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Abstract

We present a general framework for augmenting instances of
the Disjunctive Temporal Problem (DTP) with finite-domain
constraints. In this new formalism, the bounds of the tem-
poral constraints become conditional on the finite-domain as-
signment. This hybridization makes it possible to reason si-
multaneously about temporal relationships between events as
well as their nontemporal properties. We provide a special
case of this hybridization that allows reasoning about a lim-
ited form of spatial constraints; namely, the travel time in-
duced by the locations of a set of activities. We develop a
least-commitment algorithm for efficiently finding solutions
to this combined constraint system and provide empirical re-
sults demonstrating the effectiveness of our approach.

Introduction
Temporal reasoning is an important tool in many areas of
artificial intelligence, including both planning and schedul-
ing. Often times, it may be the case that temporal constraints
alone are not sufficient to represent a practical planning or
scheduling problem. For instance, if a person is to attend two
meetings that each could occur in one of several locations,
it must be ensured that adequate travel time between these
locations is reserved. Traditional temporal representations
are typically unable to express such finite-domain consider-
ations, and likewise, algorithms for temporal reasoning are
unable to ensure their consistency.

In this paper, we present a method for augmenting in-
stances of the Disjunctive Temporal Problem (DTP) (Ster-
giou & Koubarakis 1998) with finite-domain constraints.
DTPs are a particularly expressive form of temporal con-
straint satisfaction problem that subsumes Simple Tempo-
ral Problems and Temporal Constraint Satisfaction Problems
(Dechter, Meiri, & Pearl 1991). In our hybrid formalism, the
bounds of the temporal constraints become conditional on
the finite-domain assignment. This hybridization allows si-
multaneous reasoning about temporal relationships between
events as well as their nontemporal properties.

After providing the details about this combined con-
straint system, we develop a least-commitment algorithm for
efficiently generating solutions. While least-commitment
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strategies are prevalent in areas such as partial-order plan-
ning (Weld 1994), our approach is unique in that it is able to
take advantage of the linear inequalities that temporal rep-
resentations employ to express differences in time between
pairs of temporal events. We also provide a special tractable
case of this hybridization that allows reasoning about the
travel time induced by the locations of a set of activities.

It should be noted that there have been several previ-
ous projects extending temporal formalisms to account for
nontemporal considerations. Recently, the notion of a Re-
source Temporal Network (Laborie 2003) has been intro-
duced, which augments a temporal network with a number
of fluent resources, each represented by a numerical level
that changes over time. The approach in (Bockmayr &
Kasper 1998) is somewhat more closely related to our tech-
nique, as it combines integer programming and finite domain
constraints into a single framework. However, they take the
approach of constructing an expressive mixed constraint lan-
guage grounded in first-order-logic, whereas our formula-
tion instead resembles ideas found in conditional CSP liter-
ature (Mittal & Falkenhainer 1990).

A Motivating Example
Consider a faculty advisor at a major university. This ad-
visor has three students: Pete, Mark, and Julie. She would
like to set up meetings with these students to discuss upcom-
ing paper deadlines. The meetings with Pete and Mark have
already been predetermined, and now a meeting with Julie
must be scheduled.

Encoding this problem with temporal constraints (such as
those of a DTP) is fairly straightforward. In addition to the
duration of the meeting, it must be expressed that the meet-
ing with Julie cannot overlap with the meetings with Pete
and Mark. Suppose the intervals [PS , PE ], [MS ,ME ], and
[JS , JE ] represent these meetings. The non-overlap con-
straints can be written as follows:

PE − JS ≤ 0 ∨ JE − PS ≤ 0
ME − JS ≤ 0 ∨ JE − MS ≤ 0

However, there’s a problem: the advisor has two offices –
one in an administrative building (L1), and the other in a re-
search lab (L2). Furthermore, the locations of the meetings
with Pete and Mark have been restricted:

loc({PS , PE}) = L1

AAAI-05 / 1187



loc({MS ,ME}) = L2

It takes 10 minutes to get from L2 to L1, and 15 minutes
to get from L1 to L2 (since the university bus takes a slight
detour in this reverse direction). As a result, it is no longer
sufficient to maintain the same non-overlap constraints as
before – depending on where the meeting with Julie is sched-
uled, one of these two constraints must be tightened to allow
for the travel time. For instance, if the meeting with Julie is
to be at L1, the constraints would be tightened as follows:

