
Genome Rearrangement and Planning

Esra Erdem
Institute of Information Systems

Vienna University of Technology, Vienna, Austria
esra@kr.tuwien.ac.at

Elisabeth Tillier
Ontario Cancer Institute

620 University Avenue, Toronto, Canada
e.tillier@utoronto.ca

Abstract

The genome rearrangement problem is to find the most eco-
nomical explanation for observed differences between the
gene orders of two genomes. Such an explanation is pro-
vided in terms of events that change the order of genes in
a genome. We present a new approach to the genome re-
arrangement problem, according to which this problem is
viewed as the problem of planning rearrangement events that
transform one genome to the other. This method differs from
the existing ones in that we can put restrictions on the num-
ber of events, specify the cost of events with functions, pos-
sibly based on the length of the gene fragment involved, and
add constraints controlling search. With this approach, we
have described genome rearrangements in the action descrip-
tion language ADL, and studied the evolution of Metazoan
mitochondrial genomes and the evolution of Campanulaceae
chloroplast genomes using the planner TLPLAN. We have ob-
served that the phylogenies reconstructed using this approach
conform with the most widely accepted ones.

Introduction
In biology, evolutionary trees (or phylogenies) can
be reconstructed from the comparison of genomes of
species (Sankoff & Blanchette 1998). An approach to quan-
tifying the evolution of genomes from a common ancestor
is to determine the number of rearrangement events, such
as transpositions, inversions, or transversions, that change
the order of genes in a genome. The fewer the number of
such events, the closer the genomes in the phylogeny. The
genome rearrangement problem is the problem of finding the
minimum number of such successive events between two
genomes, and it is conjectured to be NP-hard. This paper
studies the genome rearrangement problem in the context of
planning.

In a planning problem, we want to find a plan—a se-
quence of actions that leads to the given goal. Classi-
cal planning is NP-hard for plans of polynomially-bounded
length (Bylander 1994). This result holds also in the pres-
ence of actions with conditional effects (Erol, Nau, & Sub-
rahmanian 1995), and temporal goals (Baral, Kreinovich, &
Trejo 2001).

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

We consider genome rearrangement as a planning prob-
lem: given two genomes and a positive integer k, find a se-
quence of at most k events that transforms one genome to
the other. We describe the planning domain and the problem
in ADL (Pednault 1989). With some heuristics expressed
in temporal logics, we use TLPLAN1 (Bacchus & Kabanza
2000) to compute solutions.

Most of the existing systems, like GRAPPA (Moret et al.
2001), consider inversions. Like DERANGE 2 (Blanchette,
Kunisawa, & Sankoff 1996), our approach can handle trans-
positions and transversions as well, possibly with some
weights. Moreover, we can specify costs of actions with
complex functions, possibly depending on the length of the
gene sequence that goes under transformation, or the num-
ber of breakpoints. Also we can put constraints on the num-
ber of transpositions, inversions, or transversions. The flexi-
bility of describing weight or cost functions, and adding con-
trol information is important in understanding the frequency
of different events and testing evolutionary hypotheses.

With this planning approach, based on the number of
events, we have generated a distance matrix for mitochon-
drial genomes of Metazoa (animals with a nervous sys-
tem, and muscles) and for chloroplast genomes of Cam-
panulaceae (flowering plants) and used a distance ma-
trix program, like FITCH and NEIGHBOR (available with
PHYLIP (Felsenstein 2004)), to construct phylogenies. We
have observed that the phylogenies constructed this way
conform with the most widely accepted ones.

We have also experimented with 100 randomly generated
genome rearrangement problems. For 51 problems, the so-
lutions computed by TLPLAN include less number of events
compared to the ones computed by DERANGE 2;2 for 33
problems, it is the other way around.

Problem Description
The genome of a single-chromosome organism can be repre-
sented by circular configurations of numbers 1, . . . , n, with
a sign + or − assigned to each of them. For instance, Fig-
ure 1(a) shows a genome for n = 5. Numbers ±1, . . . ,±n
will be called labels. Intuitively, a label corresponds to a
gene, and its sign corresponds to the orientation of the gene.

