
Robust Textual Inference Via Learning and Abductive Reasoning

Rajat Raina, Andrew Y. Ng and Christopher D. Manning
Computer Science Department

Stanford University
Stanford, CA 94305

Abstract
We present a system for textual inference (the task of infer-
ring whether a sentence follows from another text) that uses
learning and a logical-formula semantic representation of the
text. More precisely, our system begins by parsing and then
transforming sentences into a logical formula-like represen-
tation similar to the one used by (Harabagiu et al., 2000).
An abductive theorem prover then tries to find the minimum
“cost” set of assumptions necessary to show that one state-
ment follows from the other. These costs reflect how likely
different assumptions are, and are learned automatically us-
ing information from syntactic/semantic features and from
linguistic resources such as WordNet. If one sentence follows
from the other given only highly plausible, low cost assump-
tions, then we conclude that it can be inferred. Our approach
can be viewed as combining statistical machine learning and
classical logical reasoning, in the hope of marrying the ro-
bustness and scalability of learning with the preciseness and
elegance of logical theorem proving. We give experimental
results from the recent PASCAL RTE 2005 challenge compe-
tition on recognizing textual inferences, where a system us-
ing this inference algorithm achieved the highest confidence
weighted score.

Introduction
The performance of many text processing applications
would improve substantially if they were able to rea-
son with natural language representations. These applica-
tions typically use information specified in natural language
(e.g., broad-coverage question answering), and process in-
put/output in natural language (e.g., document summariza-
tion).

Several semantic reasoning tasks crop up within these ap-
plications. For example, in an automatic question answering
system, a question is given and we might require the sys-
tem to find a piece of text from which the answer can be
inferred. In a document summarization system, we might
stipulate that the summary should not contain any sentences
that can be inferred from the rest of the summary. These se-
mantic reasoning tasks are largely addressed one application
at a time, despite the many intersections.

There have been recent suggestions to isolate the core
reasoning aspects and formulate a generic task that could

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

potentially be useful for many of the above text processing
applications (PASCAL RTE Challenge, PASCAL Recogniz-
ing Textual Entailment Challenge 2005). Along these lines,
the basic task we consider is to decide whether the mean-
ing of one natural language fragment can be approximately
inferred from another. The most general case of natural lan-
guage reasoning might require rich commonsense reason-
ing, which is known to be hard. Our focus is on inferences
that can be made using language features and semantics,
possibly with some world knowledge.

In this paper, we present an abductive inference algorithm
to perform semantic reasoning. More precisely, it learns how
to combine information from several knowledge sources to
decide what are plausible “assumptions” during its reason-
ing process. Thus, our system is capable of performing flex-
ible semantic reasoning, given just a training set of inferable
sentences (see Table 1 for examples).

Even beyond natural language inference, our methods can
be used for robust inference with other logical representa-
tions. Logical inference is well known to frequently be brit-
tle and have poor coverage, especially when it uses axioms
that must be manually tweaked; this limits its applicability to
real-world tasks. However, by using abduction and learning,
we combine the elegance and preciseness of the logical for-
malism with the robustness and scalability of a statistically
trained system.

Problem definition
We describe our algorithms on the task of “recognizing tex-
tual entailment” (PASCAL RTE Challenge, PASCAL Rec-
ognizing Textual Entailment Challenge 2005), but the ideas
extend easily to the general case of textual inference.

Each example in this domain consists of two parts: one or
more text sentences and a hypothesis sentence. The task is
to identify whether the hypothesis sentence can be plausibly
inferred (“entailed”) from the text sentences. Throughout
this section, we use the following as our running example:
TEXT: Bob purchased an old convertible.
HYPOTHESIS: Bob bought an old car.
Actual examples in the task are significantly more complex;
see the examples in Table 1.

Many successful text applications rely only on “keyword”
(or phrasal) counting. But information retrieval techniques
that use only word counts (such as bag-of-words representa-

AAAI-05 / 1099

Class Text Hypothesis Entailed
Comparable
Documents

A Filipino hostage in Iraq was released. A Filipino hostage was freed in Iraq. Yes

Information
Extraction

Global oil prices clung near their highest levels in
at least 21 years yesterday after Russian oil giant
Yukos was ordered to stop sales, . . .