PE − JS ≤ 0 ∨ JE − PS ≤ 0
ME − JS ≤ −10 ∨ JE − MS ≤ −15

Alternatively, if the meeting with Julie is to be in L2, a dif-
ferent tightening would be required:

PE − JS ≤ −15 ∨ JE − PS ≤ −10
ME − JS ≤ 0 ∨ JE − MS ≤ 0

To model this problem with a DTP, the location for the meet-
ing with Julie would have to be specified in advance; oth-
erwise, all possible instantiations of the meeting location
would need to be enumerated and solved as separate DTPs
until one proved to be consistent. The reason is that in a
DTP, the bounds of the linear inequalities are always held
constant. One can imagine more complicated extensions to
this example – for instance, when the location and time of
several meetings have been left only partially specified. Or,
suppose the advisor must wait for a faculty candidate to ar-
rive at L1. This waiting activity can overlap with Julie’s
meeting if the meeting is in L1, but not if the meeting is
in L2. Problems such as these can easily arise in domains
other than meeting scheduling, and demand more expressive
power than existing temporal representations allow.

Background
Finite-Domain Constraint Networks
A constraint network (Dechter 2003) is a constraint satis-
faction problem defined by a triple 〈X,D,C〉, where X =
{x1, ..., xn} is a set of variables, D = {D1, ...,Dn} con-
tains a domain Di = {v1, ..., vk} for each variable that lists
the possible values it may take, and C = {C1, ..., Ct} is a
set of constraints, where each constraint Ci is a relation Ri

defined on a subset of variables Si ⊆ X . A solution to a
constraint network is an assignment ā = (a1, ..., an) such
that each ai ∈ Di, and for each constraint Ci, the projected
assignment ā[Si] ∈ Ri.

Finite-domain constraint networks provide a powerful
means for representing many constraint satisfaction prob-
lems, and as a result, several inference and search tech-
niques have been developed for improving the efficiency of
constraint solving algorithms. However, these networks are
typically inadequate for representing and reasoning about
temporal relationships. The domains of the temporal vari-
ables often draw from the set of real numbers, which makes
search of the traditional assignment space impractical. In
response, several alternative representations (both qualita-
tive and quantitative) have been developed especially for the
purpose of temporal reasoning. In this paper we concentrate
on the quantitative variety.

Disjunctive Temporal Problems
A Disjunctive Temporal Problem (DTP) (Stergiou &
Koubarakis 1998) is a constraint satisfaction problem de-
fined by a pair 〈X,C〉, where each element in X designates
a time point whose domain is �, and C is a set of constraints
of the form (ci1∨ci2∨ ...∨cin) where each cij is a linear in-
equality xij−yij ≤ bij ; xij , yij ∈ X and bij ∈ �. DTPs are
thus a generalization of Simple Temporal Problems (STPs)
in which each constraint is limited to a single inequality. A
solution to a DTP is an assignment of values to time points
such that all constraints are satisfied.

Several algorithms have been developed for solving
DTPs (Stergiou & Koubarakis 1998; Oddi & Cesta 2000;
Tsamardinos & Pollack 2003). Typically, these algorithms
view the DTP as a collection of alternative STPs. Using this
approach, the algorithm selects a single disjunct from each
constraint of a given DTP D. The resulting set forms an STP,
called a component STP of D, which can then be checked for
consistency in polynomial-time using a shortest-path algo-
rithm (Dechter, Meiri, & Pearl 1991). Specifically, an STP is
consistent if and only if it contains no negative cycles, which
can be determined by computing the all-pairs shortest path
matrix and checking that the values along the main diagonal
are non-negative. Clearly, a DTP D is consistent if and only
if it contains at least one consistent component STP. Further-
more, any solution to a consistent component STP of D is
also a solution to D itself. Consequently, it is standard in the
DTP literature to consider any consistent component STP to
be a solution of the DTP to which it belongs.