1
http://www.cs.toronto.edu/˜fbacchus/tlplan.html .

2
http://www.mcb.mcgill.ca/˜blanchem/software.html .

AAAI-05 / 1139



1 2

−5

−4

−3

−4

−3

2

1

−5

(a) (b)

5

−4

−3 −2

−1 5 −2

1

−4

−3

(d) (c)

Figure 1: (a) A genome; (b) a transposition of (a); (c) an
inversion of (b); (d) a transversion of (c).

By (l1, . . . , ln) we denote the genome formed by the la-
bels l1, . . . , ln ordered clockwise. For instance, each of the
expressions (1, 2,−5,−4,−3), (2,−5,−4,−3, 1), . . . de-
notes the genome in Figure 1(a).

Evolution of genomes from a common ancestor is studied
in terms of events, such as inversions, transpositions, and
transversions.

About genomes g, g′ we say that g′ is a transposition of g
(or can be obtained from g by a transposition) if, for some
labels l1, . . . , ln and numbers k,m (0 < k,m ≤ n),

g = (l1, . . . , ln),

g′ = (lk, . . . , lm, l1, . . . , lk−1, lm+1, . . . , ln).

For instance, the genome in Figure 1(b) is a transposition of
the genome in Figure 1(a). Given two genomes g and g′, the
problem of finding the smallest number of successive trans-
positions by which g′ can be obtained from g is conjectured
to be in NP (Bafna & Pevzner 1998).

Similarly, about genomes g, g′ we say that g′ is an inver-
sion of g (or can be obtained from g by an inversion) if, for
some labels l1, . . . , ln and a number m (0 < m ≤ n),

g = (l1, . . . , ln),

g′ = (−lm−1, . . . ,−l1, lm+1, . . . , ln).

For instance, the genome in Figure 1(c) is an inversion of
the genome in Figure 1(b). Given two genomes g and g′,
the problem of finding the smallest number of successive
inversions by which g′ can be obtained from g is in P (Han-
nenhalli & Pevzner 1995).

About genomes g, g′ we say that g′ is an transversion (or
inverted transposition) of g (or can be obtained from g by a
transversion) if, for some labels l1, . . . , ln and numbers k,m
(0 < k,m ≤ n),

g = (l1, . . . , ln),

g′ = (−lm, . . . ,−lk, l1, . . . , lk−1, lm+1, . . . , ln).

For instance, the genome in Figure 1(d) is a transversion of
the genome in Figure 1(c).

The edit distance between genomes g and g′ is the small-
est number k such that g′ can be obtained from g by k suc-
cessive inversions, transpositions, and transversions. The
problem of finding the minimum edit distance between two
genomes is conjectured to be in NP. We will call this prob-
lem the “genome rearrangement problem.”

We consider the decision problem corresponding to the
genome rearrangement problem: given two genomes g and
g′, and a positive integer k, decide whether g′ can be ob-
tained from g by at most k successive events.

In a planning problem, we are given an initial state and a
goal, and we want to find a plan—a sequence of actions that
leads to the goal from the initial state. Therefore, we view
the genome g as the initial state, and the genome g′ as the
goal state, and try to find a sequence of at most k actions,
i.e., transpositions, inversions, and transversions, that would
lead to the goal from the initial state.

Solutions as Plans
We represent a genome by specifying the clockwise order
of labels in that genome. For that we introduce a fluent
clockwise(L,L1) expressing that label L1 comes after la-
bel L in clockwise direction.

We introduce three actions to describe transpositions, in-
versions, and transversions:

• transpose(L1, L2, L) (“the gene sequence starting with
the gene L1 and ending at the gene L2 is inserted after
gene L”),

• invert(L,L1) (“the action of inverting gene sequence
starting with the gene labeled L and ending with the gene
labeled L1”), and

• transvert(L1, L2, L) (“the gene sequence starting with
the gene L1 and ending at the gene L2 is first inverted
and then inserted after gene L”).

