
Improving Action Selection in MDP’s via Knowledge Transfer

Alexander A. Sherstov and Peter Stone
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712 USA
{sherstov, pstone}@cs.utexas.edu

Abstract

Temporal-difference reinforcement learning (RL) has been
successfully applied in several domains with largestatesets.
Largeaction sets, however, have received considerably less
attention. This paper demonstrates the use of knowledge
transfer between related tasks to accelerate learning with
large action sets. We introduceaction transfer, a technique
that extracts the actions from the (near-)optimal solution to
the first task and uses them in place of the full action set
when learning any subsequent tasks. When optimal actions
make up a small fraction of the domain’s action set, action
transfer can substantially reduce the number of actions and
thus the complexity of the problem. However, action transfer
betweendissimilar tasks can be detrimental. To address this
difficulty, we contributerandomized task perturbation(RTP),
an enhancement to action transfer that makes it robust to un-
representative source tasks. We motivate RTP action transfer
with a detailed theoretical analysis featuring a formalism of
related tasks and a bound on the suboptimality of action trans-
fer. The empirical results in this paper show the potential of
RTP action transfer to substantially expand the applicability
of RL to problems with large action sets.

Introduction
Temporal-difference reinforcement learning (RL) (Sutton &
Barto 1998) has proven to be an effective approach to se-
quential decision making. However, large state and action
sets remain a stumbling block for RL. While largestate
sets have seen much work in recent research (Tesauro 1994;
Crites & Barto 1996; Stone & Sutton 2001), largeactionsets
have been explored to but a limited extent (Santamaria, Sut-
ton, & Ram 1997; Gaskett, Wettergreen, & Zelinsky 1999).

Our work aims to leverage similarities between tasks to
accelerate learning with large action sets. We consider
cases in which a learner is presented with two or morere-
lated tasks with identical action sets, all of which must be
learned; since real-world problems are rarely handled in iso-
lation, this setting is quite common. This paper explores the
idea of extracting the subset of actions that are used by the
(near-)optimal solution to the first task and using them in-
stead of the full action set to learn more efficiently in any
subsequent tasks, a method we callaction transfer. In many

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

domains with large action sets, significant portions of the
action set are irrelevant from the standpoint of optimal be-
havior. Consider, for example, a pastry chef experimenting
with a new recipe. Several parameters, such as oven temper-
ature and time to rise, need to be determined. But based on
past experience, only a small range of values is likely to be
worth testing. Similarly, when driving a car, the same safe-
driving practices (gradual acceleration, minor adjustments
to the wheel) apply regardless of the terrain or destination.
Finally, a bidding agent in an auction can raise a winning bid
by any amount. But past experience may suggest that only
a small number of raises are worth considering. In all these
settings, action transfer reduces the action set and thereby
accelerates learning.

Action transfer relies on the similarity of the tasks in-
volved; if the first task is not representative of the others,
action transfer can handicap the learner. Ifmanytasks are
to be learned, a straightforward remedy would be to transfer
actions frommultipletasks, learning each from scratch with
the full action set. However, in some cases the learner may
not have access to a representative sample of tasks in the do-
main. Furthermore, the cost of learning multiple tasks with
the full action set could be prohibitive.

We therefore focus on the harder problem of identifying
the domain’s useful actions by learning as few asone task
with the full action set, and tackling all subsequent tasks
with the resulting reduced action set. We propose a novel
algorithm, action transfer with randomized task perturba-
tion (RTP), that performs well even when the first task is
misleading. In addition to action transfer and RTP, this pa-
per contributes: (i) a formalism of related tasks that aug-
ments the MDP definition and decomposes it intotask-
specificanddomain-widecomponents; and (ii) a bound on
the suboptimality ofregular action transfer between related
tasks, which motivatesRTPaction transfer theoretically. We
present empirical results in several learning settings, show-
ing the superiority of RTP action transfer to regular action
transfer and to learning with the full action set.

