Efficient Maximization in Solving POMDPs

Zhengzhu Feng
Computer Science Department
University of Massachusetts

Amherst, MA 01003
fengzz@cs.umass.edu

Abstract

We present a simple, yet effective improvement to the dy-
namic programming algorithm for solving partially observ-
able Markov decision processes. The technique targets the
vector pruning operation during the maximization step, a key
source of complexity in POMDP algorithms. We identify two
types of structures in the belief space and exploit them to re-
duce significantly the number of constraints in the linear pro-
grams used for pruning. The benefits of the new technique are
evaluated both analytically and experimentally, showing that
it can lead to significant performance improvement. The re-
sults open up new research opportunities to enhance the per-
formance and scalability of several POMDP algorithms.

Introduction

A partially observable Markov decision process (POMDP)
models an agent acting in an uncertain environment,
equipped with imperfect actuators and noisy sensors. It pro-
vides an elegant and expressive framework for modeling a
wide range of problems in decision making under uncer-
tainty. However, this expressiveness in modeling comes with
a prohibitive computational cost when it comes to solving
a POMDP and obtaining an optimal policy. Improving the
scalability of solution methods for POMDPs is thus a critical
research topic.

Standard solution methods for POMDPs rely on perform-
ing a dynamic programming update of the value function,

Shlomo Zilberstein
Computer Science Department
University of Massachusetts

Ambherst, MA 01003
shlomo@cs.umass.edu

cross-sum stage. The incremental pruning (IP) algorithm
(Zhang & Liu 1996; Cassandra, Littman, & Zhang 1997)
was designed to address this problem by interleaving the
cross-sum and the pruning which leads to significantly re-
duced number of linear programs to be solved. Recently, we
developed a region-based variant of IP that can exploit the
local structure of the belief space to reduce the size of the
linear programs, leading to exponential improvement of the
cross-sum stage (Feng & Zilberstein 2004). However, these
algorithms do not address the performance of the maximiza-
tion stage that prunes the combination of the results from the
cross-sum stage, which can be exponentially large as well.
Therefore the improvement to the overall DP update process
by these methods is limited.

In this paper, we identify certain properties of the pro-
jection and maximization stages and show how they can be
exploited to greatly accelerate the DP process. We build on
the region-based cross-sum pruning approach we previously
developed, and specifically address here the maximization
step. We show that in the maximization stage, only vectors
whose witness regions are close to each other in the belief
space are needed for testing dominance. We show how this
closeness information can be obtained during the cross-sum
stage at little cost. Although this method leaves some dom-
inated vectors undetected, we show that typical reachability
and observability structure in a problem allows such domi-
nated vectors to be pruned efficiently in a subsequent pro-

represented by a finite set of linear vectors over the state jection pruning stage. Combining these two ideas, our algo-

space. A key source of complexity is the size of the value
function representation, which grows exponentially with the
number of observations. Fortunately, a large number of vec-
tors in this representation can be pruned away without af-
fecting the values using a linear programming (LP) method.
Solving the resulting linear programs is therefore the main
computation in the DP update.

Consequently, many research efforts have focused on im-
proving the efficiency of vector pruning. The pruning hap-

rithm can deliver a significant performance improvement to
the whole dynamic programming algorithm.

The POMDP Model

We consider a discrete time POMDP defined by the tuple
(S,A,P,R,Z,0O), where

e S is a finite set of states;

pens at three stages of the DP update, namely the projec-® A is afinite set of actions.

tion stage, the cross-sum stage, and the maximization stage.
During the cross-sum stage, the number of vectors increases

exponentially, making it the major bottle-neck in the DP up-

e P is the transition modelP®(s’|s) is the probability of
reaching state’ if actiona is taken in state;

date process. As a result, most research efforts focus on thee R is the reward modeli”(s) is the expected immediate

Copyright © 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

reward for taking actiom in states;

e 7 is afinite set of observations that the agent can sense;

AAAI-05 /975

e O is the observation modal“(z|s’) is the probability of
observing: if action a is taken and resulted in state

