
Planning in Models that Combine Memory with Predictive Representations of
State

Michael R. James and Satinder Singh
Computer Science and Engineering

University of Michigan
{mrjames, baveja}@umich.edu

Abstract

Models of dynamical systems based on predictive state rep-
resentations (PSRs) use predictions of future observations as
their representation of state. A main departure from tradi-
tional models such as partially observable Markov decision
processes (POMDPs) is that the PSR-model state is com-
posed entirely of observable quantities. PSRs have recently
been extended to a class of models called memory-PSRs (mP-
SRs) that use both memory of past observations and pre-
dictions of future observations in their state representation.
Thus, mPSRs preserve the PSR-property of the state being
composed of observable quantities while potentially reveal-
ing structure in the dynamical system that is not exploited in
PSRs. In this paper, we demonstrate that the structure cap-
tured by mPSRs can be exploited quite naturally for stochas-
tic planning based on value-iteration algorithms. In particu-
lar, we adapt the incremental-pruning (IP) algorithm defined
for planning in POMDPs to mPSRs. Our empirical results
show that our modified IP on mPSRs outperforms, in most
cases, IP on both PSRs and POMDPs.

Introduction
The problem of finding optimal plans for stochastic dynam-
ical systems modeled as partially observable Markov deci-
sion processes (POMDPs) has proved to be a very difficult
problem, even for relatively simple domains (Coutilier &
Poole, 1996). Algorithms for solving general (unstructured)
POMDPs have traditionally been based on value iteration;
currently the state of the art general-purpose algorithms are
variants of the incremental pruning (IP) algorithm (Cassan-
dra, Littman, & Zhang, 1997). Alternatively, methods for
solving POMDPs by searching directly in the policy space
have gained popularity (Ng & Jordan, 2000), and there are
also methods that make use of special structure in dynamical
systems (Coutilier & Poole, 1996). In this paper, we present
a planning method that falls into the first category, but is
distinguished from existing methods in that it uses a novel
representation of dynamical systems in order to improve the
performance of the value-iteration approach. This repre-
sentation, called memory-PSRs or mPSRs (James, Singh,
& Wolfe, 2005), builds on recent work on predictive state

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

representations (PSRs) that use predictions of future obser-
vations as their representation of state (Littman, Sutton, &
Singh, 2001). Memory-PSRs combine memory of past ob-
servations with predictions of future observations in their
state representation. The main departure from POMDP rep-
resentations that use hidden or latent state variables is that
in both PSRs and mPSRs the state is composed entirely of
observable quantities.

In this paper, we show that the use of memory in mPSRs
reveals additional structure in dynamical systems not cap-
tured in PSRs and that this structure can be exploited for
planning. In particular, we adapt the IP algorithm already
defined for both POMDPs and PSRs to the new mPSRs. Our
empirical results show that our modified IP on mPSRs out-
performs, in most cases, IP on both PSRs and on POMDPs.

Background material
In this section, we briefly review PSRs, mPSRs, and IP.
More complete descriptions are found in Singh, James, &
Rudary (2004), James, Singh, & Wolfe (2005), and Cassan-
dra, Littman, & Zhang (1997) respectively.

PSRs and mPSRs
PSRs and mPSRs are both classes of models that use pre-
dictive representations of state. These models are distin-
guished from traditional hidden-state-based models because
their state representation is a vector of predictions of the out-
comes ofteststhat may be performed on the dynamical sys-
tem. A testt = a1o1, ...akok is a sequence of alternating
actions (ai ∈ A) and observations (oj ∈ O). Of course, the
predictionof a test is dependent on thehistory: the actions
and observations that have occurred so far; the prediction of
a testt at historyh is p(t|h) = prob(o1, ...ok|ha1, ...ak),
i.e., the conditional probability that the observation se-
quence occurs, given that the action sequence is taken after
history h. Note that rewards (assumed to take on a finite
number of values) are treated as just a special dimension of
the general observation spaceO in the definition of PSRs
above.