Preliminaries
A Markov decision process(MDP), illustrated in Figure 1,
is a quadruple〈S,A, t, r〉, whereS is a set ofstates; A is a
set ofactions; t : S × A → Pr(S) is a transition function
indicating a probability distribution over the next states upon

AAAI-05 / 1024

taking a given action in a given state; andr : S × A → R
is a reward functionindicating the immediate payoff upon
taking a given action in a given state. Given a sequence of
rewardsr0, r1, . . . , rn, the associatedreturn is

∑n
i=0 γiri,

where0 ≤ γ ≤ 1 is the discount factor. Given apolicy
π : S → A for acting, its associatedvalue functionV π :
S → R yields, for every states ∈ S, the expected return
from starting in states and followingπ. The objective is to
find anoptimal policyπ∗ : S → A whose value function
dominates that of any other policy at every state.

The learner experiences the world as a sequence of states,
actions, and rewards, with no prior knowledge of the func-
tions t andr. A practical vehicle for learning in this set-
ting is theQ-value functionQ : S × A → R, defined as
Qπ(s, a) = r(s, a)+γ

∑
s′∈S t(s′|s, a)V π(s′). The widely

usedQ-learning algorithm (Watkins 1989) incrementally
approximates theQ-value function of the optimal policy.

As a running example and experimental testbed, we intro-
duce a novel grid world domain (Figure 2) featuring discrete
states but continuous actions. Some cells are empty; oth-
ers are occupied by a wall or a bed of quicksand. One cell
is designated as agoal. The actions are of the form(d, p),
whered ∈ {NORTH, SOUTH, EAST, WEST} is an intended
direction of travel andp ∈ [0.5, 0.9] is a continuous param-
eter. The intuitive meaning ofp is as follows. Small values
of p aresafein that they minimize the probability of a move
in an undesired direction, but result inslowprogress (i.e., no
change of cell is a likely outcome). By contrast, large values
of p increase the likelihood of movement, albeit sometimes
in the wrong direction. Formally, the move succeeds in the
requested directiond with probability p; lateral movement
(in one of the two randomly chosen directions) takes place
with probability (2p − 1)/8; and no change of cell results
with probability(9−10p)/8. Note thatp = 0.5 andp = 0.9
are the extreme cases: the former prevents lateral movement;
the latter forces a change of cell. Moves into walls or off the
grid-world edge cause no change of cell.

The reward dynamics are as follows. The discount rate
is γ = 0.95. The goal and quicksand cells are absorbing
states with reward0.5 and−0.5, respectively. All other ac-
tions generate a reward of−p2, making fast actions more
expensive than the slow ones. The optimal policy is always
to move toward the goal, taking slow inexpensive actions
(0.5 ≤ p ≤ 0.60) far from the goal or near quicksand, and
faster expensive actions (0.6 < p ≤ 0.65) when close to the
goal. The fastest62% of the actions (0.65 < p ≤ 0.9) do not
prove useful in this model. Thus, ignoring them cannot hurt
the quality of the best attainable policy. In fact, eliminating
them decreases the complexity of the problem and can speed
up learning considerably, a key premise in our work.

The research pertains to large action sets but does not re-
quire that they be continuous. In all experiments, we dis-
cretize thep range at0.01 increments, resulting in a full ac-
tion set of size164. Since nearby actions have similar ef-
fects, generalization in the action space remains useful. The
above intuitive grid world domain serves to simplify the ex-
position and to enable a precise, focused empirical study of
our methods. However, our work applies broadly to any do-
main in which the actions are not equally relevant.

r r�

6

AR
r

S
t

Figure 1: MDP formalism.

empty

wall
quicksand

goal

Figure 2: Grid world domain.

A Formalism for Related Tasks
The traditional MDP definition as a quadruple〈S,A, t, r〉
is adequate for solving problemsin isolation. However,
it is not expressive enough to capture similaritiesacross
problemsand is thus poorly suited for analyzing knowledge
transfer. As an example, consider two grid world maps. The
abstract reward and transition dynamics are the same in both
cases. However, the MDP definition postulatest andr as
functions overS × A. Since different maps give rise to dif-
ferent state sets, their functionst andr are formally distinct
and largely incomparable, failing to capture the similarity
of the reward and transition dynamics in both cases. Our
new MDP formalism overcomes this difficulty by usingout-
comesandclassesto remove the undesirable dependence of
the model description (t andr) on the state set.