A number of pruning techniques can be used to focus
the search for a consistent component STP of a given DTP.
These include conflict-directed backjumping, removal of
subsumed variables, and semantic branching. The DTP
solver Epilitis (Tsamardinos & Pollack 2003) integrated all
of these techniques as well as no-good recording. At the
time it was developed, Epilitis was the fastest existing DTP
solver, although it was recently surpassed by TSAT++ (Ar-
mando et al. 2004).

While DTPs offer a flexible language for expressing tem-
poral relationships, they do not provide the ability to capture
finite-domain constraints, unlike traditional constraint net-
works. To obtain the best of both worlds, we need some
way of exploiting the advantages of both representations.

Disjunctive Temporal Problems with
Finite-Domain Constraints

We define a Disjunctive Temporal Problem with Finite-
Domain Constraints (DTPFD) as a tuple 〈X,D,CT , CF 〉.
Each element Xi in X designates a pair 〈xt

i, x
f
i 〉, where xt

i is
the temporal component of Xi, and xf

i is the finite-domain
component of Xi. The set D = {D1, ...,Dn} contains a
domain Di = {v1, ..., vk} for each variable that lists the
possible values for that variable’s finite-domain component
xf

i ;the domain of each xt
i is �. CT is a set of temporal con-

straints of the form (ci1 ∨ ci2 ∨ ... ∨ cin) where each condi-
tional disjunct cij is a linear inequality

xt
ij − yt

ij ≤ Bij(x
f
ij , y

f
ij)
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L1 L2 L3

L1 0 –15 –5

L2 –10 0 –5

L3 –5 –5 0

x
y

f
f

Figure 1: The bounds matrix for the difference xt − yt.

where xij , yij ∈ X and the bounds function Bij is a map-
ping D(xf

ij) × D(yf
ij) → �. When the context is clear,

we will drop the subscripts and abbreviate the bound as B.
CF = {CF1, ..., CFt} is a set of finite-domain constraints.
A solution to a DTPFD consists of two parallel assignments
– an assignment to the finite-domain component of each
variable that satisfies the set of constraints CF , and an as-
signment to the temporal component of each variable that
satisfies the set of temporal constraints CT , whose bounds
are grounded by the finite-domain assignment.

Returning to our initial example, the set of vari-
ables is X = {PS , PE ,MS ,ME , JS , JE}. Presum-
ably, each meeting should start and end at the same
place, and so the constraint network reflects the parti-
tion P = {{PS , PE}, {MS ,ME}, {JS , JE}}. The finite-
domain constraints (CF ) in this network would thus be
{P f

S = P f
E , Mf

S = Mf
E , Jf

S = Jf
E}. The domains of the el-

ements in each equivalence class draw from different subsets
of locations:

Equiv. Class Locations
P1 = {PS , PE} D(P1) = {L1}
P2 = {MS ,ME} D(P2) = {L2}
P3 = {JS , JE} D(P3) = {L1, L2}

Finally, we consider the temporal constraints of the prob-
lem (CT ). Some of them will look like conventional DTP
constraints; for instance, if Julie’s meeting is to last 30 min-
utes, these constraints are added:

J t
E − J t

S ≤ +30
J t

S − J t
E ≤ −30

Here, each function Bij maps to a constant value, inde-
pendent of the location of Julie’s meeting. However, other
constraints are now conditional on the finite-domain assign-
ments. These new constraints are written as follows:

P t
E − J t

S ≤ B(P f
E , Jf

S ) ∨ J t
E − P t

S ≤ B(Jf
E , P f

S )
M t

E − J t
S ≤ B(Mf

E , Jf
S ) ∨ J t

E − M t
S ≤ B(Jf

E ,Mf
S )

We represent the values of the bounds in these constraints
with the bounds matrix B(xf , yf ) in Figure 1; the (r, c)th

value represents the bound B (for xt − yt ≤ B) when xf is
assigned the rth finite-domain value and yf is assigned cth

finite-domain value. For example, given the partial assign-
ment (xf , yf ) = (L1, L2), we would have xt − yt ≤ −15.
Note that we have added a location L3 that is 5 minutes from
both L1 and L2, although it so happens that this location
never occurs as a legal value for any variable’s finite-domain
component.