PSRs The set of tests,Q, whose predictions constitute a
PSR’s state representation are called thecore tests. These
core tests are special because at any history, the predictions
for any test can be computed as aconstantlinear function

AAAI-05 / 987

of the predictions of the core tests. The predictions of the
core tests are stored in a(n× 1) vector called theprediction
vector p(Q|h), wheren = |Q| is called thedimensionof
the dynamical system. In PSRs the prediction vector is the
counterpart to belief-states in POMDPs and the lastk ob-
servations in k-order Markov models. In addition to the set
of core tests, a PSR model hasmodel parameters: a set of
(n×n) matricesMao, and(n× 1) vectorsmao, for all a, o.
The model parameters are used to update the state as actions
are taken and observations occur, to calculate the predictions
of tests, and as shown below are also used in the calcula-
tion of policy trees for stochastic planning. For instance, the
probability of observationo given that actiona was taken at
historyh is prob(o|ha) = p(Q|h)T mao.

The immediate expected reward for actiona at any history
h, denotedR(h, a), is computed as

R(h, a) =
∑

r

r · prob(r|h, a)

=
∑

r

r
∑

o∈Or

p(Q|h)T mao

= p(Q|h)T
∑

r

∑
o∈Or

r ·mao. (1)

whereOr is the set of observations in which the reward com-
ponent takes on valuer. Thus, we can define a(n×1) vector
ra as

ra =
∑

r

∑
o∈Or

r ·mao (2)

such thatR(h, a) = p(Q|h)T ra. The set of vectorsra for
all a ∈ A is used in specifying the PSR model for planning
purposes.

mPSRs The mPSR representation (James, Singh, &
Wolfe, 2005) is closely related to PSRs in that its state rep-
resentation contains a vector of predictions of tests, but it
also contains amemoryof the recent past (e.g. the most re-
cent observation, or recent action/observation sequence). In
this paper we will only consider memories that are the most
recent observation. Letµ1 . . . µm represent them distinct
length-1 memories. Each memory will have an associated
set ofµ-core testsQµ1 . . . Qµm respectively. Let the mem-
ory at historyh be denotedµ(h). Then the mPSR state at
history h is denoted by[µ(h), p(Qµ(h)|h)]. Note that the
number ofµ-core tests can be different for each memory,
and can never be larger but can be much smaller than the
number of core tests for the PSR representation of the sys-
tem,

For each memory,µi, we will keep a set of update matri-
cesMµi

ao and vectorsmµi
ao for all a, o. The update parame-

tersM
µ(h)
ao must transform the current prediction vector that

makes predictions forµ-core testsQµ(h) in historyh to the
prediction vector forµ-core testsQµ(hao) in history hao.
Under our assumption of memories being the last observa-
tion, all histories belonging to memoryµi will transition to
the same memoryµj for action-observation pairao, i.e., j
is uniquely determined byi and the pairao. Thus one can
define the state update for mPSRs as follows: upon taking

as at

o1 o2 o3

o2o1 o3o3o2o1 o1 o2 o3

ai

aj ak al

auaraqapaoanam

Figure 1: A 3-step policy tree for a dynamical system with three
observations.

actiona in historyh and observingo

p(Qµj |hao) =
p(aoQµj |h)

p(ao|h)
=

p(Qµi |h)T Mµi
ao

p(Qµi |h)T mµi
ao

(3)

whereµ(h) = µi andµ(hao) = µj . The matrixMµi
ao is of

size(|Qµi |×|Qµj |) and the vectormµi
ao is of size(|Qµi |×1).

We note here that a vector equivalent to the PSR immediate
reward vector (Equation 2) is defined for mPSRs, and is de-
pendent on both the memoryµ and actiona as follows

rµ,a =
∑

r

r ·mµ
ar. (4)

Landmark memories A special case arises when there is
a memory for which only oneµ-core test is required. Such
a memory serves as alandmarkand the prediction of itsµ-
core test is constant at all histories corresponding to the land-
mark. This property of landmarks was exploited in James,
Singh, & Wolfe (2005) for tracking dynamical systems with
mPSRs. Here we show how our planning method for mPSRs
can take advantage of landmarks.

Planning with PSRs
All the planning algorithms we discuss are based on value
iteration which proceeds in stages. The value function at
stagei is denotedVi. A dynamic programming update trans-
forms Vi to Vi+1, taking into account the one-step system
dynamics and one-step rewards. In the limit, asi →∞, the
value functionVi will approach the optimal value function,
but typically value iteration is concluded when the differ-
ence between two successive value function approximations
is sufficiently small.