Outcomes Rather than specifying the effects of an ac-
tion as a probability distributionPr(S) over nextstates,
we specify it as a probability distributionPr(O) over out-
comesO (Boutilier, Reiter, & Price 2001).O is the set of
“nature’s choices,” or deterministic actions undernature’s
control. In our domain, these are:NORTH, SOUTH, EAST,
WEST, STAY. Corresponding to every actiona ∈ A avail-
able to thelearner is a probability distribution (possibly dif-
ferent in different states) overO. Whena is taken, nature
“chooses” an outcome for execution according to that proba-
bility distribution. In the new definitiont : S×A → Pr(O),
the rangePr(O) is common to all tasks, unlike the original
rangePr(S). The semantics of the outcome set is made rig-
orous in the definitions below.

Note that the qualitative effect of a given outcome differs
from state to state. From many states, the outcomeEAST
corresponds to a transition to a cell just right of the cur-
rent location. However, when standing to the left of a wall,
the outcomeEAST leads to a “transition” back to the current
state. How an outcome in a state is mapped to the actual next
state is map-specific and will be a part of a task description,
rather than the domain definition.

Classes ClassesC, common to all tasks, generalize the
remaining occurrences ofS in t andr. Each state in a task
is labeled with a class from amongC. An action’s reward
and transition dynamics are identical in all states of the
same class. Formally, for alla ∈ A ands1, s2 ∈ S,
κ(s1) = κ(s2) =⇒ r(s1, a) = r(s2, a), t(s1, a) = t(s2, a),
whereκ(·) denotes the class of a state. Classes allow the
definition of t and r as functions overC × A, a set
common to all tasks, rather than the task-specific set
S × A. Combining classes with outcomes enables a
task-independent description of the transition and reward
dynamics:t : C × A → Pr(O) andr : C × A → R.

To illustrate the finalized descriptions oft and r, con-

AAAI-05 / 1025

sider the grid world domain. It features three classes, cor-
responding to the empty, goal, and quicksand cells. The re-
ward and transition dynamics are the same in each class.
Namely, the reward for action(d, p) is −p2 in cells of
the “empty” class,0.5 in cells of the “goal” class, and
−0.5 in cells of the “quicksand” class. Likewise, an action
(NORTH, p) has the same distribution over the outcome set
{NORTH, SOUTH, EAST, WEST, STAY} within each class: it
is [0 0 0 0 1]T for all s in the “goal” and “quicksand”
classes, and[p 0 (p− 0.5)/8 (p− 0.5)/8 (9− 10p)/8]T
for states in class “empty”; similarly for(SOUTH, p), etc.

Complete Formalism The above discussion casts the
transition and reward dynamics of adomainabstractly in
terms of outcomes and classes. Ataskwithin a domain is
fully specified by its state setS, a mappingκ : S → C from
its states to the classes, and a specificationη : S×O → S of
the next state given the current state and an outcome. Thus,
the defining feature of a task is its state setS, which the
functionsκ andη interface to the abstract domain model.

Figure 3 illustrates the complete formalism, emphasizing
the separation of what is common to all tasks in the domain
from the specifics of individual tasks. Note the contrast with
the original MDP formalism in Figure 1. Formally, domains
and tasks are defined as follows:

Definition 1 A domainis a quintuple〈A, C,O, t, r〉, where
A is a set of actions;C is a set of state classes;O is a set
of action outcomes;t : C × A → Pr(O) is a transition
function; andr : C × A → R is a reward function.

Definition 2 A task within the domain〈A, C,O, t, r〉 is a
triple 〈S, κ, η〉, whereS is a set of states;κ : S → C is
a state classification function; andη : S × O → S is a
next-state function.

r r
r

�
-

6

6

C
AR r

t O

S η
κ

Domain

Task

Figure 3: The formalism of related tasks in a domain.

Action Transfer: A Suboptimality Bound
Let Ã∗ = {a ∈ A : π∗(s) = a for somes ∈ S} be the
optimal action setof anauxiliary task, and letA∗ be the true
optimal action set of theprimary task. In action transfer, the
primary task is learned using the transferred action setÃ∗,
in the hope thatÃ∗ is “similar” to A∗. If A∗ 6⊆ Ã∗, the
best policyπ̃∗ achievable with the transferred action set in
the primary task may be suboptimal. This section bounds
the decrease in the highest attainable value of a state of the
primary task due to the replacement of the full action setA
with Ã∗. The bound will suggest a principled way to cope
with unrepresentative auxiliary experience.