Oil prices rise. Yes

Information
Retrieval

Spain pulled its 1,300 troops from Iraq last month. Spain sends troops to Iraq. No

Machine Trans-
lation

The economy created 228,000 new jobs after a dis-
appointing 112,000 in June.

The economy created 228,000 jobs af-
ter disappointing the 112,000 in June.

No

Paraphrase
Acquisition

Clinton is a very charismatic person. Clinton is articulate. Yes

Question
Answering

VCU School of the Arts In Qatar is located in
Doha, the capital city of Qatar.

Qatar is located in Doha. No

Reading
Comprehension

Eating lots of foods that are a good source of fiber
may keep your blood glucose from rising fast after
you eat.

Fiber improves blood sugar control. Yes

Table 1: Some illustrative examples from different classes of the PASCAL RTE dataset (PASCAL RTE Challenge, PASCAL
Recognizing Textual Entailment Challenge 2005).

tions) are not well suited to such semantic reasoning tasks.
For example, a successful system must differentiate between
the hypothesis above and a similar-looking one which can-
not be inferred:
HYPOTHESIS: Old Bob bought a car.

Thus, rather than relying on keyword counting, we use a
significantly richer representation for the syntax of the sen-
tence, and augment it with semantic annotations. We choose
a logical formula-like representation similar to (Harabagiu,
Pasca, & Maiorano, 2000; Moldovan et al., 2003), which
allows us to pose the textual inference problem as one
of “approximate” (or, more formally, abductive) logical
inference. For example, the sentences above become:
(∃ A,B,C) Bob(A) ∧ convertible(B) ∧ old(B)
∧ purchased(C,A,B)
(∃ X,Y,Z) Bob(X) ∧ car(Y) ∧ old(Y) ∧
bought(Z,X,Y)
In our notation, C and Z are event variables that denote the
events of purchasing and buying, respectively.

With this representation, the hypothesis is entailed by the
text if and only if it can be logically proved from the latter.

However, the main obstacle to using such logical infer-
ences is that most non-trivial entailments require making
certain “leap-of-faith” assumptions. Thus, in order to cor-
rectly infer the entailment above, one must either know or
assume that “a convertible is a car”. Building on (Hobbs et
al., 1993), we propose an algorithm in which each “assump-
tion” is associated with a cost, and a hypothesis is plausible
if it has a simple—meaning low-cost—proof.

Instead of representing all possible leaps-of-faith as ex-
plicit logical axioms (“rules”), we take the view that these
leaps-of-faith correspond to assumptions about the real
world and have some degree of plausibility; we assign a
cost to each assumption to quantify its plausibility. The cost
of an assumption is computed using a cost model that in-
tegrates features of the assumption based on many knowl-
edge sources. We believe this approach is more robust and

VP

NNP DT JJ NN

Bob an

(purchased)

(convertible)

(purchased)(Bob)

purchased old convertible

VBD

NP

NP

S

Figure 1: Procedure to discover syntactic dependencies, il-
lustrated on the parse tree for an example sentence. Heads
are marked on nonterminal nodes in parentheses. The dotted
lines show the dependencies discovered.

scalable than one which requires axioms that are always
true (Moldovan et al., 2003). Given this cost model, we can
then use a search procedure to find the minimum-cost proof,
and judge entailment based on this cost.

One of the challenges is to obtain a cost model for a large
set of assumptions. Such costs have typically been manually
tuned in previous work, or have been left out completely. We
describe a learning algorithm that automatically discovers
“good” costs given a training set of labeled examples (as in
Table 1).

Representation
In this section, we sketch how our logical representation is
derived from raw English text.

The first step in processing a sentence is to construct a
syntactic dependency graph. The sentence is parsed using

AAAI-05 / 1100

the parser in (Klein & Manning, 2003). Hand-written rules
are used to find the heads of all nodes in this parse tree (these
reles are an adaptation of those in Collins, 1999).

This procedure implicitly discovers syntactic relation-
ships between the words in the sentence, because when a
word is chosen as the head, its siblings must be syntactic
modifiers to that word. These relationships can be laid out
as a dependency graph where each node is a word/phrase
and the links represent particular dependencies. Figure 1 il-
lustrates this procedure on our example text sentence.