We are interested in maximizing the infinite horizon total
discounted reward, where € [0, 1) is the discount factor.
The standard approach to solving a POMDP is to convert
it to a belief-stateMDP. A belief stateb is a probability
distribution over the state spaée: S — [0, 1], such that
> scgb(s) = 1.0. Given a belief staté, representing the
agent's current estimate of the underlying states, the next
belief staté’ is the revised estimate as a result of taking ac-
tion ¢ and receiving observation It can be computed using
Bayesian conditioning as follows:
1
b'(s') = WOG(ZW) ZPG(S/\S)b(s)v

seS

whereP*(z|b) is a normalizing factor:

P(z|b) = Z 0%(z|s") ZP“(S’L@)I)(S)

s'eS seS

We useb’ = TZ(b) to refer to belief update. It has been
shown that a belief state updated this way is a sufficient
statistic that summarizes the entire history of the process.
It is the only information needed to perform optimally. An
equivalent, completely observable MDP, can be defined over
this belief state space as the tuple A, T, Ri), whereB is
the infinite space of all belief stated, is the action set as
before, T is the belief transition function as defined above,
and R is the reward model, constructed from the POMDP
model as follows:R(b) = 3 . o b(s)R(s).

In this form, a POMDP can be solved by iteration afya
namic programming updatihat improves a value function
V : B — R. For all belief states € B:

} - @

Performing the DP update is challenging because the
space of belief states is continuous. However, Smallwood
and Sondik (Smallwood & Sondik 1973) proved that the DP
backup preserves the piecewise linearity and convexity of
the value function, leading the way to designing POMDP al-
gorithms. A piecewise linear and convex value function
can be represented by a finite set8f-dimensional vectors
of real numbersy = {v°,v!,... v¥}, such that the value
of each belief staté is defined byl (b) = max,icy b - v¢,
whereb - v := Y _¢b(s)v(s) is the “dot product” between
a belief state and a vector. Moreover, a piecewise linear and
convex value function has a unique minimal-size set of vec-
tors that represents it. This representation of the value func-
tion allows the DP update to be computed exactly.

RE(b) + 8y PU(=[b)V(T(b))

zZ€EZ

4 —
r= m{

Vector Pruning in Dynamic Programming
Note that the computation &f’ in Equation (1) can be di-
vided into three stages: (Cassandra, Littman, & Zhang 1997)
R (b)
|Z|

V@E(b) + 0P (2D)V(T(0) (2

vep) = Y VUi ®)
z€Z
VI(b) = maxV(b) 4)

Each of these value functions is piecewise linear and con-
vex, and can be represented by a unique minimum-size set
of vectors. We use the symbadls, V*, andV** to refer to
these minimum-size sets.

Using the script letter& and)V to denote sets of vectors,
we adopt the following notation to refer to operations on
sets of vectors. Theross-sunof two sets of vectord{ and
W, is defined byld & W = {u + w|u € U,w € W}.

An operator that takes a set of vectéfsand reduces it to
its unique minimum form is denote®R (/). We also use
PR(U) to denote the resulting minimum set. Formallye
PR(Y) if and only if w € U, and3b € B such that for
Yu' # uw € U, u-b > u - b. Using this notation, the three
stages of computation can be expressed as follows:

Ve: = PR ({v"*'[o’ € V}), (5)
V¢ = PR(®.e2V"7) (6)
V' = PR (UgeaV?) @)
wherev®* is aprojectionfrom v’ computed by
. R%(s)
i(s) = T 5 Y 0l P (). @)

s'eS

We refer to these three stagespasjection pruning cross-
sum pruning and maximization pruningrespectively. Ta-
ble 1 summarizes an algorithm from (White 1991) that re-
duces a set of vectors to a unique, minimal-size set by re-
moving “dominated” vectors, that is, vectors that can be re-
moved without affecting the value of any belief state.

There are two standard tests for dominated vectors. The
simplest method is to remove any vectothat is pointwise
dominated by another vectar. Thatis,u(s) < w(s) for all
s € S. The procedure POINTWISE-DOMINATE in Table 1
performs this operation. Although this method of detecting
dominated vectors is fast, it can only remove a small number
of dominated vectors.