Solving DTPFD’s
In this section, we present three methods for solving a
DTPFD. The first is a brute-force approach that fully in-
stantiates the finite-domain components before addressing
the temporal constraints. The second takes the reverse ap-
proach, and starts by solving the temporal constraints us-
ing a least-commitment strategy. The third technique builds
on the second, but uses additional information obtained dur-
ing the temporal search to infer possible assignments for the
finite-domain components, and is thus able to prune large
regions of the search space. Such an approach resembles, at
least conceptually, many of the strategies used in constraint
logic programming (CLP) (Jaffar & Maher 1994).

A Brute-Force Approach
Since the bound on each conditional disjunct of a tempo-
ral constraint depends on the finite-domain assignments to
the variables in its scope, the most obvious method for solv-
ing a DTPFD is to first instantiate all finite-domain com-
ponents, and then solve the induced DTP (that is, the DTP
obtained by fixing all bounds relative to the finite-domain
assignment). If a solution is found, the process may stop;
otherwise, alternative finite-domain assignments will be at-
tempted until satisfiability is achieved or search is exhausted.

There are two fundamental problems with this approach.
First, it fails to take advantage of any shared structure that
may exist between two induced DTP’s generated from sim-
ilar (or even dissimilar) finite-domain assignments. Indeed,
some constraints (such as an activity’s duration) may not de-
pend on the finite-domain constraints at all. Thus, to solve
each induced DTP separately in sequence could potentially
repeat many of the same steps in search. Second, for some
types of problems, it may be the case that the number of pos-
sible finite-domain assignments is disproportionately larger
than the number of consistent component STPs, especially if
the finite-domain constraints are fairly loose (e.g, if a meet-
ing can take place in one of a hundred conference rooms).
As a result, enumeration of the finite-domain assignments
may prove to be prohibitively expensive, particularly if the
density of the temporal constraints admits no solution.

A Least-Commitment Approach
A potentially more effective method for solving a DTPFD

is to perform a least-commitment search through the tempo-
ral constraints, and consider the finite-domain assignments
only when a leaf-node is reached. By least-commitment, we
mean that for each disjunct cij in the DTPFD, the condi-
tional bound will temporarily be replaced with the constant

max
vx∈D(xf

ij),vy∈D(yf
ij)

Bij(vx, vy).

In words, we compute the largest possible bound available
for any feasible pair of assignments, and use that to create
the loosest possible constraint, which we call a weakened
disjunct. If there are |C| temporal constraints and |X| vari-
ables, the top |C| levels of this search will assign these weak-
ened disjuncts to the temporal constraints of the DTP, and
the bottom |X| levels will assign values to the finite-domain
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Solve-Temporal-Layer(AT , UT , UF )
1. If (UT = �) return Solve-Finite-Domain-Layer(�, UF , AT )
2. Ci ← select-variable(UT ), U ′