In the related-task formalism above, a given states can
be succeeded by at most|O| statess1, s2, . . . , s|O| (not nec-
essarily distinct), wheresi denotes the state that results if

the ith outcome occurs. Suppose an oracle were to reveal
the optimal values of these successor states; given a task,
these values are well-defined. We refer to the resulting vec-
tor v = [V ∗(s1) V ∗(s2) . . . V ∗(s|O|)]T as theout-
come value vector(OVV) of states. OVV’s are intimately
linked to optimal actions:v immediately identifies the opti-
mal action ats, π∗(s) = arg maxa∈A{r(c, a)+γt(c, a)·v},
wherec = κ(s) is the class ofs. Consider now the set ofall
OVV’s of a task, grouped by the classes of their correspond-
ing states:U = 〈Uc1 , Uc2 , . . . , Uc|C|〉. HereUci

denotes
the set of OVV’s of states of classci. Together, the OVV’s
determine the task’s optimal action set in its entirety.

Definition 3 Let U = 〈Uc1 , Uc2 , . . . , Uc|C|〉 and Ũ =
〈Ũc1 , Ũc2 , . . . , Ũc|C|〉 be the OVV sets of the primary and
auxiliary tasks, respectively. Thedissimilarity of the pri-
mary and auxiliary tasks, denoted∆(U, Ũ), is:

∆(U, Ũ) def= maxc∈C maxu∈Uc

{
minũ∈Ũc

||u− ũ||2
}

.

Intuitively, dissimilarity ∆(U, Ũ) is the worst-case dis-
tance between an OVV in the primary task and the nearest
OVV of the same class in the auxiliary task. The notion of
dissimilarity allows us to establish the desired suboptimality
bound (see Appendix for a proof):

Theorem 1 LetÃ∗ be the optimal action set of the auxiliary
task. Replacing the full action setA with Ã∗ reduces the
highest attainable value of a state in the primary task by at
most∆(U, Ũ) ·

√
2γ/(1− γ), whereU andŨ are the OVV

sets of the primary and auxiliary tasks, respectively.

Randomized Task Perturbation
Theorem 1 implies that learning with the transferred actions
is safe if every OVV in the primary task has in its vicinity an
OVV of the same class in the auxiliary task. We confirm this
expectation below with action transfer acrosssimilar tasks.
However, twodissimilar tasks can have very different OVV
makeups and thus possibly different action sets. This section
studies a detrimental instance of action transfer in light of
Theorem 1 and proposes a more sophisticated approach that
is robust to misleading auxiliary tasks.

Detrimental Action Transfer Consider the auxiliary and
primary tasks in Figure 4. In one case, the goal is in the
southeast corner; in the other, it is moved to a northwesterly
location. The optimal policy for the auxiliary task, shown in
Figure 4, includes onlySOUTH andEAST actions. The pri-
mary task features all four directions of travel in its optimal
policy. Learning the primary task with actions transferred
from the auxiliary task is thus a largely doomed endeavor:
the goal will be practically unreachable from most cells.

RTP action transfer To do well with unrepresentative
auxiliary experience, the learner must sample the domain’s
OVV space not reflected in the auxiliary task.Randomized
task perturbation(RTP) allows for a more thorough expo-
sure to the domain’s OVV space while learning in the same
auxiliary task. The method works by internally distorting
the optimal value function of the auxiliary task, thereby in-
ducing an artificialnewtask while operating in thesameen-

AAAI-05 / 1026

3 4 5 6
4 5 6 7
5 6 7 9
6 7 9 10

7 9 7 6
9 10 9 7
7 9 7 6
6 7 6 5

Auxiliary task Primary task

Figure 4: A pair of auxiliary and primary tasks, along with their
optimal policies and value functions (rounded to integers).

vironment. RTP action transfer learns the optimal policy and
optimal actions in the artificial and original tasks.

Figure 5 illustrates the workings of RTP action trans-
fer. RTP distorts the optimal value function of the orig-
inal task (Figure 5a) by randomly selecting a small frac-
tion φ of the states and labeling them with randomly chosen
values, drawn uniformly from[vmin, vmax]. Herevmin =
rmin/(1−γ) andvmax = rmax/(1−γ) are the smallest and
largest state values in the domain. The smallest and largest
one-step rewardsrmin andrmax are estimated or learned.

