximated by discrete accumulation values which are
provided as the coeffi cients to B-spline functions that imple-
ment the histograms. The scalar coeffi cients are normalized
such that the maximum coeffi cient equals 1.0. Note that this
process is automatic, does not require other operator inter-
vention but labeling.

Once the geometric properties of the primitive parts are
pre-evaluated, the reasoning is conducted via histograms
based grades, to be defi ned in the next section. For each
functional part, the set of histograms of its constituents,
functional (sub)-parts and connections, represents the sig-
nature of the functional part.

Function-based approaches offer the advantage of gran-
ular learning, that is, functional parts that have the same
geometry and are shared between different classes do not
have to be learnt with each new class. We exploit this advan-
tage in speeding up the scheme for learning new objects; that
is, we design the learning sequences from objects with func-
tional parts having different geometry. Repetition of geomet-
rically similar functional parts is not necessary. Neverthe-
less, it can be used to dictate a bias in classifi cation.

Phase
Classification

Vector
Fitness Grades

Segmentor3D ScannerInput

DatabaseLearning
Phase

Functional
Structuring

Segmentor3D ScannerInput

PPartsRangeObject

Computing Geometric
Attributes

Functional Structured
Object

PPartsRangeObject

Learning Flow

Classification Flow

Figure 2: Learning and classifi cation flows.

Classification
Fig. 2 (lower part) shows the flow of the classifi cation phase
of our scheme. In the classifi cation mode, the input consists
of a set of primitive parts, the connections between them,
and the multi-level hierarchy provided by the learning phase.
The classifi cation phase computes a vector of grades that de-
scribes how an object offers class functionalities. Each ele-
ment of the vector represents a grade relative to one class.

The class with the highest fi tness grade is chosen as the
best match found by our scheme. For each one of the learnt
classes the scheme tries to fi nd the best realization for the
multi-level hierarchy functional structure out of the given set
of primitive parts and the connections between them. (By re-
alization we mean a partition for which we have evaluated its
grades’ vector of fi tness.) A fi tness grade is then computed
for each such realization. Thus, we reduce the problem of
classifying a new object to the problem of fi nding the multi-
level hierarchy functional structure realization with the high-
est fi tness grade, which in fact relies on computing a parti-
tion. More specifi cally, we defi ne a partition as a set of prim-
itive parts sub-sets, each set representing a functional ele-
ment in the multi-level hierarchy. The following subsections
describe the fi tness grade computation process and several
partitioning algorithms.

Fitness Grades Comp utation Assume we want to evalu-
ate the fi tness grade for functionality f and FH is a multi-
level hierarchy computed for f. Let Pin an input set of prim-
itive parts which are to be partitioned in the functional parts
of FH in order to recover f. Let P be the set of all hy-
pothetic partitions of Pin in a FH structure and for any
s ∈ F (f)

⋃

P (f) let p (s) be the sub-set of the partition
p relative to s. Defi ne
grade (f, p)

=
∑

g∈G P (f)

Hf (f, g) (p)
∏

s∈

(

F (f)
⋃

C(f)
)

grade (s, p (s))

if P (f) is empty and

grade (f, p) =





∑

g∈G P (f)

Hf (f, g) (p)











∑

s∈

(

P (f)
⋃

C(f)
)

w (s, g) grade (s, p (s))







otherwise. Here, w (s, g) is a weight function that is pro-
portional with the standard deviation (K enney & K eep-
ing 1962) of the histogram function itself correspond-
ing to s and g (not the histogram’s range) and Hf (s, g) (p)
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means the value of the geometric property histogram
for s implemented following partition p. If p is a
primitive part then the fi tness grade grad e (p, p (p)) =
∑

g∈G P (p) Hf (f, g) (p (p)) . If c is a connection, then

grad e (c, p) =
∑

g∈G P (c)

w (c, g)Hf (c, g) (p) .

Moreover, for any functionality f, the fi tness grade is de-
fi ned as

grad e (f) = m a x
p∈P

grad e (f, p) .

The weights are used to emphasize the geometric at-
tributes that have a higher potential to characterize a specifi c
class. We assume that this potential is higher in geometric
attributes that have histograms with peaks than in ones that
have constant value. In order to determine the best geomet-
ric attributes we compute the weights as standard deviations
(Kenney & Keeping 1962) of the histograms values. Note
that the weights mechanism can eliminate unnecessary con-
nections in cliques.