We now translate the relations represented in the depen-
dency graph into a logical formula-like representation, as
in (Harabagiu, Pasca, & Maiorano, 2000). Each node in
the graph is converted into a logical term and is assigned
a unique constant. Edges in the graph are represented by
sharing arguments across nodes; verbs and prepositions can
have multiple arguments, and receive arguments from all the
linked nodes.1

To help the inference process, we can also augment the
logical formula with several kinds of semantic annotations.
These include annotations added on the predicate (e.g., if
the corresponding word is part of a Named Entity), and also
annotations added on the arguments of certain terms (e.g.,
if that argument has a subject/object relation to the predi-
cate of the term). These annotations can be used as fea-
tures in determining assumption costs in the inference pro-
cess. For our running example, we discover, for example,
that Bob is a Person (using a Named Entity classifier), and
that convertible is the object to the verb purchased (us-
ing the syntactic dependency “types”).

Using this restricted representation, we can accurately
capture only a subset of all English language semantics. For
example, hypotheses such as “Bob did not buy an old car”
are also converted to a similar representation (without any
negated terms) – the negation is spotted from the parse tree
and annotated on the verb buy; this annotation is used later
to achieve the effect of negation. These restrictions imposed
on the representation will allow us to use more tractable in-
ference algorithms later.

Inference
Strict theorem proving
To motivate the form for our abductive assumptions, assume
first that we are not allowed to make assumptions in the
proof.

Then, for the remaining inference problem, we must find
a proof for the hypothesis given the text. The method of
resolution refutation performs theorem proving by adding

1In our implementation, the conversion considers further lin-
guistic phenomena in constructing the logical formula. For exam-
ple, it propagates dependencies by preposition folding. These mod-
ifications were driven by data analysis, and details are omitted due
to space constraints. To give an example of a complex sentence,
the last text sentence in Table 1 is transformed to:
eating(A) lots(A) of(B,A,C) foods(C) that(D) are(E,C,D,F)
good(F) source(F) of(G,F,H) fiber(H) may(I) keep(J,A,I,K,L)
your(M) blood glucose(K) from(N,A,L) rising(L,O,P,Q) too(O)
fast(P) after(R) you(S) eat(Q,R,S)

the negation of the goal logical formula to a knowledge
base consisting of the given axioms, and then deriving
a null clause through successive resolution steps. This
corresponds to justifying (i.e., “proving”) the goal by
deriving a contradiction for its negation. Thus, to use the
method of resolution refutation, we construct a knowledge
base with the text logical formula and the negation of the
hypothesis logical formula; finding a proof then corresponds
to producing the null clause through successive resolution
steps. For our example, we get the following clauses:
(∃ A,B,C) Bob(A) ∧ convertible(B) ∧ old(B)
∧ purchased(C,A,B)
(∀ X, Y, Z) ¬Bob(X) ∨ ¬car(Y) ∨ ¬old(Y) ∨
¬bought(Z,X,Y)
By construction, our representation converts each sentence
into a conjunction of logical terms; thus, each clause in
the above knowledge base has at most one non-negated
term. In other words, the knowledge base contains only
Horn clauses. Unit resolution is a proof strategy that
considers only resolution steps in which at least one of the
participating clauses is a unit clause (i.e., has one term). It
is known that unit resolution is a complete proof strategy for
this restricted class of logical clauses. (see, e.g., Genesereth
and Nilsson, 1987).

For all the theorem proving problems produced by our
logical formulae, it is thus sufficient for completeness to
consider only proof steps that unify a single-term clause pro-
duced from the text with the first term of the clause produced
from the hypothesis.2 Further, this is also a tractable (i.e.,
polynomial-time) proof strategy for this (non-abductive) set-
ting.

Abductive theorem proving
The previous proof strategy considers unifications between
a single-term clause and the first term of another clause
only. With the standard logical definition of unification, this
strategy is too strict for our language representation – we
would like to “unify” terms such as purchased(C,A,B)
and ¬bought(Z,X,Y) in our proofs. We thus consider the
setting of weighted abduction (Hobbs et al., 1993), where
we allow such pairs of terms to “unify” at some computed
cost.