The selected states form a setF of fixed-valued states.
Figure 5b shows these states and their assigned values on a
sample run withφ = 0.2. RTP action transfer learns the
value function of the artificial taskby treating the values of
the states inF as constant, and by iteratively refining the
other states’ values viaQ-learning. Figure 5c illustrates the
resulting optimal values. Note that the fixed-valued states
have retained their assigned values, and the other states’ val-
ues have been computed with regard to these fixed values.

RTP created an artificial task quite different from the orig-
inal. The optimal policy in Figure 5d featuresall four di-
rections of travel, despite the goal’s southeast location. We
ignore the action choices inF since those states are semanti-
cally absorbing. Thep components (not shown in the figure)
of the resulting actions are in the useful range[0.5, 0.65]—a
marked improvement over the full action set, in which62%
of the actions are in the useless range(0.65, 0.9].

In terms of the formal analysis above, the combined (orig-
inal + artificial) OVV set in RTP action transfer is closer to,
or at least no farther from, the primary task’s OVV set than
is the OVV set of the original auxiliary task alone. The al-
gorithm thereby reduces the dissimilarity of the two tasks
and improves the suboptimality guarantees of Theorem 1.
Figure 6 specifies RTP transfer embedded inQ-learning.

Notes on RTP action transfer RTP action transfer is easy
to use. The algorithm’s only parameter,φ, offers a trade-
off: φ ≈ 0 results in an artificial task almost identical to
the original;φ ≈ 1 induces an OVV space that ignores the
domain’s transition and reward dynamics and is thus not rep-
resentative of tasks in the domain. Importantly, RTP action
transfer requires no environmental interaction of its own—it
reuses the〈s, a, r′, s′〉 quadruples generated while learning
the unmodified auxiliary task. It may be useful to run RTP
action transfer several times, using the combined action set
over all runs. A data-economical implementation learns all
artificial Q-value functionsQ+

1 , Q+
2 , etc., within the same

algorithm. The data requirement is thus the same as in tradi-
tionalQ-learning. The space and running time requirements
are a modest multiplek of those inQ-learning, wherek is

a b

-9

2
-9 c

3 4 5 4
-9 5 6 5
5 6 7 2
4 -9 9 10 d

-9

2
-9

Figure 5: RTP action transfer at work: original auxiliary task (a);
random choice of fixed-valued states and their values (b); new op-
timal value function (c, rounded to integers) and policy (d).

1 Add eachs ∈ S toF with probabilityφ
2 foreachs ∈ F
3 do random-value ← rand(vmin, vmax)
4 Q+(s, a)← random-value for all a ∈ A
5 repeat s← current state,a← π(s)
6 Take actiona, observe rewardr, new states′

7 Q(s, a)
α← r + γ maxa′∈A Q(s′, a′)

8 if s ∈ S \ F
then Q+(s, a)

α← r + γ maxa′∈A Q+(s′, a′)
9 until converged

10 A∗ = ∪s∈S{arg maxa∈A Q(s, a)}
11 A+ = ∪s∈S\F{arg maxa∈A Q+(s, a)}
12 return A∗ ∪ A+

Figure 6: RTP action transfer in pseudocode. The left arrow indi-
cates regular assignment;x

α← y denotesx← (1− α)x + αy.

the number of artificial tasks learned.
While RTP action transfer is a product of the related-task

formalism and suboptimality analysis above, itdoes not rely
on knowledge of the classes, outcomes, and state classifica-
tion and next-state functions.As such, it is applicable to any
two MDP’s with a shared action set. In the case of tasks that
do obey the proposed formalism, the number of outcomes is
the dimension of the domain’s OVV space, and the number
of classes is a measure of the heterogeneity of the domain’s
dynamics (few classes means large regions of the state space
with uniform dynamics). RTP action transfer thrives in the
presence of few outcomes and few classes. RTP action trans-
fer will also work well if the same action is optimal for many
OVV’s, increasing the odds of its discovery and inclusion in
the transferred action set.