For most value iteration algorithms (for both POMDPs
and PSRs), the value functionVi is represented as a setSi of
parameter vectors for policy trees (Littman, 1996). The pa-
rameter vector corresponding to policy treeρ is denotedwρ.
Thus, the dynamic programming update transforms the set
Si to the setSi+1. An example policy treeρ is shown in Fig-
ure 1. A policy tree defines a policy consisting of an initial
action and, for each observation, another (one step shorter)
policy tree. In James, Singh, & Littman (2004) it is shown
that the expected discounted reward for followingρ’s policy
when at prediction vectorp(Q|h) is given byp(Q|h)T wρ.
In other words, the value ofρ is a linear function of the pre-
diction vector, and the value functionVi is a piecewise linear

AAAI-05 / 988

function defined by the upper surfaces of these functions for
all wρ ∈ Si. The upper surface only makes use of some of
the vectorswρ ∈ Si, and a key step in improving the per-
formance of these algorithms is to purge the setSi so that it
contains as few vectors as possible, given that it must repre-
sent the value function.

This is analogous to the situation for POMDPs: the value
for ρ is a linear function of the belief state, and the value
function is a piecewise linear function of the belief state de-
fined by the upper surfaces for allwρ ∈ Si. Therefore, the
stochastic planning algorithms for POMDPs can be applied
to PSRs with only slight modifications. The incremental
pruning (IP) algorithm (Zhang & Liu, 1996) has emerged
as one of the fastest, and we present a version of it for PSRs
(called PSR-IP) next.

Incremental pruning The PSR-IP algorithm transforms
the setSi to Si+1 via a series of intermediate sets. The fol-
lowing vector notation is used: vector sums are componen-
twise, and we define the cross sum of two sets of vectors:
A⊕ B = {α + β|α ∈ A, β ∈ B}. Given a setSi, there are
two intermediate sets used to calculateSi+1. They are

Sa
o = purge({τ(wρ, a, o)|∀wρ ∈ Si}) (5)

Sa = purge

(⊕
o

Sa
o

)
(6)

and the new set is

Si+1 = purge

(⋃
a

Sa

)
(7)

whereτ(wρ, a, o) is the(n× 1) vector given by

τ(wρ, a, o) = ra/|O|+ γMaowρ (8)

where thepurge routine (also called pruning or filtering)
uses linear programming to take a set of vectors and return
only those vectors necessary to represent the upper surface
of the associated value function. The efficiency of this rou-
tine is very sensitive to the size of the associated set, so re-
ducing the size of the associated sets is critical. The effi-
ciency of IP is obtained by reducing the size of these sets
wherever possible, even at the expense of pruning more of-
ten.

For IP, transforming the setSi to the setSi+1 is accom-
plished in Equations 5, 6, and 7. The sets in Equations 5 and
7 are constructed in a straightforward manner, while Equa-
tion 6 makes use of the fact that

purge(A⊕B ⊕ C) = purge(purge(A⊕B)⊕ C). (9)

This incremental purging ofSa is the key to the performance
benefits of incremental pruning

To adapt POMDP-IP to PSRs, there is one modification
that must be made, which involves identifyingvalid pre-
diction vectors. For example, in POMDPs any correctly
sized vector of positive numbers that sums to1.0 is a valid
POMDP belief state. For PSRs, there is no corresponding
simple constraint on prediction vectors. However, a num-
ber of additional (more complex) constraints are presented
in James, Singh, & Littman (2004) that will identify the ma-
jority of invalid prediction vectors. For prediction vectorp,
some constraints are:

1. For every entrypi of p: 0 ≤ pi ≤ 1.

2. For every action, observation paira, o, 0 ≤ pT mao ≤ 1.0.

3. Constrain all one-step extensions of the core testsqi. This
ensures that every next prediction vector would have valid en-
tries. For every core testqi and action, observation paira, o :
0 ≤ pT maoqi ≤ pT mao ≤ 1.

Of course, for mPSRs, the constraints must reference
memories, so the constraints for identifying prediction vec-
tors for memoryµ would use mPSR parametersmµ

t . The
three constraints listed above will be included in the linear
program used in the purge routine. The addition of these
constraints results in more parameter vectorswρ being re-
moved from the setsSi, improving the performance of the
algorithm.