There is a linear programming method that can detect all
dominated vectors. The main algorithm is summarized in
the procedur@R()V) in Table 1. Given a set of vectol¥,
it extracts non-dominated vectors fraomi and puts them in
the setD. Each time a vectow is picked fromW, it is
tested againgd using the linear program listed in procedure
LP-DOMINATE. The linear program determines whether
addingw to D improves the value function represented by
D for any belief staté. If it does, the vector irv) that gives
the maximal value at belief stabeis extracted from/V us-
ing the procedure BEST, and is added?o Otherwisew
is a dominated vector and is discarded. The symbgl,
in procedure BEST denotes lexicographic ordering. Its sig-
nificance in implementing this algorithm was elucidated by
Littman (1994).

Note that using this algorithm to prune a 3at, the
number of constraints in each linear program is bounded by
[PR(W)|, the size of the resulting set. In the worst case,

AAAI-05 /976

procedure POINTWISE-DOMINATE W,)

1. foreachu e U

2. if w(s) <u(s), Vs € Sthen return true

3. return false

procedure LP-DOMINATE (w, Uf)

4. solve the following linear program
variables:d, b(s) Vs € S
maximized
subject to the constraints

b (w—u)>d, Vu el
ZSGS b(s) =1

5. ifd > 0then returrb

6. else return nil

procedure BEST(, i)

7. maxr «— —o©

8. foreachu ¢ U

9. if (b u>max)or((b-u=maz)and @ <iey w))
10. W — U

11. mazr «—b-u

12. returnw

procedure PR(W)

13.D «— 0

14. whilew # 0

15. w « any elementiny

16. if POINTWISE-DOMINATE, D) = true
17. W—W —{w}

18. else

19. b « LP-DOMINATE(w, D)

20. if b = nil then

21. W—W —{w}

22. else

23. w «— BESTH, W)

24. D — DU{w}

25. W—W —{w}

26. returnD

Table 1:Algorithm for pruning a set of vectong/.

[PR(W)| can be as large g%V|. With this in mind, let's
examine the number of constraints in the linear programs
during the three pruning stages:

Projection pruning Given the input value functiol, the
linear programs in the projection pruning (Eq. 5) have worst
case number of constraints gP*“*|. In the worst case,
[V*#| = |V|. However, for many practical domaing®~

is usually much smaller thak. In particular, a problem
usually exhibits the following local structure:

e Reachability: from states, only a limited number of
statess’ can be reachable through actien

e Observability: for observatiore, there are only a limited
number of states in whichis observable after actianis
taken.

As a result, the belief update for a particular, z) pair
usually maps the whole belief spatieinto a small subset
T7Z(B). Effectively, only values ol over this belief subset
need to be backed up in Equation 8. The number of vectors
needed to represemtover the subset can be much smaller,
and the projection pruning can in fact be seen as a way of
finding the minimal subset o that represents the same
value function overT?(B). We will exploit this fact in

our algorithm, by shifting some of the pruning in the max-
imization stage to the projection stage of the next DP update.

Cross-sum pruning The cross-sum is the source of the
exponential growth of the value function, sinee, V**
1. [Vv*#|. Using the standard pruning algorithm, there are
[I, [Vv*#| linear programs to be solved, and the the num-
ber of constraints in these linear programs can be as large
as|V%|. The incremental pruning algorithm (Cassandra,
Littman, & Zhang 1997) aims at reducing the number of lin-
ear programs that need to be solved in the cross-sum pruning
stage, by interleaving the pruning and the cross-sum opera-
tors:

VA=PR(V** @ PRV @ - PR(V>*-1 @ V@) -

)))

This greatly reduces the number of linear programs.
However, although in practice there are usually a large
number of vectors that are dominateddnV®#, the size

of V* still represents an exponential increase over the
size of the inputs. Therefore in incremental pruning, each
linear program can still be very large. Recently, Feng
and Zilberstein (2004) introduced an improved version of
incremental pruning that reduced the worst case number of
constraints tg _, [V*#|, leading to an exponential speed-up
of the cross-sum stage.