Extensions to Continuous Domains RTP transfer read-
ily extends to continuous state spaces. In this case, the
setF cannot be formed from individual states; instead,F
should encompassregionsof the state space, each with a
fixed value, whose aggregate area is a fractionφ of the
state space. A practical implementation of RTP can use,
e.g.,tile coding(Sutton & Barto 1998), a popular function-
approximation technique that discretizes the state space into
regions and generalizes updates in each region to nearby re-
gions. The method can be readily adapted to ensure that
fixed-valued regions retain their values (e.g., by resetting
them after every update).

Empirical Results
This section puts RTP action transfer to the test in several
learning contexts, confirming its effectiveness.

AAAI-05 / 1027

Relevance-weighted action selection A valuable vehicle
for exploiting action transfer isaction relevance, which we
define to be the fraction of states at which an action is op-
timal: RELEVANCE(a) = |{s ∈ S : π∗(s) = a}|/|S|. (In
case of continuous-state domains, the policyπ∗ and the rel-
evance computation are over a suitable discretization of the
state space.) Theε-greedy action selection creates a substan-
tial opportunity for exploiting the actions’ relevances:ex-
ploratory action choices should select an action with proba-
bility equal to its relevance (estimated from the optimal solu-
tion to the auxiliary task and to its perturbed versions), rather
than uniformly. The intuition here is that the likelihood of
a given actiona being optimal in states is RELEVANCE(a),
and it is to the learner’s advantage to explore its action op-
tions ins in proportion to their optimality potential ins.

We have empirically verified the benefits of relevance-
weighted action selection and used it in all experiments
below. This technique allows action transfer to accelerate
learning even if it does not reduce thenumberof actions.
In this case, information about the actions’relevancesalone
gives the learner an appreciable advantage over the default
(learning with the full action set and uniform relevances).

Methodology and Parameter Choices We used Q-
learning withε = 0.1, α = 0.1, and optimistic initialization
(to 10, the largest value in the domain) to compare the per-
formance of the optimal, transferred, and full action sets in
the primary task shown in Figure 2. The optimal action set
was the actual set of optimal actions on the primary task, in
the given discretization of the action space. The transferred
action sets were obtained from the auxiliary tasks of Fig-
ure 7 by regular transfer in one case and by RTP transfer in
the other (φ = 0.1 and10 trials, picked heuristically and not
optimized). Regular and RTP action transfer required1 mil-
lion episodes and an appropriate annealing régime to solve
the auxiliary tasks optimally. That many episodes would
be needed in any event to solve the auxiliary tasks, so the
knowledge transfer generated no overhead.

The experiments used relevance-weightedε-greedy action
selection. All the164 actions in the full set were assigned
the default relevance of1/164. In the transferred action sets,
the relevance of an action was computed by definition from
the optimal policy of the auxiliary task; in the case of RTP
transfer, the relevances were averaged over all trials.

For function approximation in thep dimension, we used
tile coding (Sutton & Barto 1998). Grid world episodes
started in a random cell and ran for 100 time steps, to
avoid spinning indefinitely in absorbing goal/quicksand
states. The performance criterion was thehighestaverage
state value under any policy discovered, vs. the number of
episodes completed. This performance metric was com-

a b c d

Figure 7: Auxiliary maps used in the experiments.

puted from the learner’s policies using an external policy
evaluator (value iteration) and was unrelated to the learner’s
own imperfect value estimates.

Results Figure 8 plots the performance of the four action
sets with different auxiliary tasks. The top of the graph (av-
erage state value≈ 4.28) corresponds to optimal behav-
ior. The optimal and full action-set curves are repeated in
all graphs because they do not depend on the auxiliary task
(however, note the differenty-scale in Figure 8a).

The optimal action set is a consistent leader. The perfor-
mance of regular transfer strongly depends on the auxiliary
map. The first map’s optimal action set features onlyEAST
and SOUTH actions, leaving the learner unprepared for the
test task and resulting in worse performance than with the
full action set. Performance with the second auxiliary map is
not as abysmal but is far from optimal. This is because map
b does not feature slowEAST andSOUTH actions, which are
common on the test map. The other two auxiliary tasks’ op-
timal action sets resemble the test task’s, allowing regular
action transfer to tie with the optimal set.