Planning in mPSRs
The memory part of the state representation in mPSRs can
be exploited for planning in two ways: 1) to decompose the
problem; and 2) to construct policy trees efficiently.

Using memories to decompose the problem
The idea is that each memory will maintain its own policy,
i.e., its own set of policy trees. Consequently, instead of
pruning one large set of policy trees for all memories at once,
the mPSR approach will prune many smaller sets of policy
trees, one for each memory. Intuitively, the sets of policy
trees for each memory will be smaller than the set of policy
trees for the system as a whole because the number of situ-
ations that a dynamical system can be in is typically larger
than the number of situations that the dynamical system can
be in when at a particular memory. Therefore, the number
of policy trees needed for a particular memory is fewer than
the number of policy trees needed for the system in general.

This is illustrated in Figure 2, where thet-step policy trees
are shown as sets (clouds) being used to construct thet + 1-
step policy trees. For PSRs, a single set is maintained and
covers all memories, while for mPSRs a different set is kept
for each memory (last observation).

We now show that this decomposition maintains an exact
representation of the value function; it is not gaining perfor-
mance by making approximations.

Lemma 1. For mPSRs, the value of a policy tree is a linear
function of the mPSR state, meaning that, when at memory
µ, the value of any policy tree is a linear function of the
associated prediction vectorp(Qµ|h).

Proof. This proof is by induction, which first assumes that
the value oft-step policy trees are a linear function of the
mPSR state and shows that all(t + 1)-step policy trees are
a linear function of the mPSR state. Then, it is shown that
the value of all 1-step policy trees are linear functions of the
mPSR state.
(inductive step)Consider a(t + 1)-step policy treeρ with
initial actiona andt-step policy treesρo for every observa-
tion o. Assume that the expected discounted reward func-
tion Vρo for all ρo are linear functions of the new predic-
tion vectors (for memoryo) and are writtenVρo(hao) =

AAAI-05 / 989

o1 o2
o3

ai ai

o2
o1 o3

Figure 2: Illustration of the construction of(t + 1)-step policy trees fromt-step policy trees for PSRs (left) and mPSRs (right). For PSRs,
the policy tree is for actionai, while for mPSRs, the policy tree is for memoryo2 and actionai. Every combination oft-step policy trees
results in a new(t + 1)-step policy tree, so for PSRs, there are73, and for mPSRs there are5 · 4 · 1. Also shown are the sizes of the vectors
used to calculate the expected reward vector, which is equal to the dimension of the linear program to be solved.

p(Qo|hao)T wρo for vectorswρo . The expected discounted
reward for treeρ at historyh and memoryµ is

Vρ(h) = R(h, a) + γ
∑
o∈O

prob(o|a, h)Vρo(hao)

= p(Qµ|h)T rµ,a + γ
∑
o∈O

(
p(Qµ|h)T mµ

a,o

) (
p(Qo|hao)T wρo

)
= p(Qµ|h)T rµ,a + γ

∑
o∈O

p(Qµ|h)T mµ
a,o

(
p(Qµ|h)T Mµ

ao

p(Qµ|h)T mµ
ao

)
wρo

= p(Qµ|h)T rµ,a + γ
∑
o∈O

p(Qµ|h)T Mµ
aowρo

= p(Qµ|h)T

(
rµ,a + γ

∑
o∈O

Mµ
aowρo

)
. (10)

Therefore,
wρ = rµ,a + γ

∑
o∈O

Mµ
aowρo (11)

is a (|Qµ| × 1) vector, andVρ(h) is a linear function of
p(Qµ|h) for memoryµ.
(initial step) A one-step policy treeρ specifies a single ac-
tion, so the expected reward forρ at memoryµ is given by
Equation 4, and is a linear function of the prediction vec-
tor.

The practical implication of this lemma is that for each
memory a separate set of policy trees may be found that are
optimal for that particular memory, and are dependent only
on the prediction vector for that memory. Therefore, pruning
the policy trees takes place on a smaller dimensional space.
However, the drawback is that a separate set of policy trees
will need to be obtained for each memory, increasing the
number of times that pruning need be done.