In particular, consider two logical terms S(s1, s2, . . . , sm)
and ¬T (t1, t2, . . . , tn), where S, T are the predicates and
s1...m, t1...n are the arguments (variables or constants). The
standard definition of unification requires that S = T ,
m = n and each si be consistently unified with ti. It seems
useful to relax the standard definition of unification in the
following ways:

1. The predicates S and T are allowed to be different.
e.g.: S and T might be synonyms of each other.

2The following facts allow us to conclude this:

1. Unit resolution is complete for our problems.
2. Each proof step must resolve a negated and a non-negated term.

Non-negated terms arise only from the text as unit clauses.
Negated terms arise only from the negated hypothesis.

AAAI-05 / 1101

2. The numbers of arguments m and n need not be the same,
and each si may be unified with some argument other than
ti. The same pair of terms may unify in several ways cor-
responding to the different ways of matching their argu-
ments.
e.g.: Two verbs that convey the same meaning might take
different numbers of modifiers, the order of the modifiers
might be changed and the correspondence of the modifiers
across the terms might be ambiguous.

3. Two constant arguments could unify with each other.
e.g.: The logical representation might have two constants
that actually represent the same physical entity through
coreference.
Each of the above relaxations is interpreted as an abduc-

tive assumption about the world, and its degree of plausibil-
ity is quantified as a nonnegative cost by the assumption cost
model. The cost model is responsible for tackling language
semantics and is described in the next section.

Given a cost model, abductive theorem proving can be
framed as a search problem. For every pair of terms, there
might be many resulting resolvents (each with one way of
matching the term arguments) and each resolvent is assigned
a nonnegative cost by the cost model. A proof is complete
when the null clause is reached through successive steps;
the total cost of the proof is given by the sum of individual
step costs. Since we are interested in finding a minimum
cost proof, the theorem prover can use uniform cost search
to discover it efficiently. In general, A∗ search can also be
used for large-scale problems if a good admissible heuristic
is available.

Assumption cost model
The assumption cost model quantifies the plausibility of any
given assumption. As described in the previous section, an
assumption A is identified by the two logical terms being
unified (say S(s1, s2, . . . , sm) and ¬T (t1, t2, . . . , tn)) and the
argument matching under consideration. We assign a cost
Cw(A) to assumption A as a linear function of features of
A:

Cw(A) =

D
∑

d=1

wdfd(A) (1)

where f1, . . . , fD are arbitrary nonnegative feature func-
tions and w1, . . . , wD are the relative weights assigned to
these feature functions. The linear combination of features
fd(A) allows each wd to be interpreted as the cost for a par-
ticular kind of basic assumption. Further, we show in the
sequel that “good” weights wd can be learnt automatically
for this cost function.

The features can be derived from a number of knowledge
sources, such as WordNet (Miller, 1995), syntactic features,
etc. that measure the degree of similarity between two terms.
Table 2 lists the features used in our experiments. These fea-
tures can be broadly divided into the following five classes:

1. Predicate “similarity”: We use (Resnik, 1995; Pedersen,
Patwardhan, & Michelizzi, 2004) to compute a nonneg-
ative measure of similarity between the two predicates
based on their proximity in the WordNet hierarchy. This

feature indicates when two words are synonyms or oth-
erwise have similar meanings. An additional feature in-
dicates whether the predicates are listed as antonyms in
WordNet (properly accounting for any negation annota-
tions on either predicate).

2. Predicate compatibility: These features measure if the
two predicates are the same “type” of word. More specif-
ically, three features indicate if the two words (i) have the
same part-of-speech tag, (ii) the same word stem, and (iii)
the same named entity tag (if any).

3. Argument compatibility: Several features consider each
pair of arguments matched with each other, and penalize
mismatches between annotations attached to them. For
example, the annotation might be the type of verb depen-
dency, and then we would prefer a subject argument to
be matched with another subject argument; similarly, the
annotation might be the semantic role of that argument,
and we would prefer a location modifier argument to be
matched with another location modifier.