RTP transfer, by contrast, consistently rivals the optimal
action set. The effect of the auxiliary task on RTP transfer
is minor, resulting in performance superior to the full action
seteven with misleading auxiliary experience. These results
show the effectiveness of RTP transfer and the comparative
undesirability of learning with the full and transferred ac-
tion sets. We have verified that RTP transfer substantially
improves onrandomselection of actions for the partial set.
In fact, such randomly-constructed action sets perform more
poorly than even the full set, past an initial transient.

-4

-2

0

2

4

0 25000 50000

AUXILIARY MAP: A

optimal
RTP

transferred
full

3

3.5

4

0 25000 50000

AUXILIARY MAP: B

optimal
RTP

transferred
full

3

3.5

4

0 25000 50000

AUXILIARY MAP: C

optimal
RTP

transferred
full

3

3.5

4

0 25000 50000

AUXILIARY MAP: D

optimal
RTP

transferred
full

Figure 8: Comparative performance. Each curve is a point-wise
average over 100 runs. At a 0.01 significance level, the ordering of
the curves is: T<F< {RTP, O} (mapa, starting at5000); F<T<
{RTP, O} (mapb, starting at17000). F< {T, RTP, O} (mapsc–d,
starting at100).

Related Work
Knowledge transfer has been applied to hierarchical
(Hauskrecht et al. 1998; Dietterich 2000), first-
order (Boutilier, Reiter, & Price 2001), and fac-
tored (Guestrinet al. 2003) MDP’s. A limitation of this

AAAI-05 / 1028

related research is the reliance on a human designer for an
explicit description of the regularities in the domain’s dy-
namics, be it in the form of matching state regions in two
problems, a hierarchical policy graph, relational structure, or
situation-calculus fluents and operators. RTP action transfer,
while inspired by an analysis using outcomes, classes, and
state classification and next-state functions, requires none of
this information. It discovers and exploits the domain’s reg-
ularities to the extent that they are present and requires no
human guidance along the way. Furthermore, our method is
robust to unrepresentative auxiliary experience.

In addition, the longstanding tradition in RL has been to
attack problem complexity on thestateside. For example,
the above methods identify regions of the state space with
similar optimal behavior. By contrast, our method simpli-
fies the problem by identifying usefulactions. A promising
approach would be to combine these two lines of work.

Conclusion
This paper presentsaction transfer, a novel approach to
knowledge transfer across tasks in domains with large action
sets. The algorithm rests on the idea that actions relevant
to an optimal policy in one task are likely to be relevant in
other tasks. The contributions of this paper are: (i) a formal-
ism isolating the commonalities and differences among tasks
within a domain, (ii) a formal bound on the suboptimality
of action transfer, and (iii) action transfer withrandomized
task perturbation(RTP), a more sophisticated and empir-
ically successful knowledge-transfer approach inspired by
the analysis of regular transfer. We demonstrate the effec-
tiveness of RTP empirically in several learning settings. We
intend to exploit RTP’s potential to handle truly continuous
action spaces, rather than merely large, discretized ones.

Acknowledgments
The authors are thankful to Raymond Mooney, Lilyana Mihalkova,
and Yaxin Liu for their feedback on earlier versions of this
manuscript. This research was supported in part by NSF CAREER
award IIS-0237699, DARPA award HR0011-04-1-0035, and an
MCD fellowship.

References
Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic dynamic
programming for first-order MDPs. InProc. 17th International
Joint Conference on Artificial Intelligence (IJCAI-01), 690–697.

Crites, R. H., and Barto, A. G. 1996. Improving elevator perfor-
mance using reinforcement learning. In Touretzky, D. S.; Mozer,
M. C.; and Hasselmo, M. E., eds.,Advances in Neural Informa-
tion Processing Systems 8. Cambridge, MA: MIT Press.

Dietterich, T. G. 2000. Hierarchical reinforcement learning with
the MAXQ value function decomposition.Journal of Artificial
Intelligence Research13:227–303.

Gaskett, C.; Wettergreen, D.; and Zelinsky, A. 1999. Q-learning
in continuous state and action spaces. InAustralian Joint Confer-
ence on Artificial Intelligence, 417–428.