Landmarks Landmarks are special because at a landmark
the prediction of the (sole)µ-core test takes on a constant
value. Therefore, there can only be a single policy tree,
or equivalently a single value, to be stored for the land-
mark (this is reminiscent of and related to planning in MDPs
where each nominal-state has a single associated value). Be-
cause the prediction is constant, no linear programs need be
solved for landmarks; a straightforward maximization over
the candidate policy trees may be used instead. This is much

faster and we exploit this in our algorithm below whenever
landmarks are available.

Using memories to construct the policy tree
We now show how length-one memories can be used advan-
tageously in the construction of policy trees. For instance,
take the(t+1)-step policy tree in Figure 2. Associated with
each observation is at-step policy tree, which is one of the
optimal policy trees from the previous iteration of the plan-
ning algorithm. Before pruning, the set of(t+1)-step policy
trees contains all combinations oft-step policy trees at each
observation.

For instance, in PSR (or POMDP) planning, for each
observation, any of the optimalt-step policy trees could
be used at that observation, so there are (# t-step policy
trees)|O| new(t + 1)-step policy trees1 to be pruned.

On the other hand, when planning with mPSRs, each ob-
servation corresponds to a memory, and so only the policy
trees corresponding to that particular memory must be eval-
uated. Because each of these sets is typically smaller than
the entire set of policy trees, the number of resulting trees is
often reduced dramatically, which results in significant com-
putational savings. With one memory for each observation,
the total number of resulting policy trees is (# policy trees
for memory 1) * (# policy trees for memory 2) * ... * (#
policy trees for memory|O|).

Figure 2 illustrates how length-one memories fit naturally
into the existing structure of policy trees. Of course, as men-
tioned previously, the drawback is that a set of(t + 1)-step
policy trees must be constructed for each memory individu-
ally. However, this drawback is typically overcome by the
benefits.

For example, take the Cheese Maze system used in em-
pirical testing (see Table 1). There are 7 observations, and
the PSR has 11 core tests. Using observations as memories,
the mPSR has 1,1,1,1,2,2,3µ-core tests for its7 memories.
During a randomly chosen planning iteration (number 344),
the PSR has 16 policy trees to begin with, so the algorithm
must prune167 = 268, 435, 456 new policy trees (ignoring
the effects of IP) on a11-dimensional space. For mPSRs,
the memories at this iteration have 1,1,1,1,1,2,2 policy trees,

1IP does some work to reduce this number as policy trees are
being constructed, but the basic idea still holds.

AAAI-05 / 990

so the algorithm must prune4 policy trees, but must do so
seven different times, four times on a1-dimensional space
(no linear programming needed), twice on a2-dimensional
space, and once on a3-dimensional space. This is a signifi-
cant improvement.

On the other hand, the Tiger system (see Table 1) has the
same number ofµ-core tests at each of the two memories as
it has for the PSR itself. Using memories reveals none of
the structure of the system. So, for each of the two mem-
ories, the same amount of pruning must be done as is done
for the PSR as a whole, so twice as much computation is
required. However, this effect can be mitigated by detecting
when memories reveal structure in the dynamical system,
and using those results to choose the proper memories (or
lack thereof).

Implementing mPSR-IP

Adapting the PSR-IP algorithm to mPSRs involves three
changes to the algorithm. First, the setsSµ,a

o , Sµ,a, andSµ
i

must be maintained separately for each memoryµ. Essen-
tially, incremental pruning is done for each memory individ-
ually.

Secondly, the calculation ofSµ,a
o from τ(wρ, a, o) (Equa-

tion 5) need only consider thewρ ∈ So
i for the memory cor-

responding to observationo. The calculation ofτ(wρ, a, o)
is just a modification of Equation 8 to include memories, so

τ(wρ, a, o) = rµ,a/|O|+ γMµ
aowρ. (12)

The calculations ofSµ,a andSµ
i are defined just as in Equa-

tions 6 and 7, but with the addition of memories.
The third change is that landmarks are treated specially:

there need be only a single policy tree for each landmark,
and so the optimal policy tree can be found without linear
programming. If the constant prediction vectorp(QL) for
each landmarkL is precomputed, then the optimal policy
tree is just:argmaxρ(p(QL) · wρ).