The classifi cation phase is a search and validation like al-
gorithm over a fi nite graph of partitions. The main diffi culty
in the classifi cation phase is to effi ciently select the best par-
titions of the input objects’ primitive parts into functional
parts. We focus on the question ” What function could this
part fulfi l? ” For example, if we take a chair, several plates
could serve as its seat, its back support, and one of its legs
(as part of its ground support) . This motivates our interest
in designing algorithms for partitioning.

Matching Partitions to Functionalities We defi ne the
matching of partitions to functionalities as a search in a fi -
nite graph problem. The nodes and edges of the search graph
are described below.

A function that associates a list of primitive parts to each
functional part defi nes a partition. In addition, we defi ne a
” non-partitioned” set that contains all not matched primitive
parts. Each node of the graph contains the above sets. We
assume that the input 3D model consists of n primitive parts
whereas the analyzed class consists of m functional parts.
The search space is a graph with (m + 1)

n nodes. The fi rst
state of the graph is always the ” empty” state, i.e., all the
primitive parts are located in the ” non-partitioned” section.
The children’s generation function takes a state of level k−1
in the graph and generates all possible realizations for the k-
th functional part from the ” non-partitioned” primitive parts
set. It assumes that the previous k−1 functional parts are al-
ready realized. Thus, the last level contains all possible par-
titions of the object. The goal is to fi nd the state with the
highest fi tness grade.

We used a heuristic search with a pruning branch-and-
bound approach. Defi ne the partial fi tness grade of a primi-
tive part, a functional part, or connection a relative to parti-
tion p be

partial (f, n) =

{

grad e (f, p) if f is assigned
1 otherwise , (1)

where n is a node in the search graph. For searching pur-
poses we use partial fi tness grades. From (1) , it follows that

when the search reaches a leaf, the partial grade equals the
fi tness grade.

Following (Grimson 1991), the algorithm searches the
states’ graph starting from the ” empty” state. The algorithm
searches for the partition that has the highest fi tness grade,
which represents the classifi cation result. We have, however,
changed the identifi cation of primitive parts into comparing
signatures of functional parts with geometrical attributes of
the functional part candidates.

In our tests we used an exhaustive search algorithm as
well as a genetic search algorithm. Although the genetic al-
gorithm erred in 10% of the classifi cations, it has the advan-
tage that is time bounded.

Ex periments
We tested our scheme on a database comprising synthetic
models of 2 00 forks, 2 16 spoons, 2 00 stools, and 2 00 spec-
tacles. We also tested our scheme on a database comprising
100 forks, 100 spoons, 9 7 chairs, and 100 spectacles, of real
range images. Partial sets of the forks, spoons, chairs and the
spectacles, that we used in experiments, are shown in Fig. 5
and 6. The objects in the range images were captured with a
Cyberware range scanner (http://www.cyberware.com) .

We performed four types of experiments aiming to check
model strength, cross validation, receiver operating charac-
teristic (ROC) and accuracy, and classifi cation in cluttered
scenes. In all the tests, the learning phase was performed
on images that contain only one object. In model strength
checking, cross validation, and ROC and accuracy tests, we
used the proposed scheme to classify objects from 3D im-
ages that contain only one object. In the cluttered scene tests,
partial views of several objects were used.

Model Strength Checking In the model strength check-
ing experiment, two sets of objects were used: a learning set
and a test set. The graph in Fig. 3 (a) shows the test set aver-
age grades as a function of the size of the training set. Here,
the lowest curve represents the average of the grades of the
classifi ed objects and the higher curve shows the percentage
of the test set’s average grade from the maximal grades in
the test set. In the experiment shown in Fig. 3 (a) the learn-
ing sets consisted of real scanned objects. The set used for
classifi cation is constant per experiment and comprised all
the scanned objects.