Guestrin, C.; Koller, D.; Gearhart, C.; and Kanodia, N. 2003.
Generalizing plans to new environments in relational MDPs. In
Proc. 18th International Joint Conference on Artificial Intelli-
gence (IJCAI-03).

Hauskrecht, M.; Meuleau, N.; Kaelbling, L. P.; Dean, T.; and
Boutilier, C. 1998. Hierarchical solution of Markov decision
processes using macro-actions. InProc. Fourteenth Conference
on Uncertainty in Artificial Intelligence (UAI-98), 220–229.

Santamaria, J. C.; Sutton, R. S.; and Ram, A. 1997. Experi-
ments with reinforcement learning in problems with continuous
state and action spaces.Adaptive Behavior6(2):163–217.

Stone, P., and Sutton, R. S. 2001. Scaling reinforcement learning
toward RoboCup soccer. InProc. 18th International Conference
on Machine Learning (ICML-01), 537–544. Morgan Kaufmann,
San Francisco, CA.

Sutton, R., and Barto, A. 1998.Reinforcement Learning: An
Introduction. Cambridge, MA: MIT Press.

Tesauro, G. 1994. TD-Gammon, a self-teaching backgam-
mon program, achieves master-level play.Neural Computation
6(2):215–219.

Watkins, C. J. C. H. 1989.Learning from Delayed Rewards.
Ph.D. Dissertation, Cambridge University.

Proof of Theorem 1
Lemma 1 Let Ũ = 〈Ũc1 , Ũc2 , . . . , Ũc|C|〉 be the auxiliary

task’s OVV set, and letÃ∗ be the corresponding action set.
Then maxa∈A{r(c, a) + γt(c, a)v} − maxa∈Ã∗{r(c, a) +

γt(c, a)v} ≤
√

2γ minu∈Ũc
{||v − u||2} for all v ∈ R|O| and

c ∈ C.

Proof: Let av = arg maxa∈A{r(c, a) + γt(c, a)v}. Let au =

arg maxa∈A{r(c, a) + γt(c, a)u} for an arbitraryu ∈ Ũc, so
that au ∈ Ã∗. We immediately have:r(c, av) + γt(c, av)u ≤
r(c, au) + γt(c, au)u. Therefore,

maxa∈A{r(c, a) + γt(c, a)v} −maxa∈Ã∗{r(c, a) + γt(c, a)v}
≤ [r(c, av) + γt(c, av)v]− [r(c, au) + γt(c, au)v]

= [r(c, av)− r(c, au)]− [γt(c, au)v − γt(c, av)v]

≤ [γt(c, au)u− γt(c, av)u]− [γt(c, au)v − γt(c, av)v]

= γ[t(c, au)− t(c, av)] · [u− v]

≤ γ||t(c, au)− t(c, av)||2 · ||u− v||2 ≤
√

2γ · ||u− v||2.

Since the choice ofu ∈ Ũc was arbitrary and any other member of
Ũc could have been chosen in its place, the lemma holds. �

Let V ∗ andṼ ∗ be the optimal value functions for the primary task
〈S, κ, η〉 usingA andÃ∗, respectively. Letδ = maxs∈S{V ∗(s)−
Ṽ ∗(s)}. Then for alls ∈ S,

Ṽ ∗(s) = max
a∈Ã∗

n
r(κ(s), a) + γ

P
o∈O t(κ(s), a, o)Ṽ ∗(η(s, o))

o
≥ max

a∈Ã

˘
r(κ(s), a) + γ

P
o∈O t(κ(s), a, o)V ∗(η(s, o))

¯
− γδ.

Applying Lemma 1 and denoting byv the OVV corresponding to
s in U , we obtain:

Ṽ ∗(s) ≥ V ∗(s)−
√

2γ minũ∈Ũκ(s)
||v − ũ||2 − γδ

≥ V ∗(s)−
√

2γ maxc∈C maxu∈Uc {minũ∈Uc ||u− ũ||} − γδ

= V ∗(s)−
√

2γ∆(U, Ũ)− γδ.

Hence,V ∗(s)− Ṽ ∗(s) ≤ δ ≤
√

2γ∆(U, Ũ) + γδ, andV ∗(s)−
Ṽ ∗(s) ≤ ∆(U, Ũ) ·

√
2γ/(1− γ) for all s ∈ S. �

AAAI-05 / 1029