Empirical work
In order to evaluate the effectiveness of incremental pruning
on mPSRs (mPSR-IP), we compared it against both PSR-IP
and POMDP-IP, using a suite of standard POMDP dynam-
ical systems available at Cassandra (1999). To this suite,
we added one problem of our own making, the 4x3CO sys-
tem in Table 1. This problem was constructed so that all
its observations are landmarks and was designed to show
off mPSR-IP’s ability to exploit landmarks in an extreme
case. For each of the test systems, Table 1 also lists im-
portant characteristics such as the number of nominal-states
in the POMDP model, the number of core tests in the PSR
model, and the number ofµ-core tests for each memory in
the mPSR model.2

2Note that mPSR-IP was modified slightly to detect when the
use of memory did not reveal any structure in the system, by check-
ing whether the number ofµ-core tests for every memoryµ was
equal to the number of PSR core tests. In these cases (Tiger and
Paint), the performance of mPSR-IP could only be worsened by
using memories, so the algorithm executed PSR-IP instead.

Below we compare PSR-IP and mPSR-IP to understand
the relative benefit to planning of adding memory to the
state representation. Furthermore, because POMDP-IP gen-
erally outperforms PSR-IP, mPSR-IP and POMDP-IP are
compared below in order to evaluate whether mPSR-IP is
a useful improvement on methods for stochastic planning.

The experimental procedure was as follows. The IP algo-
rithms were run for a maximum of 500 iterations, or when
an 8 hour (28800 seconds) time limit was reached. Care was
taken to evaluate all runs under comparable conditions. The
results in Table 1 show the number of iterations completed
within the eight hour time limit, and if all 500 iterations were
completed it also shows the total amount of time (in seconds)
to complete those 500 iterations. For all three algorithms, it
is better to have a greater number of iterations completed
in terms of the quality of the value function found, and if
the limit of 500 iterations was reached, it is better to have a
shorter execution time.

Evaluating the use of memory
The first evaluation is how the use of memory in mPSRs
affects the performance of planning. To do this, we compare
the results for PSR-IP and mPSR-IP.

For the systems on which both algorithms completed 500
iterations, the timing results show that mPSR-IP outper-
forms PSR-IP by a significant margin on all systems except
for Tiger and Paint, for which memories revealed no struc-
ture. For the last two systems listed in Table 1, mPSR-IP
outperforms PSR-IP significantly. For Shuttle, PSR-IP only
completes 8 iterations in 8 hours, while mPSR-IP finishes
500 in just over 4 hours. For the 4x3 system, PSR-IP com-
pletes 9 iterations while mPSR-IP completes 20. While this
is only about twice as many iterations, the significance of
this improvement is evident when considering that each it-
eration is significantly more difficult than the previous. For
instance, for PSR-IP the first nine iterations together took
about 63 minutes, but the10th iteration (not included in Ta-
ble 1 because it went beyond the time limit)alone took 8
hours and 52 minutes. Because of the increases in computa-
tional requirements between consecutive iterations, obtain-
ing twice as many iterations is a significant improvement.
Finally, observe that for the 4x3CO system, mPSR-IP very
significantly outperforms PSR-IP as expected.

Therefore, for systems where memories reveal some of
the system structure, using mPSRs for planning has signif-
icant performance benefits over using PSRs for planning.
This is evident even when the revealed structure (measured
by number ofµ-core tests) is only significant for one mem-
ory (4x4), and even when the revealed structure is not great
for any memory (Network).

Evaluating POMDP and mPSR planning
Although comparing mPSR-IP to PSR-IP demonstrates how
adding memories to predictions of the future in the state rep-
resentation can speed up the algorithm, our larger goal is to
develop an algorithm that outperforms POMDP-IP. Note that
POMDP-IP generally outperforms PSR-IP (see Table 1).

In evaluating these algorithms, the Tiger and Paint sys-
tems have the same problem as above: memories do not re-

AAAI-05 / 991

Table 1: Test Systems and Results of IP on POMDPs, PSRs, and mPSRs
System POMDP PSR mPSR Stages Time (sec.)