4. Constant unification: Different constants in our represen-
tation might refer to the same physical entity, say because
of anaphoric coreference. We thus precompute a matrix of
“distances” between constants, using cues from corefer-
ence or appositive reference, for example. A feature func-
tion of the assumption computes the sum of distances for
all constant unifications among the matched arguments.

5. Word frequency: Some terms in the hypothesis may not
unify well with any term in the text, but can be “ignored”
at some cost because they are used very commonly in lan-
guage (e.g.: “The watch is good.” might be considered to
entail “The watch is rather good.” as rather is a common
word.) To capture this behavior, we compute a feature
that is inversely proportional to the relative frequency of
the hypothesis predicate in a large corpus of English text.
For illustration, we show how our representation and in-

ference steps can be extended to tackle somewhat more com-
plicated language phenomena. Consider the case of event
nouns. These are cases where a verb in the hypothesis is
represented as a noun in the text – for example, “murder
of police officer” entails “Police officer killed.”. The repre-
sentation for text sentences is augmented by looking up the
noun→verb derivational forms in WordNet for all nouns in
the text, and finding the possible dependencies for that verb.
The usual predicate similarity routines then work with this
augmented representation. Such techniques can be devised
to tackle several other linguistic constructions, but these ex-
tensions are not important for the current discussion.

Learning good assumption costs
Our discussion thus far has assumed that the weight vector
w = (w1, . . . , wD)T is given. We now describe a learning
algorithm for automatically choosing these weights.

Discriminative learning of weights
We first introduce some notation. Consider an entailment
example; any abductive proof P of the hypothesis con-
sists of a sequence of assumptions, say A1, . . . ,AN . Us-

AAAI-05 / 1102

1. Similarity score for S and T .
Are S and T antonyms?
If S and T are numeric, are they “compatible”?

2. Mismatch type for part-of-speech tags of S and T .
Do S and T have same word stem?
Do S and T have same named entity tag?

3. Difference in number of arguments: |m− n|.
Number of matched arguments with:

– different dependency types.
– different semantic roles.
– each type of part-of-speech mismatch.

Number of unmatched arguments of T .
4. Total coreference “distance” between matched

constants.
5. Inverse word frequency of predicate S.

Is S a noun, pronoun, verb or adjective, and is it being
“ignored” by this unification?

Table 2: List of features extracted in our experiments for uni-
fying terms S(s1, s2, . . . , sm) and ¬T (t1, t2, . . . , tn) accord-
ing to some specified argument matching. The features spec-
ified as questions are binary features that are equal to 1 if the
condition is true, and 0 otherwise. Part-of-speech mismatch
features are computed by binning the part-of-speech pair
into 10 “types” (e.g., “same part-of-speech”, “noun/pronoun
with verb”, etc.).

ing the previously defined per-assumption feature functions
fd(A1) . . . fd(AN) for each d ∈ {1, 2, . . . , D}, we can
compute the aggregated feature functions for the proof P:

fd(P) =
N

∑

s=1

fd(As) (2)

Let f(P) = (f1(P) . . . fD(P))T denote the aggregated fea-
ture vector for the proof P . Then, the total cost of the proof
is a linear function of weights w:

Cw(P) =

D
∑

d=1

wdfd(P) = wT f(P) (3)

Assume for simplicity that we augment the feature vector
with a constant feature, so that we classify a hypothesis as
ENTAILED if and only if its minimum proof cost is less than
zero.

Suppose we are given a labeled dataset of entailment
examples (τ (i), y(i)), where each τ (i) represents a text-
hypothesis pair and y(i) ∈ {0, 1} is the corresponding label
(say y(i) = 1 implies τ (i) is ENTAILED, while y(i) = 0 im-
plies τ (i) is not ENTAILED). For text-hypothesis pair τ (i)

and assumption weights w, our label prediction is based on
the cost of the minimum cost proof:

P(i)
w = arg min wT f(P(i)) s.t. P(i) is a proof for τ (i).