For instance, suppose that we are given two genomes,
(1, 2,−5,−4,−3) and (1, 5,−4,−3,−2), and k = 3. In
the corresponding planning problem, the initial state is de-
scribed by one of these two genomes, say the former:

(define (initial0)
(clockwise 1 2)
(clockwise 2 -5)
(clockwise -5 -4)
(clockwise -4 -3)
(clockwise -3 1))

and the goal state is described by the other one:

(define (goal0)
(clockwise 1 5)
(clockwise 5 -4)
(clockwise -4 -3)
(clockwise -3 -2)
(clockwise -2 1))

in the language of TLPLAN, which is basically first-order
logic written in a lisp syntax. The maximum plan length k
is set to 3 by the fact:

(set-initial-facts (= k 3)) .

AAAI-05 / 1140



With the description of this planning problem

(set-goal (goal0))
(set-initial-world (initial0))

TLPLAN computes the following 3-step plan

(transvert -5 -5 1)
(transpose -4 -3 5)
(invert 2 2)

according to which the genome (1, 2,−5,−4,−3) can be
transformed to (1, 5,−4,−3,−2) as follows: first −5 is in-
verted and then inserted after 1, next the sequence −4,−3 is
inserted after 5, and finally 2 is inverted. Here, by default,
the cost of each action is 1, and depth-best-first search strat-
egy is applied. When the search criterion is set to best-first,
TLPLAN computes the following 2-step plan

(transvert -5 -5 1)
(transvert 2 2 -3) .

When the cost of a transversion is set to 2, it computes the
following 2-step plan

(transvert 2 2 -3)
(invert -5 -5) .

In such a planning problem, we can put additional con-
straints as discussed in the following sections.

Planning Domain Description
We describe each genome rearrangement event, i.e., transpo-
sition, inversion, and transversion, as an ADL-style operator
in the language of TLPLAN. For instance, a transposition is
described as follows:

(def-adl-operator (transpose ?x ?y ?z)
; preconditions
(pre (?x) (label ?x)

(?y) (label ?y)
(?z) (label ?z)
(cantranspose ?x ?y ?z))

; insertion of ?x ?y after ?z
; in (?x1,?x..?y,?y1..?z,?z1,...)
; is (?x1,?y1..?z,?x..?y,?z1,...)
(exists (?x1) (clockwise ?x1 ?x)

(?y1) (clockwise ?y ?y1)
(?z1) (clockwise ?z ?z1)
(and (add (clockwise ?x1 ?y1)

(clockwise ?z ?x)
(clockwise ?y ?z1))

(del (clockwise ?x1 ?x)
(clockwise ?y ?y1)
(clockwise ?z ?z1))))) .

The first line above describes the name of the ADL-style op-
erator. The next four lines following the comment preceded
by semi-colon describe the preconditions of a transposition:
all ?x, ?y, and ?z are labels, and the sequence starting
with ?x and ending with ?y can be inserted after ?z. Fi-
nally, the add list and the delete list are described, when
the sequence ?x..?y is inserted after ?z in the genome
(?z,?z1,...,?x1,?x,...,?y,?y1,...). Here
(cantranspose ?x ?y ?z) is defined as follows:

(def-defined-predicate
(cantranspose ?x ?y ?z)
(and

; the length of the plan constructed
; so far is less than k
(< (plan-length) (k))

(not (= ?x ?z))
(not (= ?y ?z))

; ?z is not followed by ?x
(not (clockwise ?z ?x))

; ?z is not between ?x and ?y
(notbetween ?z ?x ?y))) .