T ← UT – {Ci}
3. For each weakened disjunct cij of d(Ci)
4. A′

T ← AT ∪ {Ci ← cij}
5. If consistent(A′

T )
6. If Solve-Temporal-Layer(A′

T , U ′
T , UF ) = success

7. return success
8. return failure

Solve-Finite-Domain-Layer(AF , UF , AT )
1. If (UF = �) return Tighten-Component-STP(AF , AT )
2. Xf

i ← select-variable(UF ), U ′
F ← UF – {Xf

i }
3. For each value v of D(Xf

i )
4. A′

F ← AF ∪ {Xf
i ← v}

5. If Solve-Finite-Domain-Layer(A′
F , U ′

F , AT ) = success
6. return success
7. return failure

Tighten-Component-STP(AF , AT )
1. A′

T ← AT

2. For each (Ci ← cij) in AT

3. A′
T ← A′

T ∪ {xij − yij ≤ Bij(AF )}
4. Unless consistent(A′

T ) return failure
5. return success

Figure 2: A least-commitment approach for solving a
DTPFD

components of the variables.1 The effect of these bottom
|X| levels will be the tightening of disjuncts that compose
the component STP of the weakened DTP. The pseudocode
for this general procedure is given in Figure 2. The function
Solve-Temporal-Layer is called with AT (the set of assign-
ments from disjuncts to constraints) initialized to 	, UT (the
set of uninstantiated temporal constraints) initialized to CT ,
and UF (the set of unassigned finite-domain variable com-
ponents) initialized to contain all Xf

i . It recursively attempts
to assign weakened disjuncts to constraints, backtracking
whenever failure is encountered. At leaf nodes of this weak-
ened DTP search, the function Solve-Finite-Domain-Layer
is called to perform instantiations to the finite-domain com-
ponents. For each such instantiation, the function Tighten-
Component-STP is called in an attempt to appropriately
tighten the bounds of the currently weakened disjuncts.2

The least-commitment strategy addresses both of the con-
cerns presented in the previous section. Since a single DTP
is examined, any common structure can easily be exploited
by the search procedure. Furthermore, if the temporal con-
straints of the problem are sufficiently strong, consideration
of any finite-domain assignments will be postponed until a
promising component STP has been constructed.

1Recall that DTP solving involves selecting a disjunct for each
constraint to construct a component STP.

2This pseudocode significantly simplifies a practical implemen-
tation, since the DTP pruning techniques (such as semantic branch-
ing and removal of subsumed variables) as well as traditional CSP
techniques are not illustrated, but these are still very powerful and
should be used.

This algorithm remains slightly unappealing in one as-
pect. Despite the fact that there exists a strong connec-
tion between the temporal and finite-domain constraints, not
much has yet been done to exploit this hybridization. In
the top |C| levels of search, the various finite-domain con-
straints are, for the most part, ignored entirely, and only at
the bottom |X| levels are they considered at all. In contrast,
the most successful types of constraint hybridizations make
some attempt to share information between both sets of con-
straints while search progresses.

Forward Checking and Propagation of Bounds
Forward checking is one of the most basic mechanisms for
dead-end detection and pruning in CSPs. It works by ex-
amining the domains of all unassigned variables against the
current assignment, removing any values discovered to be
inconsistent. As is the case with most CSPs, forward check-
ing is an essential component in any DTP solving algorithm
such as Epilitis. If any disjunct of a currently uninstantiated
constraint is inconsistent with the underlying temporal net-
work, it can be removed from that constraint’s domain, and
backtracking will occur if all the disjuncts of a constraint
become obliterated. Forward checking can be performed in
O(v + |X|2) time, where X is the set of all of time points,
and v is the number of remaining legal values, if the all-pairs
shortest paths matrix is maintained and updated using incre-
mental full path consistency (Mohr & Henderson 1986).

In our combined constraint system, forward checking can
be applied to more than just the (weakened) disjuncts. Sup-
pose we have just induced the constraint PS − JE ≤ 15.
There may be entries in the bounds matrix for another dis-
junct, say JE − PS ≤ B, that are not consistent with this
new constraint. For instance, the bounds of −20 and −35
on this difference are not feasible, and such entries can be
removed from the bounds matrix.