Maximization pruning The maximization pruning
presents yet another bottleneck in the DP process, since it
needs to prune the union of the cross-sum value functions
for all actions, and each cross-su#i can be exponential

in the size of the previous value functidon In this paper,

we propose a simple algorithm for selecting constraints
for the linear programs used in the maximization pruning
stage. We borrow the region-based view presented in (Feng
& Zilberstein 2004), and pick constraints for use in the
maximization pruning linear program according to the local
belief space structure.

Region-Based Cross-Sum Pruning

In this section, we review the region-based pruning algo-
rithm for the cross-sum stage in (Feng & Zilberstein 2004),
and introduce the notation used by our algorithm. Recall that
each vecton. € U/ defines awitness region3;; over which

u dominates all other vectors i (Littman, Cassandra, &
Kaelbling 1996):

By ={blb- (u—nu')>0,Vu' €ed — {u}}. 9)

Note that each inequality in Equation (9) can be repre-
sented by a vectofu — u'), over the state space. We call the
inequality associated with such a vectaegion constraint
and use the notatioh(3;}) = {(u — v)|v’ € U — {u}}
to represent the set of region constraints defiri#jjg Note
that for any two region$;; ands;;,,

L(By N Byy) = L(By) UL(By).- (10)

Recall that the cross-sum stage performs the following
pruning:V* = PR(V** @ V*%*2 @ - - § V**). We use

v+ o€ (V@ @ V)

AAAI-05 /977

to refer to a vector in the cross-sum, implyinge V=i It
can be shown that , v; € V* if and only if (), By, #
¢ (Cassandra, Littman, & Zhang 1997; Feng & Zilberstein
2004). Testing for this intersection requires solving a linear
program that ha§ , |V**| constraints, one for each region
constraint.

We note that the witness region of= >~ v; € V% is
exactly the above intersection:

v V4
BYo =) By
4

This gives us a way of relating the vectors in the output of
the cross-sum stag¥?, to the regions defined by the vectors
in the input vector set§V®* }. For eachw € V?, there is

a corresponding list of vectoks, va, . .., v }, wherev; €
V@2, such tha = >, v; andn;Byj..; # ¢. We denote
this listparent(v).

Proposition 1 The witness region afis a subset of the wit-
ness region of any parenmt:

By C Bz (11)

Conversely, for eachy; € V**, there is a correspond-
ing lists of vectorsv!,v?,...,v™ € V*, such thatv; €
parent(v?), V4. We denote this listhild(v;).

Proposition 2 The witness region of; is the same as the
union of its children’s witness regions:

B, = U;BY. (12)
The construction of thgarent andchild lists only requires

some simple bookkeeping during the cross-sum stage. They Next we build a set of vectors H®’

will be the main building blocks of our algorithm.

Region-Based Maximization

Recall that in the maximization stage, the g8t= U, V"
is pruned, where each® is obtained from the cross-sum
pruning stage:

Ve =PR(g, V).

Let us examine the process of pruniig using proce-
dure PR in Table 1. In thewhile loop at line 14, an ar-
bitrary vectorw € W is picked to compare with the cur-
rent minimal setD. As the size ofD increases, the number

of constraints in the linear programs approaches the size of

the final result|)’|, leading to very large linear programs.
However, to determine if some vectar< W is dominated
or not, we do not have to compare it with Letw € V*

andv € V* for somea anda’.

Theorem 1 If a # o’ and By, N B),,, = ¢, thenw is dom-
inated by if and only ifw is dominated byV — v.

Proof: If w is dominated byV, that is,vb € B,Ju € W
such thatw # wandw-b < u-b. If W—wv does not dominate
w, thendd’ € B, such that'v’ € W —v,w -V > o' - b'.
Sincea # o/, Yo" £ w € V*,w - b > v" - b’ and therefore
b' € By.. This contradicts the premise thaig., NBY,,, =
Thereforew must be dominated by — v.

If wis dominated byV — v, then trivially it is also dom-
inated byl

Theorem 2 If a = o' andBY. N B),, = ¢, thenw is
dominated by if and only ifw is dominated byV — v.

Proof: The proof is analogous to that of Theorerilll.