An inversion is described similarly by an ADL-style op-
erator:

(def-adl-operator (invert ?x ?y)
; preconditions
(pre (?x) (label ?x)

(?y) (label ?y)
(caninvert ?x ?y))

; change the sign of ?x
(del (label ?x))
(add (label (* -1 ?x)))

; inversion of ?x..?y in
; (?x1,?x..?z1,?z2..?y,?y1,...) is
; (?x1,-?y..?-z2,-?z1..-?x,?y1,...)

; first invert every sequence ?z1 ?z2
; in ?x..?y
(implies

(not (= ?x ?y))
(forall
(?z1 ?z2) (clockwise ?z1 ?z2)
(implies
(and (in ?z1 ?x ?y)

(in ?z2 ?x ?y))
(and (del (label ?z2))

(add (label (* -1 ?z2)))
(del (clockwise ?z1 ?z2))
(add (clockwise

(* -1 ?z2)
(* -1 ?z1)))))))

; then change the neighbors of ?x1?
; and ?y1
(exists

(?x1) (clockwise ?x1 ?x)
(?y1) (clockwise ?y ?y1)
(and

(add (clockwise ?x1 (* -1 ?y ))
(clockwise (* -1 ?x ) ?y1))

(del (clockwise ?x1 ?x)
(clockwise ?y ?y1))))) .

AAAI-05 / 1141



Similarly, we describe a transversion as an ADL-style op-
erator.

Useful Heuristics
For a more efficient computation of “good” plans, we use
some heuristics that reduce the search space, and that control
the search.

Some heuristics are expressed as a part of the precondi-
tions of actions. For instance, here are some heuristics we
consider for transpositions:

• One can insert a sequence of labels after label ?z if the
label following ?z is not “good”—it is different from the
one following ?z in the goal state:

(not (goodafter ?z))

• One can insert ?x..?y after a label, if the sequence
?x..?y is “good”—it is a subsequence of the circular
ordering described by the goal state:

(goodsequence ?x ?y)

and if ?x..?y is not a subsequence of a larger good se-
quence:

(not (goodafter ?y))
(not (goodbefore ?x))

Similarly, we extend the preconditions of an inversion and
transversions. With these heuristics, for instance, the num-
ber of world states searched to solve the planning prob-
lem corresponding to the genome rearrangement problem
for Campanula’s cpDNA (chloroplast DNA) and Tobacco’s
cpDNA is reduced by a factor of 140; the computation time
improves by a factor of 3.

Some heuristics are expressed in the first order tempo-
ral logic described in (Bacchus & Kabanza 2000). Here are
some of these heuristics:

• If the position of a label in the current state is good relative
to the goal state, then it is not allowed to be moved to
another location in the next state:

(define (control1)
(always
(forall

(?x) (label ?x)
(implies (goodposition ?x)
(next (goodposition ?x))))))

• If a gene sequence can get into its goal position with one
transposition, then we move it:

(define (control2)
(always
(implies

(exists
(?x) (label ?x) (?y) (label ?y)
(canmovetofinal ?x ?y))

(exists
(?x) (label ?x) (?y) (label ?y)
(and

(canmovetofinal ?x ?y)

(next (and
(goodposition ?x)
(goodposition ?y)
(goodsequence ?x ?y))))))))

• We say that there is a breakpoint between two genomes
if one of the genomes includes the pair l, l′ and the
other genome includes neither the pair l, l′ nor the pair
−l′,−l. For instance, there are 3 breakpoints between
(1, 2, 3, 4, 5) and (1, 2,−5,−4, 3). We ensure that the
number of breakpoints decrease at each time stamp by the
formula:

(define (control3)
(always
(exists

(?d) (pos-int ?d)
(implies
(= (breakpoints) ?d)
(next (< (breakpoints) ?d))))))

where (breakpoints) is the number of breakpoints in
the current state relative to the goal.

After expressing such temporal constraints, we conjoin them
as the search control

(set-tl-control
(and (control1)

(control2)
(control3)))) .

For instance, two thirds of the world states searched to solve
the planning problem that correspond to the genome rear-
rangement problem for Drosophila yakuba’s mitochondrial
DNA (mtDNA) and Human’s mtDNA are pruned with these
heuristics; the computation time improves by a factor of 3.