nominal-states tests tests POMDP PSR mPSR POMDP PSR mPSR
1D maze 4 4 1, 3 500 500 500 2 6 3
Tiger 2 2 2, 2 500 500 500 49 88 88
Paint 4 4 4, 4 500 500 500 51 190 190
Cheese 11 11 1,1,1,1,2,2,3 500 500 500 21 528 27
4x3CO 11 11 1,1,1,1,1,1,1,1,1,1,1 500 500 500 18 2051 <1
4x4 16 16 1, 15 500 500 500 16 3782 486
Network 7 7 4, 6 500 500 500 8237 117 15
Shuttle 8 7 1,1,2,2,4 213 8 500 n/a n/a 15409
4x3 11 11 1,1,1,1,3,4 10 9 20 n/a n/a n/a

veal any structure, and the resulting performance of mPSR-
IP is worse than POMDP-IP. However, for the remaining
systems, the results for mPSRs are better. For two of the
systems, the performance of POMDP-IP and mPSR-IP is
roughly equivalent, and for one system, POMDP-IP outper-
forms mPSR-IP, but for the other four systems, mPSR-IP
outperforms POMDP-IP, often by an order of magnitude. In
fairness, it must be reported that POMDP-IP on the Shut-
tle system was progressing quickly when the time limit was
reached, and would have completed 500 iterations within 9
hours (and so mPSR-IP was roughly twice as fast). The re-
sults of the 4x3 system show the most significant gains. The
number of iterations for mPSR-IP is double that of POMDP-
IP, but again, typically each iteration of the algorithm is
significantly more difficult than the previous. For instance,
the11th iteration of POMDP-IP did not complete within 36
hours.

Conclusion
We proposed an extension of the incremental pruning algo-
rithm to mPSRs and showed how the use of memory as part
of the state representation is exploited both to decompose
the value iteration calculation as well as in the construction
of the associated policy trees. We also demonstrated how
memories that serve as landmarks can be used for particu-
larly efficient planning. Our empirical results demonstrate
that generally in dynamical systems for which the mPSR
model is more compact than the PSR or POMDP model,
i.e., systems for which the memory part of mPSRs captures
structure in the system, our mPSR-IP algorithm outperforms
both the PSR-IP and POMDP-IP algorithms.

As future work we will explore the automatic identifica-
tion of variable-length memories that lead to good planning
performance instead of using fixed-length memories as in
the current work. This may lead to greater and more consis-
tent benefit over existing methods than demonstrated here.

Acknowledgment The research reported in this paper was
supported by NSF grant IIS-0413004.

References
Cassandra, A.; Littman, M. L.; and Zhang, N. L. 1997. In-

cremental Pruning: A simple, fast, exact method for par-
tially observable Markov decision processes. In13th An-

nual Conference on Uncertainty in Artificial Intelligence
(UAI–97), 54–61.

Cassandra, A. 1999. Tony’s pomdp page.
http://www.cs.brown.edu/research/ai/ pomdp/index.html.

Coutilier, C., and Poole, D. 1996. Computing optimal poli-
cies for partially observable markov decision processes
using compact representations. In13th National Confer-
ence on Artificial Intelligence.

Izadi, M. T., and Precup, D. 2003. A planning algorithm
for predictive state representations. InEighteenth Inter-
national Joint Conference on Artificial Intelligence.

James, M. R.; Singh, S.; and Littman, M. L. 2004. Plan-
ning with predictive state representations. InThe 2004
International Conference on Machine Learning and Ap-
plications.

James, M. R.; Singh, S.; and Wolfe, B. 2005. Combining
memory and landmarks with predictive state representa-
tions. InThe 2005 International Joint Conference on Ar-
tificial Intelligence.

Littman, M. L.; Sutton, R. S.; and Singh, S. 2001. Predictive
representations of state. InAdvances In Neural Informa-
tion Processing Systems 14.

Littman, M. L. 1996. Algorithms for sequential decision
making. Technical Report CS-96-09, Brown University.

Ng, A. Y., and Jordan, M. 2000. PEGASUS:A policy search
method for large MDPs and POMDPs. In16th Confer-
ence on Uncertainty in Artificial Intelligence, 406–415.

Singh, S.; James, M. R.; and Rudary, M. R. 2004. Pre-
dictive state representations, a new theory for modeling
dynamical systems. In20th Conference on Uncertainty in
Artificial Intelligence.

Zhang, N. L., and Liu, W. 1996. Planning in stochastic do-
mains: Problem characteristics and approximation. Tech-
nical Report HKUST-CS96-31, Hong Kong University of
Science and Technology.

AAAI-05 / 992