Removing these entries alone actually has no effect on the
algorithm, since the least-commitment approach only oper-
ates on the maximum bound of any disjunct. However, con-
sider the situation that ensues when all entries in a single
row or column of the bounds matrix are deleted. In this case,
the finite-domain value associated with that row or column
is no longer available. As an illustration, consider the two
bounds matrices in Figure 3, in which we have extended our
example to include more locations. Again, suppose that the
temporal network induces the constraint PS − JE ≤ 15.
As a result, any bound for JE − PS must be at least −15.
For the left matrix, we have crossed out all inconsistent val-
ues. If the disjunct JE − PS ≤ B is part of a current meta-
CSP assignment, then the location L6 cannot be assigned to
Jf

E , nor can it be assigned to Jf
S since these are elements

of the same equivalence class. Now consider the right ma-
trix. The current maximum bound for this disjunct is 0, but
this requires Jf

S to be L6. If we propagate the constraint
L({Jf

S , Jf
E}) 
= L6, the new maximum value becomes −5.

There are several ways to make the forward checking and
bounds propagation procedures extremely efficient, such as
performing a preprocessing step to create a sorted list of the
possible bounds for each disjunct, and including a pointer to
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L2 L3 L5

L1 –15 –5 –20

L3 –5 0 –10

L6 –35 –35 –20

JE
PSf

f
L1 L3 L6

L2 –10 –5 –35

L4 –20 –25 –15

L6 –40 –35 0

ME
JSf

f

Figure 3: Forward checking of the bounds matrix can elimi-
nate location assignments

the current minimum-allowable value. We omit the details
of how to maintain these structures due to space limitations.
It should be noted that forward checking and bounds propa-
gation process must be implemented as a cyclical procedure,
since finite-domain removals and bound tightenings can di-
rectly induce additional finite-domain removals.

Partitions as a Special Case
One can expect DTPFD’s in general to be quite difficult to
solve, as they are comprised of two networks each of which
being NP-hard. When forward checking and propagation
of bounds are employed, ensuring consistency of the finite-
domain network could require exponential time in the worst
case. However, certain special cases can reduce this com-
plexity. One such case, reflected in our running example,
occurs when the finite-domain constraints over the variables
form a partition – that is, where the variables are divided into
a collection of |P | equivalence classes. Each class is con-
strained so that its members must all be given the same as-
signment from a common set of possible values, with these
being the only finite-domain constraints. Such a restriction
is reasonable for many planning and scheduling scenarios,
where the start and end of an activity must occur in the same
location. Travel time between locations, reflecting a limited
variety of spatial constraints, is still easily expressed with
this additional restriction. Thus, it is useful to define a spe-
cial case of a DTPFD, called a Partitioned DTPFD, where
a partition replaces the arbitrary constraint network. The
experimental results described in the following section are
performed on instances of this special case.

Experimental Results
In this section, we describe the results of a set of experiments
that were performed on three variations of Hybrilitis, an im-
plementation of our algorithm for solving DTPFD’s. The
three variations include: 1) the brute force algorithm that
enumerates finite-domain assignments, and checks each pro-
jected DTP separately, 2) the least-commitment algorithm
without the additional forward checking and bounds prop-
agation, and 3) the least-commitment algorithm with these
advanced mechanisms.

Typically, DTP solvers in the past have been bench-
marked by using a random generator described in (Stergiou
& Koubarakis 1998). This generator is, unfortunately, in-
sufficient for our purposes, as it does not generate the finite-
domain constraints or conditional bounds that we wish to
represent. In response, we created a generator that takes as
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Figure 4: Median computation time required by the three
algorithms

arguments the parameters 〈A,L,B, pL, pO, Cmax〉, where A
is the number of activities, L is the number of locations, B
is a bounds matrix shared by all conditional disjuncts, pL is
the probability that a location will appear in the set of al-
lowable locations for an activity, pO is the probability that
a non-overlap constraint will be enforced between any pair
of activities, and Cmax is the maximum allowable makespan
of the schedule (where in any solution, all activities must
occur between times 0 and Cmax). With the addition of the
temporal reference point, the number of time points in these
test cases is 2 ∗ A + 1. For our experiments, we used the
parameters A ∈ {8, 9, ..., 13}, L = 6, pL = 33%, and
pO ∈ {30%, 40%, ..., 90%}, and created 50 test cases for
each combination of parameter settings. The activities are
all 30 minutes in length, and entries in the bounds matrix
B range from 5 to 40 minutes of travel time (except for the
zeros along the diagonal). To ensure that all problems were
feasible yet nontrivial, we calculated the minimum possi-
ble Cmax for each test case (by running Hybrilitis multiple
times with smaller horizons until the problem became in-
consistent), and subsequently enforced this makespan for all
tests. Our implementations of Hybrilitis were developed in
Java, and our experiments were conducted on a Windows
XP machine with a 3 GHz processor and 1 GB of memory.