The breakpoint heuristic (control3) is used in many
existing systems (e.g., GRAPPA) to approximate the true evo-
lution; control1 is complementary to this heuristic. The
control strategy described in control2 is a “trigger” con-
trol like bbw-control1 of (Bacchus & Kabanza 2000).

Other Genome Rearrangement Problems
We can solve variations of the genome rearrangement prob-
lem by adding some constraints.

• Cost of events can be specified as part of their definitions.
For instance, we can add

(cost 2)

in the definition of transpose to express that the cost
of a transposition is 2. Alternatively, we can describe the
cost of (transpose ?x ?y ?z) by the length of the
gene sequence involved:

(cost (length ?x ?y)) .

• In addition to the constraint on the plan length, we can put
a constraint on the cost of the plan. For that, we can add

(< (plan-cost) (c))

as a precondition of operators; here c is the given maxi-
mum cost.

AAAI-05 / 1142



• We can also put constraints on the number of transposi-
tions, inversions, and transversions. For that, first we add
new function fluents nt, ni, and nti respectively, which
are initially set to 0, and then incremented by 1 at each
occurrence of the corresponding operator. For instance,
nt is incremented by 1 by including in the definition of
transpose the following lines:

(exists (?d) (pos-int ?d)
(implies

(= (nt) ?d)
(and (del (= (nt) ?d))

(add (= (nt) ?d+1)))))

Then we need to include in the definition of
cantranspose the constraint

(< (nt) (mt))

expressing that the total number nt of transpositions so
far is less than the given maximum number mt of trans-
positions.

• Another constraint can be put on the length of sequences
that go under transformations. For instance, to en-
sure that in (transpose ?x ?y ?z) the length of
?x..?y is less than 5, we can add to the preconditions of
transpose the following:

(< (length ?x ?y) 5) .

Experimental Results
As in GRAPPA, before we start searching for a sequence of
events that transforms a genome to another, we “condense”
the given genomes by identifying the common subsequences
and replacing them by some new identifiers. For instance,
consider the genomes

g = (1, 2, 3, 4, 5)
g′ = (1, 2,−5,−4, 3).

The sequence 1, 2 is a subsequence of both g and g′, so we
can replace it by some identifier, say a. Similarly, the se-
quence 4, 5 is a subsequence of g and its inversion is a sub-
sequence of g′, so we can replace 4, 5 in g by some identifier,
say b, and its inversion in g′ by −b. Thus we obtain (a, 3, b)
and (a,−b, 3). After relabeling these two circular sequences
by integers, we get two condensed genomes

h = (1, 2, 3)
h′ = (1,−3, 2).

By this way, the problem of transforming g to g′ is reduced
to the smaller problem of transforming h to h′.

We keep track of which label of the condensed genomes
stands for which gene sequence so that, after computing a
plan, we can “expand” these labels with respect to the orig-
inal gene sequences. For instance, one way to obtain h′

from h is by the event transvert(3, 3, 1), which stands for
transvert(4, 5, 2) in the original setting.

To be able to define costs of events with respect to
their length, we define a new function originalLength
which describes the length of a sequence in the original

setting. For instance, originalLength(1, 2) in h is 3,
originalLength(1, 3) in h is 5. Then, for instance, we can
express the cost of (transpose ?x ?y ?z) by

(cost (originalLength ?x ?y))

in the definition of transpose. Note that, in this case,
ensuring that the original length of ?x..?y is less than 5
may prevent finding solutions since each label ?x and ?y
may stand for a gene sequence of length greater than 5. On
the other hand, we can define the cost of transpose as

(cost
(ceil (/ (originalLength ?x ?y) 5)))

to express that each transposition of a condensed genome
stands for some number of transpositions of length at most 5
in the original setting. Here (ceil n) returns the nearest
integer greater than or equal to n.