Using the sigmoid function σ(z) = 1/(1 + exp(−z)), we
can assume a logistic model for the prediction:

P (y(i) = 0|τ (i), w) , σ(wT f(P(i)
w)) (4)

and use this definition to optimize the discriminative log-
likelihood of the training set (possibly with regularization):

`(w) =
∑

i

log P (y(i)|τ (i), w) (5)

Unfortunately, the feature vector f(P
(i)
w) for each exam-

ple depends on the current weight vector w, and it can be
shown that the log-likelihood function `(w) is not convex in
w. There are local maxima, and exact optimization is in-
tractable (Rockafellar, 1972). Intuitively, as the weights w

change, the feature vector f(P
(i)
min) itself might change if a

new proof becomes the minimal cost one from among the
large number of possible proofs.

An iterative approximation
We approximate the above optimization problem to get a
tractable solution. To deal with the large number of proofs,
we optimize iteratively over proofs and weights. First we
fix the current minimal proof Pw, and use this fixed proof
to analytically compute the local gradient of the (regular-
ized) log-likelihood function `(w). This is possible since, in
general, the minimum cost proof stays the same in the im-
mediate vicinity of the current weight vector w.3 We update
w by taking a short step along the direction of the gradient,
producing weights with higher likelihood.

Since the minimum cost proofs might have changed at
the new weight setting, we recompute these proofs using the
abductive theorem prover. We now iterate, since the gradient
of the log-likelihood function for the new weights can be
computed using the new proofs.

Intuitively, the algorithm finds the assumption types that
seem to contribute to proofs of entailed examples, and low-
ers their cost; similarly, it raises the cost for assumption
types that seem to mislead the theorem prover into discover-
ing low-cost proofs of non-entailed examples.

The proposed algorithm is shown below with a Gaussian
prior for regularization. The algorithm uses the abductive
theorem prover iteratively. The likelihood function `(w) can
have local maxima, so we start at a “reasonable guess” w(0).

1. Initialize w(0), set k = 0, choose step size α and a regu-
larization parameter λ.

2. Using weights w(k) in the abductive theorem prover, find
the minimum cost proofs P(i)

min for each text-hypothesis
pair τ (i) in the training set.

3. Using the features computed on the minimum cost proofs
above, move the weights in the direction of increasing ap-
proximate log-likelihood ˜̀(w) of training data.

˜̀(w) ,
∑

i:y(i)=0

log(σ(wT f(P
(i)
min))) +

3More formally, if y = 1 for a given training example, then
letting Pw = arg minP σ(wT f(P)) be the current minimal cost
proof (the arg min should be replaced by an arg max if instead
y = 0), we have that on all but a measure zero set of points,
∇wσ(wT f(Pw)) = ∇w arg minP σ(wT f(P)). In fact, our pro-
cedure is, almost everywhere, computing the true gradient of `(w),
and thus can be viewed as an instance of (sub)gradient ascent.

AAAI-05 / 1103

∑

i:y(i)=1

log(1− σ(wT f(P
(i)
min))) + λ||w||2

w(k+1) ← w(k) + α
∂ ˜̀(w)

∂w

∣

∣

∣

∣

∣

w=w(k)

4. k ← k + 1

5. Loop to step 2 until convergence.

One final detail is that the weights (except the constant
offset) must be nonnegative (for uniform cost search to work
in theorem proving). So, we just set any negative compo-
nents to 0 at the end of each iteration; the overall update
direction is still a subgradient of the log-likelihood function.

Since the algorithm essentially performs gradient ascent
on the (regularized) log-likelihood function for w, it is
guaranteed to reach a local optimum of the original log-
likelihood `(w) if the step size is sufficiently small.

Results
We report results on the PASCAL Recognizing Textual En-
tailment (RTE) dataset, which was used in a recent challenge
on recognizing textual entailment (PASCAL RTE Chal-
lenge, PASCAL Recognizing Textual Entailment Challenge
2005)4.

The development set contains 567 examples of labeled
text-hypothesis pairs, while the test set contains 800 exam-
ples. These examples are roughly equally divided into 7
classes, with each class derived from different sources. For
example, the Information Extraction class is constructed by
taking a news story sentence and then framing a simple re-
lation entailed by the sentence. Table 1 lists some examples
from this dataset.

The RTE dataset is known to be hard – all entrants to the
challenge achieved only 50-60% accuracy on the test set.
Many of the standard information retrieval algorithms are
reduced to random guessing, pointing to the need for deeper
semantic reasoning. Further, some of the classes appear to
be significantly tougher than the others.