Intuitively, the two theorems state that to test dominance
for w, we only need to compare it with vectors that have
a witness region overlapping with the witness regionvof
(Although we frame the theorems for the case of maximiza-
tion pruning, it can be easily generalized to the pruning of
any set of vectors.) However, finding these overlapping vec-
tors in general can be just as hard as the original pruning
problem, if not harder. So this result does not translate to
a useful algorithm in general. Fortunately, for maximiza-
tion pruning, the special setting in which the union of some
previously cross-summed vectors are pruned allows us to
perform a close approximation of this idea efficiently. We
present a simple algorithm for doing so next.

Algorithm

We start by finding vectors iw* — w that have a witness re-
gion overlapping with the witness region@f From Equa-
tion 11, each vector; € parent(w) has a witness region
By -, that fully covers the witness region of From Equa-
tion 12, each witness regidf).., is composed of witness
regions ofchild(v;). Therefore the set

D(w) = {v|v € child(v;),v; € parent(w)} (13)

most likely contains vectors in“ that have witness regions
surrounding that ofv, and their witness regions in the set
Ve — w will overlap with the witness region ab.

,a # a' that overlaps
with the witness region ofv. First, letb(w) be the belief
state that proved is not dominated inV®. This belief state

is obtained from solving the linear program during the cross-
sum pruning stage. We can find in the vectongéta vector

v, that has a witness region containib@v), using proce-
dure BEST in Table 1:

ver = BEST(b(w), V).

By constructionw,: andw share at least a common belief
state,b(w). Now we use the same procedure as Equation 13
to build a set of vectors that covers the witness regiomn, of

D(ver) = {v|v € child(v;),v; € parent(vy)}
Finally, we put together all these vectors:

D' =D(w) U | D(va),
a’'#a

and use it to replace the sBtat line 19 in Table 1 during
maximization pruning. As a simple optimization, we replace
D only when|D’| < |D|. The rest of the pruning algorithm
remains the same.

Note that bothD(w) and D(v,) are incomplete. For
D(w), it contains vectors that share a common parent with
w, but there can be vectors that touch the boundary of the
witness region ofv but don’t share the same parent with it.
For D(v,), besides the same problem, the witness region

AAAI-05 /978

Time #LP proj Average #C proj #LP max Average #C max
problem [[ST[]A][]Z]]| RBIP-M RBIP |RBIP-M | RBIP | RBIP-M | RBIP | RBIP-M RBIP | RBIP-M RBIP
tiger 2132 20.28 20.39 7292 | 5446 19.81| 19.11 4535 4527 11.26 19.04
paint 41 4 2 27.55 27.72 5033 | 2736 14.15 | 13.86 3325 2820 6.40 15.96
shuttle 8| 3|5 681.39 608.43| 58937 | 58533 28.49 | 29.64 84086 | 86500| 200.36| 219.38
network | 7 | 4 | 2| 1367.68| 1992.16| 128132|118749 25.24 | 25.47| 207909| 204708 | 103.31| 283.63
4x3 11 | 4| 7 || 5529.90| 41567.91| 11622 | 10765 58.31| 63.32 31828 | 36155| 636.25| 6646.32

Table 2:Comparisons between RBIP-M and RBIP. “#LP proj” is the number of linear programs solved during projection pruning. “Average
#C proj” is the average number of constraints in the linear programs in the projection pruning. “#LP max” and “Average #C max” are the
corresponding numbers for the maximization pruning stage. Time is in CPU seconds.

of v,, may only partially overlap with that ofy. There- value function in the standard DP update (Feng & Hansen
fore the setD’ constructed above does not guarantee that a 2001); Zhang & Zhang's restricted value iteration (Zhang
dominated vector can always be detected. This does not af- & Zhang 2002) also uses the standard DP update with a
fect the correctness of the dynamic programming algorithm, transformed belief space. All these algorithms can be eas-
however, because the resulting value function still accurately ily modified to incorporate the improvement offered by our
represents the true value, albeit with extra useless vectors. technique. In this paper, we present experimental results on
These useless vectors will be included as the input to the applying our algorithm to the RBIP algorithm as described
next DP update step, in which their projections (Equation 8) in (Feng & Zilberstein 2004). We call our algorithm RBIP-
will be removed during the projection pruning stage (Equa- M, and compare its performance against RBIP.