We have experimented with two sets of data: one consist-
ing of Metazoan mtDNAs as in (Blanchette, Kunisawa, &
Sankoff 1999) and the other consisting of Campanulaceae
cpDNAs as in (Cosner et al. 2000).

For instance, suppose that the initial state describes the
mitochondrial genome of Human:

(1,−32, 17, 2, 23, 12, 3, 20, 6, 30, 7, 8, 21, 31, 24, 9,−10,
−18, 11, 33,−28, 19, 14, 34, 13, 25, 4, 22,−29, 26, 5, 35,
−15,−27,−16,−36)

and the goal state describes the mitochondrial genome of
Drosophila yakuba (an insect):

(1, 25, 2, 23, 17, 12, 3, 20, 6, 15, 30, 27, 31, 18,−19,−9,
−21,−8,−7, 33,−28, 10, 11, 32,−4,−24,−13,−34,
−14, 22,−29, 26, 5, 35,−16,−36).

Suppose that the costs cti, ct, ci of a transversion, a
transposition, an inversion are 1, 2, 3 respectively, and the
maximum numbers mti, mt, mi of transversions, transpo-
sitions, inversions are all 30. Then, with the maximum plan
length k set to 35, and the maximum plan cost c set to 70,
TLPLAN computes the following 14-step plan

(transpose 17 17 23)
(transvert -15 -15 6)
(transvert -18 -18 31)
(transvert -27 -27 30)
(transvert -32 -32 11)
(transpose 25 25 1)
(transvert -10 -10 -28)
(transvert 19 19 18)
(transvert 4 4 32)
(transvert 24 24 -4)
(transvert 14 13 -24)
(transpose 33 10 9)
(transvert 7 21 9)
(invert 9 9)

in less than 2 seconds with a depth-best-first search strategy.
Here TLPLAN examines 36 world states, and 21 of them are
pruned by temporal search control.

For each pair of Metazoan mitochondrial genomes, we
have computed a small number of events using TLPLAN,
and constructed a distance matrix. After that, we have used

AAAI-05 / 1143



the distance matrix programs FITCH and NEIGHBOR (avail-
able with PHYLIP3 (Felsenstein 2004)) to construct phylo-
genies. For instance, with the settings above, according
to the phylogeny constructed by the program NEIGHBOR,
chordates (e.g., Human) and echinoderms (e.g., sea star) are
grouped together, arthropods (e.g., insects) and nematodes
(e.g., roundworms) are grouped together, and molluscs (e.g.,
snail) and annelids (e.g., segmented worms) are grouped to-
gether; these results conform with the most widely accepted
view of metazoan systematics (Metazoa Systematics Page ).

Similarly, for the the chloroplast genomes of Campan-
ulaceae, after constructing a distance matrix based on the
results found by TLPLAN, we have computed a phylogeny
with NEIGHBOR. The groupings of chloroplast genomes in
this phylogeny are identical to the ones in the consensus tree
presented in Figure 4 of (Cosner et al. 2000).

We have also experimented with 100 random genome
rearrangement problems generated for genomes with 120
genes (similar to the chloroplast genomes above), that
involve 3 transpositions, 3 inversions, and 3 transver-
sions. We computed solutions using TLPLAN for k=18..21,
c=mt=mi=mti=20, ci=ct=cti=1, with equal weights of
events. The only other system that can handle all three kinds
of events above is DERANGE 2, so we also computed solu-
tions using it. For 51 problems, the solutions computed by
TLPLAN are more parsimonious (include fewer events) and
are closer to the true solution. DERANGE 2 performs better
in 33 of the problems and equally in 16.

We have tried to solve a simpler version of the genome re-
arrangement problem (with only transpositions of size 1 and
2) with a satisfiability planning approach (Kautz & Selman
1992) (using the planner SATPLAN4), with a heuristic-search
planning approach (Bonet & Geffner 2001) (using the plan-
ner FF5), and with an answer set planning approach (Lif-
schitz 1999) (using the answer set solver SMODELS6). We
have observed that TLPLAN performs better in terms of
computation time and space.