Experiments
We test our algorithm and some baseline algorithms:
• Random guessing: All decisions are made randomly.
• Term Frequency (TF): A standard information retrieval

style method that represents each sentence as a vector
of word counts, and finds a similarity between sentences
(text and hypothesis) using the angle between these vec-
tors. The hypothesis is assigned a “cost” according to its
similarity with the most similar text sentence. For the
RTE dataset, the method was applied once separately to
each class and again to all classes together; only the bet-
ter accuracy is reported.

• Term Frequency + Inverse Document Frequency
(TFIDF): This is the same as TF, except that each word
count is scaled so that rare words get more weight in the

4http://www.pascal-network.org/Challenges/RTE/

Algorithm RTE Dev Set RTE Test Set
Acc CWS Acc CWS

Random 50.0% 0.500 50.0% 0.500
TF 52.1% 0.537 49.5% 0.548

TFIDF 53.1% 0.548 51.8% 0.560
ThmProver1 57.8% 0.661 55.5% 0.638
ThmProver2 56.1% 0.672 57.0% 0.651

Partial1 53.9% 0.535 52.9% 0.559
Partial2 52.6% 0.614 53.7% 0.606

Table 3: Performance on the RTE datasets; CWS stands for
confidence weighted score (see footnote 5).

sentence vectors. This could potentially help match the
“important” parts of the sentences better.

• Abductive theorem prover (ThmProver): This is the algo-
rithm described in this paper. We picked the cost thresh-
old (the cost above which an example is judged not-
entailed) in two ways: in ThmProver1, we found a sin-
gle threshold for all classes; in ThmProver2, a separate
threshold was trained per class.

• Partially abductive theorem provers: To gauge the impor-
tance of our abductive assumptions, we disallow some of
the assumptions possible. Partial1 allows the logical ar-
guments to unify only according to strict (i.e., standard)
logical rules. Partial2 allows unification only when the
predicates match exactly.

We report the raw accuracy and the confidence weighted
score (CWS) in Table 3.5 Table 4 shows the performance of
the theorem prover split by RTE example class (as illustrated
in Table 1).

Class RTE Dev Set RTE Test Set
Acc CWS Acc CWS

CD 71.4% 0.872 79.3% 0.906
IE 50.0% 0.613 49.2% 0.577
IR 50.0% 0.523 50.0% 0.559

MT 53.7% 0.708 58.3% 0.608
PP 62.2% 0.685 46.0% 0.453
QA 54.4% 0.617 50.0% 0.485
RC 47.6% 0.510 53.6% 0.567

Table 4: Performance of the overall best theorem prover on
individual classes of the RTE dataset.

On the PASCAL RTE dataset, our system attains a CWS
of 0.651, which is significantly higher than that attained by
all other research groups in the competition, the next best
score being 0.617. (Our research group’s submission to the
competition, using the algorithm described in this paper and
also an additional inference algorithm, actually attained a
CWS of 0.686 in the competition, thus coming in first place

5CWS is a recommended measure for the RTE dataset.
It is obtained by sorting all the confidence values, say
{c1, . . . , cn}, and then computing the “average precision”:
1/n

P

i
(accuracy within i most confident predictions). This lies

in [0, 1] and is higher for better calibrated predictions.

AAAI-05 / 1104

on this evaluation metric.) We attribute this to the learning
procedure optimizing a likelihood function and not a raw ac-
curacy value. Our accuracy of 57% is also competitive with
the best reported results. (PASCAL RTE Challenge, PAS-
CAL Recognizing Textual Entailment Challenge 2005) (The
best reported accuracy on this test set is 58.6%, and the offi-
cial Stanford submission to the competition had an accuracy
of 56.3%.) Interestingly, the performance varies heavily by
class, (see Table 4), possibly indicating that some classes are
inherently more difficult.

The baseline accuracy is close to random guessing, and
the difference between our system performance and the
baseline performance on the test set is statistically signifi-
cant (p < 0.01). Further, the partially abductive theorem
prover versions show the utility of using abductive assump-
tions.