tion 5). At the cross-sum stage (Equation 6), the input vec- e test the algorithms on a set of benchmark problems
tors become the same as those produced by a regular DPfrom the literature. The number of stateg#, number of ac-
algorithm that does not use our maximization pruning tech- tjons|A| and number of observation staté& of each prob-
nique. Therefore the extra computation caused by the in- |em are listed in Table 2. These problems are obtained from
accurate pruning of our algorithm in the previous DP step Cassandra’s online repository (Cassandra 1999). All tests
happens at the projection pruning stage only. use a numerical precision ab~%. The algorithm is con-

As we will see in the next section, this extra computation sidered converged when the error bound is less than 0.01,
is usually insignificant compared to the savings obtained except for problen#x3 (see below). The machine used for
from the maximization step. This may seem counterintuitive testing is a dual-Athlon running at 1.2GHz. Only one CPU
because the pruning of those undetected dominated vectorsis used for the computation.
is not avoided, but merely delayed to the next step of the DP o, algorithm relies on two kinds of structures in a prob-

update. However, as explain earlier, the projection usually e o perform well. First, the reachability and observability

maps into a small region of the belief space, resulting in a gty cture should be sparse so that the projection pruning can
larger number of vectors being pruned from the projection. e mych more efficient than the maximization pruning. The

As aresult, the linear programs in the projection pruning are 4;ymns “Average #C proj” and “Average #C max” in Ta-
usually much smaller than the ones in the previous maxi- pe 2 reflect this property. Second, the local structure of the
mization pruning stage. o belief regions defined by the vectors should allow neighbor-
_Itis possible that for some problems, the projection prun- i, rejations among the regions to be adequately and effi-
ing is so efficient that the maximization pruning step can be cjently captured by thparentandchild lists. The adequacy
$k|pped without S|gn|f|cantly|ncreq3|r]g the projection prun- is refiected by the “#LP proj” column, showing the extra
ing time. However, even when this is true, pruning at the ,ymper of linear programs that RBIP-M has to solve as a

maximization step is still necessary, because it has impact yogyt of the undetected dominated vectors in the maximiza-
on computing the error bound and detecting convergence, a i stage. The efficiency is reflected by the reduction in the

process that involves solving linear programs similar to the ymper of constraints in the maximization stage, shown in
ones used in the pruning process. Thus, skipping maximiza- -ojumn “Average #C max”.

tion pruning may greatly increase the time needed for com-
puting the error bound. We leave the detailed analysis of this
possibility to future work.

For the problemsetwork and4x3, RBIP-M is signifi-
cantly faster than RBIP. (Coincidentally, these two problems
are generally considered to be the harder problems in the lit-
. erature.) This is because both structures are present in these

Experimental Results problems. For example, #x3 , the average number of con-
Our algorithm is easy to implement and it only affects the straints in the projection pruning is about 60, much smaller
maximization step of the standard DP update. There are than the number of constraints in the maximization stage. In
many POMDP algorithms that use this standard DP up- addition, our algorithm is able to identify a much smaller
date as a component. For example, Hansen’s policy itera- set of vectors for use in the maximization linear programs
tion algorithm uses standard DP update for policy improve- (636.25 vs. 6646.32), while still effectively pruning most
ment (Hansen 1998); Zhang & Zhang’s point based value it- of the dominated vectors, resulting in only a small increase
eration interleaves standard DP update with point based DP in the number of linear programs (from 10765 to 11622)
update (Zhang & Zhang 2001); Feng & Hansen’s approx- solved during the projection stage. Combining these two
imate value iteration uses a symbolic representation of the factors gives our algorithm a great advantage. Note that for

AAAI-05 /979

50000
45000
40000 t
35000
30000
25000 t
20000
15000 f
10000 f
5000 f

CPU seconds

15 20 25 30
iterations
Figure 1:Running time comparison on problem 4x3.