Conclusion
We have proposed to solve genome rearrangement problems
as planning problems, possibly using some heuristics guid-
ing the search. In our experiments with Metazoan mitochon-
drial genomes and Campanulaceae chloroplast genomes,
we observed that although we do not put tight constraints
on the number of events, useful heuristics guide TLPLAN
to compute “good” plans, and thus the phylogenies con-
structed using these plans conform with the most widely
accepted ones. In our experiments with random genome
rearrangement problems, we observed that as these con-
straints get tighter, TLPLAN computes more accurate solu-
tions. TLPLAN was used mainly because it allows us to for-
malize temporal search control as well as atemporal heuris-
tics, and to put constraints on the number of actions as well
as their costs; the results above support this choice.

3
http://evolution.genetics.washington.edu/phylip.html .

4
http://www.cs.washington.edu/homes/kautz/satplan/ .

5
http://www.mpi-sb.mpg.de/˜hoffmann/2002.html .

6
http://www.tcs.hut.fi/Software/smodels/ .

Acknowledgments
Thanks to Fahiem Bacchus for helpful suggestions on the
use of TLPLAN, and to Li-San Wang for providing us his
program to generate random genome rearrangement prob-
lems.

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logic
to express search control knowledge for planning. Artificial
Intelligence 116(1–2):123–191.
Bafna, V., and Pevzner, P. 1998. Sorting by transpositions.
SIAM Journal of Discrete Mathematics 11:224–240.
Baral, C.; Kreinovich, V.; and Trejo, R. 2001. Computa-
tional complexity of planning with temporal goals. In Proc.
of IJCAI, 509–514.
Blanchette, M.; Kunisawa, T.; and Sankoff, D. 1996. Para-
metric genome rearrangement. Gene-Combis 172:11–17.
Blanchette, M.; Kunisawa, T.; and Sankoff, D. 1999. Gene
order breakpoint evidence in animal mitochondrial phy-
logeny. Journal of Molecular Evolution 49:193–203.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2).
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence
69(161–204).
Cosner, M.; Jansen, R.; Moret, B.; Raubeson, L.; Wang,
L.; Warnow, T.; and Wyman, S. 2000. An empirical com-
parison of phylogenetic methods on chloroplast gene order
data in Campanulaceae. In Sankoff, D., and Nadeau, J.,
eds., Comparative Genomics. Kluwer Acad. Pub. 99–122.
Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1995. Com-
plexity, decidability and undecidability results for domain-
independent planning. Artificial Intelligence 76:75–88.
Felsenstein, J. 2004. PHYLIP (phylogeny inference pack-
age) version 3.6. Distributed by the author.
Hannenhalli, S., and Pevzner, P. 1995. Transforming cab-
bage into turnip (polynomial algorithm for sorting signed
permutations with reversals). In Proc. of STOC, 178–189.
Kautz, H., and Selman, B. 1992. Planning as satisfiability.
In Proc. of ECAI, 359–363.
Lifschitz, V. 1999. Action languages, answer sets and plan-
ning. In The Logic Programming Paradigm: a 25-Year
Perspective. Springer Verlag. 357–373.
Metazoa Systematics Page, The University of Califor-
nia Museum of Paleontology (http://www.ucmp.
berkeley.edu/help/index/metazoa.html) .
Moret, B.; Wyman, S.; D.Bader; Warnow, T.; and Yan, M.
2001. A new implementation and detailed study of break-
point analysis. In Proc. of PSB, 583–594.
Pednault, E. 1989. ADL: Exploring the middle ground
between STRIPS and the situation calculus. In Proc. of
KR, 324–332.
Sankoff, D., and Blanchette, M. 1998. Multiple genome
rearrangement and breakpoint phylogeny. Journal of Com-
putational Biology 5:555–570.

AAAI-05 / 1144