For practical applications such as question answering, the
end user might require that inferences be accompanied with
human-readable justifications. In such cases, the theorem
prover is especially useful, as its minimum cost proof
generally provides a good justification for its inferences.
For our simple running example, the minimum cost proof
of the hypothesis can be translated into a justification such
as the following:

“Bob bought an old car” can be inferred using the
following assumptions:

• A convertible is a car.

• “A purchased B” implies “A bought B”.

Discussion and Related Work
We have already compared our work with previous work on
logical representations of natural language and on weighted
abduction. We believe that the current work provides a
much-needed missing link by using a learning algorithm to
aid abductive inference, all over a rich feature space that uses
diverse linguistic resources.

Several dependency graph-based representations have
been used for question answering (Punyakanok, Roth, &
Yih, 2004) and for recognizing textual entailment (Raina
et al., 2005). They utilize particular graph-matching pro-
cedures to perform inferences. Since our logical formu-
lae essentially restate the information in the dependency
graph, our abductive inference and learning algorithms are
not tied to the logical representation; in particular, the
inference algorithm can be modified to work with these
graph-based representations, where it can be interpreted as
a “graph-matching” procedure that prefers globally “consis-
tent” matchings.

Table 4 shows that certain classes require more effort in
linguistic modeling, and improvements in those classes can
lead to great overall gains in performance. The current rep-
resentation fails to capture some important interactions in
its dependencies (e.g., the implication in “If it rains, then
there will be a rainbow.”). Several language resources have
sparse knowledge (e.g., antonyms in WordNet); for effective
semantic reasoning, it is desirable to have broader coverage

resources that can represent fine distinctions and similarities
in word meanings.

Acknowledgments
We give warm thanks to Aria Haghighi, Christopher Cox,
Jenny Finkel, Jeff Michels, Rion Snow, Kristina Toutanova,
Bill MacCartney and Marie-Catherine de Marneffe for help-
ful discussions on the PASCAL dataset, and for providing
many of the linguistic modules used in the experiments. This
work was supported by the ARDA AQUAINT program.

References
Collins, M. J. 1999. Head-Driven Statistical Models for

Natural Language Parsing. Ph.D. Dissertation, Univer-
sity of Pennsylvania.

Genesereth, M., and Nilsson, N. J. 1987. Logical Foun-
dations of Artificial Intelligence. San Mateo, California:
Morgan Kaufmann.

Harabagiu, S. M.; Pasca, M. A.; and Maiorano, S. J. 2000.
Experiments with open-domain textual question answer-
ing. In COLING, 292–298.

Hobbs, J. R.; Stickel, M. E.; Appelt, D. E.; and Martin,
P. 1993. Interpretation as abduction. Artif. Intell. 63(1-
2):69–142.

Klein, D., and Manning, C. D. 2003. Accurate unlexicalized
parsing. In ACL, 423–430.

Miller, G. A. 1995. Wordnet: A lexical database for English.
Commun. ACM 38(11):39–41.

Moldovan, D. I.; Clark, C.; Harabagiu, S. M.; and Maiorano,
S. J. 2003. Cogex: A logic prover for question answering.
In HLT-NAACL.

PASCAL Recognizing Textual Entailment Challenge, 2005.
http://www.pascal-network.org/challenges/rte/.

Pedersen, T.; Patwardhan, S.; and Michelizzi, J. 2004.
Wordnet: : Similarity - measuring the relatedness of con-
cepts. In AAAI, 1024–1025.

Punyakanok, V.; Roth, D.; and Yih, W. 2004. Natural lan-
guage inference via dependency tree mapping: An appli-
cation to question answering. Computational Linguistics.
In submission.

Raina, R.; Haghighi, A.; Cox, C.; Finkel, J.; Michels,
J.; Toutanova, K.; MacCartney, B.; de Marneffe, M.-C.;
Manning, C. D.; and Ng, A. Y. 2005. Robust textual
inference using diverse knowledge sources. In PASCAL
Challenges Workshop.

Resnik, P. 1995. Using information content to evaluate se-
mantic similarity in a taxonomy. In IJCAI, 448–453.

Rockafellar, R. T. 1972. Convex Analysis. Princeton Uni-
versity press.

AAAI-05 / 1105