4x3, the data shown in Table 2 only represents the first 14
DP steps in both algorithms. At the end of the 14th itera-
tion, RBIP already uses over 10 hours and is terminated. At
this point RBIP-M is about 8 times faster than RBIP. The
Bellman residual at this point is 0.06. We continue to run
RBIP-M on the problem for another 16 steps, reducing the
Bellman residual to 0.03 using about the same amount of
time required for the 14 steps of RBIP. The running time of

these steps are plotted in Figure 1, and the average number

of constraints in the maximization pruning is plotted in Fig-
ure 2. From these figures, we infer that the actual speedup
of RBIP-M over RBIP on this problem can be much greater.

For the other three problems, one of the two structures
is absent, leading to little performance improvement. In
tiger andpaint , the first structure is missing, as re-
flected by the number of constraints during the projection
pruning being comparable to that during the maximization
pruning. As a result, even though the maximization pruning
deals with much smaller linear programs, the saving is off-
set by the extra cost incurred during the subsequent projec-
tion pruning. In the problenshuttle , the second struc-
ture is missing, as reflected by the fact that the number of
constraints in RBIP-M (200.36) is only slightly smaller than
that in RBIP (219.38). Therefore there is not much saving
gained in the maximization pruning step and RBIP-M runs
slower than RBIP in this case due to the extra linear pro-
grams solved in the projection stage.

Conclusions

We have identified special properties of the projection and
maximization stages in the DP process for POMDPs, and
showed how they can be exploited to greatly accelerate the
pruning process. Our technique is simple to implement and
can be easily incorporated into several other POMDP algo-
rithms. In future work, we will study how our approach im-
proves other POMDP algorithms. This method promises to
significantly alleviate the current computational bottlenecks
in these algorithms.

Acknowledgment This work was supported in part by NSF
grant number [1S-0219606.

6000 x .
a RBIP —+—
£ RBIP-M -3¢
© 5000 |
@
c
8 4000 |
G
@ 3000
Qo
E
Z 2000 f
()
[=))
£ 1000 |]
54 X%

0 o . . .
0 5 10 15 20 25 30
iterations

Figure 2:Average number of constraints in problem 4x3.

References

Cassandra, A.; Littman, M.; and Zhang, N. 1997. Incre-
mental pruning: A simple, fast, exact method for partially
observable markov decision processe®1oc. of the 13th
Conf. on Uncertainty in Artificial Intelligencé&4—-61.

Cassandra, A. R. 1999. Tony’'s POMDP page.
http://www.cs.brown.edu/research/ai/pomdp/.

Feng, Z., and Hansen, E. 2001. Approximate planning for
factored POMDPs. IProc. of the 6th European Conf. on
Planning

Feng, Z., and Zilberstein, S. 2004. Region-based incre-
mental pruning for pomdps. IRroc. of the 20th Conf. on
Uncertainty in Artificial Intelligence146-153.

Hansen, E. A. 1998. An improved policy iteration algo-
rithm for partially observable MDPs. IRroc. of the 14th
Conf. on Uncertainty in Artificial Intelligence (UAI-98)

Littman, M.; Cassandra, A.; and Kaelbling, L. 1996. Ef-
ficient dynamic-programming updates in partially observ-
able markov decision processes. Technical Report CS-95-
19, Brown University, Providence, RI.

Littman, M. 1994. The witness algorithm: Solving par-
tially observable markov decision processes. Technical Re-
port CS-94-40, Computer Science, Brown University.

Smallwood, R., and Sondik, E. 1973. The optimal con-
trol of partially observable Markov processes over a finite
horizon. Operations Researchl:1071-1088.

White, C. 1991. A survey of solution techniques for the
partially observed markov decision proceésnals of Op-
erations ResearcB2:215-230.

Zhang, N. L., and Liu, W. 1996. Planning in stochastic do-
mains: Problem characteristics and approximation. Tech-
nical Report HKUST-CS96-31, Hong Kong University of
Science and Technology.

Zhang, N., and Zhang, W. 2001. Speeding up the con-
vergence of value iteration in partially observable markov
decision processedournal of Al Researcth4:29-51.

Zhang, W., and Zhang, N. 2002. Value iteration working
with belief subset. IrProc. of the 18th National Conf. on
Artificial Intelligence (AAAI-02)

AAAI-05 / 980