Cross V alidation We employ the whole data base in cross
validation experiments. The learning (training) group repre-
sented 8 0% of the object class set whereas the classifi cation
(or testing) group consists of the rest of the data base. The
result of the classifi cation consists of computing grades: the
classifi ed objects are evaluated as fork, mug, spoon, stool,
and spectacles. The grades are averaged and presented as
textured bars in a graph, that is shown in Fig. 3 (b). The
graph comprises fi ve groups of fi ve object class grades. For
example, the fi rst group relates to forks that were classifi ed
as forks, mugs, spoons, stools, or spectacles in this order.
In Fig. 3 (b), the forks, the spoons, and the spectacles were
range images. The tests on real data revealed that, although
we can differentiate between forks and spoons, the degree
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Figure 3: Experiments: (a) Learning and classifying
real spoons. (b) Cross validation on the whole data
base, which includes forks, mugs, spoons, stools, and
spectacles. (c) A ROC on the whole data base for
stools (the uppermost curve), forks, and spectacles
(the lowest curve). (d) The accuracy of stools versus
the rest of the data base. (e) Overall accuracy.

of differentiation is quite low. This is mainly due to the fact
that spoons and forks have similar dimensions, forms, and
functionality (both have handles and are graspable) .

ROC and Accuracy Consider classifi ers that work on
components of the vector fi tness grades (the classifi ers do
not perform maximum on components) . In Fig. 3 (c) , we
show the ROC superimposed curves of stools, forks, and
spoons. In Fig. 3 (d) , we show the accuracy of the classi-
fi er of stools versus the data base. In Fig. 3 (e) , unlike in
Fig. 3 (c) and (d) , we show the accuracy of the classifi er
that performs maximum on vector grades, targeting all fi ve
tested classes and the whole data base.

Cluttered Scenes In the cluttered scene tests, the learn-
ing phase consisted of images that included only one chair.
In the classifi cation phase we tested our scheme using two
types of 3D images. The fi rst type of images included a chair
and a table in a room while the second one included chairs
and spoons (see Fig. 4 for examples of fi rst type of images) .
We tested our scheme on six images of the fi rst type and
thirty images of the second type. In fi ve of the images from

(a) (b)

(c) (d)

(e) (f)

Figure 4: Two cluttered scenes of a chair and a table in a
room. (a) and (b) represent two examples of the fi rst type of
image. Fig. (c) and (d) represent results of segmentation of
the scenes in (a) and (b) , respectively. The primitive parts
sticks and plates are shown as they are detected and mod-
elled in the segmentation phase. Fig. (e) and (f) represent
results of classifi cations of the scenes in (a) and (b) , respec-
tively. (e) and (f) show the resulting functional parts – the
back support, seat, and the ground support – with different
textures.

Figure 5: Images of some chairs used in the experiments.

the fi rst type and in all the images of the second type, our
system correctly classifi ed a valid chair.

Conclusions
In this work, we have presented a novel function-based
scheme for classifi cation of 3D objects. The input objects
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Figure 6: Images of some forks, spoons, and spectacles used
in our experiments.

are full 3D descriptions of objects. The proposed scheme
employs an object functional structure, consisting of a multi-
level hierarchy of functional parts. The multi-level approach
offers a higher degree of freedom for real object modelling
as compared to classical systems and can be seen as a learn-
ing phase. The learning phase builds the multi-level hier-
archy by analyzing primitive parts in the input images and
their geometric attributes.

Our approach was tested on a database of about one
thousand different 3D objects employing several algorithms
for searching and pruning. To the best of our knowledge,
no other classifi cation (or recognition) scheme was tested
on hundreds of range images of real objects captured in
range images. The graphs show the quality achieved by our
scheme. They also provide an insight into the dimensions of
the learning sets that are required so as to reach a certain
degree of classifi cation accuracy. Our work appears to be
the fi rst scheme that performs function-based classifi cation
that involves a learning phase and does not require a-priori
knowledge about any class.

Automatic segmentation usually suffers from over-
segmentation. This phenomenon does not infl uence the ac-
curacy of the proposed solution, however, it could produce
an increase of the time complexity of the searching phase.
The proposed solution is clearly parallelizable. We believe
that employing concurrent or parallel variants of the al-
gorithms, and/or implementing the classifi cation evaluation
schemes on dedicated hardware, could greatly speed up the
classifi cation process.

Part of our future work consists of enlarging the data base
of the testing objects. Specifi cally, we intend to introduce
more categories of objects captured in range images in the
experiments. In addition, we are going to use more expres-
sive approximation models for primitive parts. The more
exact the approximation models are, the more accurate the
classifi cation is expected to be.
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