In Figure 4, we plot the median computation time of the
three algorithms as a function of the probability of non-
overlap pO, since this parameter influences how constrained
– and thus, how hard – the problem is. For these exper-
iments, the number of activities A was fixed at 10. Note
that the y-axis is shown on a logarithmic scale. Not sur-
prisingly, the worst of these three algorithms is the brute
force approach, which on the most constrained problems,
requires a median time of roughly 24.8 seconds. The least-
commitment algorithm does significantly better (9.17 sec-
onds), and after adding forward checking of the bounds ma-
trix, the time drops to 4.04 seconds. One can clearly see
that this difference in performance is relatively consistent
for other values of pO.
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Number of Activities
%ile 8 9 10 11 12 13

B
F

25th .031 .031 .031 .063 .219 2.30
50th .093 .125 .453 1.01 3.81 15.7
75th .219 .640 3.84 3.86 26.2 152

L
C

25th .031 .016 .031 .125 .157 .797
50th .031 .047 .125 .531 1.21 5.48
75th .063 .141 .422 3.33 10.8 69.7

L
C

+F
C 25th .031 .031 .047 .063 .125 .250

50th .031 .046 .062 .086 .250 .476
75th .032 .062 .063 .172 .797 2.19

Figure 5: Computation time (in seconds) at quartile bound-
aries for the three algorithms

In Figure 5, we fix the probability of non-overlap con-
straint pO at 50%, and vary the number of activities to eval-
uate how well these algorithms scale with problem size. We
report the computation time at the boundaries of the quar-
tiles for the 50 test cases. As an example, we found that
75% of all problems with A = 13 can be solved in un-
der 152 seconds with the brute force algorithm. While the
least-commitment algorithm reduces this to 69.7 seconds,
a more substantial drop to 2.19 seconds is achieved when
the forward checking and bounds propagation mechanisms
are enabled (almost two orders of magnitude faster than the
brute-force technique). Thus, this more advanced algorithm
is particularly good at coping with problems falling at the
more difficult end of the spectrum.

Discussion and Future Work
In this paper, we have presented a method for augmenting
instances of the Disjunctive Temporal Problem (DTP) with
finite-domain constraints. In this hybridization, the bounds
of the temporal constraints are made to be conditional on
the finite-domain assignment. We have also described a
special case of this formalism in which a partition on the
finite-domain variables is established, and have shown how
a limited form of spatial constraints can be represented with
this approach. We have introduced a least-commitment ap-
proach for efficiently reasoning about this combined con-
straint system, and have improved upon this by developing
a specialized forward checking mechanism to aid in search
space pruning. Experimental results demonstrate the effec-
tiveness of our hybrid algorithm.

As mentioned earlier, conditional bounds can express
more than simple spatial relationships such as the travel time
required between pairs of locations. A finite-domain assign-
ment can potentially have an effect on a number of other
temporal constraints. For instance, the duration of an activ-
ity such as WatchTV may range from thirty minutes to two
hours, depending on what program is being watched. In ad-
dition, there exist several generalizations that could greatly
enhance the power of the DTPFD, such as decoupling the
(currently fused) finite-domain and temporal variables, as
well as allowing the bound of a conditional disjunct to de-

pend on the entire finite-domain assignment as a whole (in-
stead of just a single pair of finite-domain components). Fur-
ther development of the expressivity allowed by this hybrid
formalism is a topic worthy of continued research.
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