
Exploiting Temporal Flexibility to Obtain High Quality Schedules

Nicola Policella
ISTC-CNR
Rome, Italy

nicola.policella@istc.cnr.it

Xiaofang Wang
The Robotics Institute, CMU

Pittsburgh, PA, USA
xiaofanw@cs.cmu.edu

Stephen F. Smith
The Robotics Institute, CMU

Pittsburgh, PA, USA
sfs@cs.cmu.edu

Angelo Oddi
ISTC-CNR
Rome, Italy

angelo.oddi@istc.cnr.it

Abstract

We consider a schedule optimization problem where each ac-
tivity to be scheduled has a duration-dependent quality pro-
file, and activity durations must be determined that maxi-
mize overall quality within given deadline and resource con-
straints. To solve this quality maximization problem, prior
work has proposed a hybrid search scheme, where a lin-
ear programming solver for optimally setting the durations
of temporally related activities is embedded within a larger
search procedure that incrementally posts sequencing con-
straints to resolve resource conflicts. Under this approach,
dual concerns of establishing feasibility and optimizing qual-
ity are addressed in an integrated fashion. In this paper, we
propose an alternative approach, where feasibility and op-
timization concerns are treated separately: first, we estab-
lish a resource-feasible partial order schedule, assuming min-
imum durations for all activities; second, these fixed dura-
tion constraints are relaxed and quality optimal durations are
determined. Experimental results indicate a tradeoff: when
resource capacity constraints are loose, the integrated hy-
brid approach performs comparably to the separated scheme.
However, in problems with tighter capacity constraints we
find that separation of concerns enables both better solving
capability and higher quality results. Following from these
results, we discuss potential synergy between problem ob-
jectives of maintaining temporal flexibility and maximizing
quality.

Introduction
(Wang & Smith 2005) brings attention to a class of qual-
ity maximization scheduling problems that is of significant
importance in the real world, but has received little atten-
tion in the research community. In many domains, the qual-
ity obtained by performing a given activity will depend on
how long it is executed, and the overall performance of the
enterprise depends on how effectively time and resources
are apportioned to various activities. News reporting, in-
telligence gathering, and new product research and devel-
opment are representative examples, where resources are
finite and results must be obtained within specified time
frames. When viewed abstractly, such quality maximiza-
tion scheduling problems are distinguished by the fact that

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

activity duration is an additional free variable. In attempt-
ing to satisfy tight resource constraints and meet dead-
lines, an activity can be scheduled for a shorter period than
might be most desirable, with a corresponding degrada-
tion in quality. Quality maximization scheduling problems
are closely related to a number of previously studied prob-
lems, including the time/cost tradeoff problem (Kelley Jr.
& Walker 1959), anytime scheduling (Dean & Boddy 1988;
Zilberstein 1993), extended deadline scheduling (Schwarz-
fischer 2003) and temporal preference networks (Khatibet
al. 2001). But quality maximization problems are different
due to the additional presence of cumulative resource capac-
ity constraints.

In (Wang & Smith 2005), a resource-constrained project
scheduling version of the quality maximization problem is
considered. A linear quality profile is associated with each
activity in the project network, which specifies the quality
of the associated activity’s output as an increasing function
of time. Taking overall quality to be the sum of the out-
put quality of each individual activity (according to their
scheduled durations), the objective is to construct a sched-
ule maximizes overall quality within given deadline and re-
source constraints. They developed a hybrid solution proce-
dure which combines two components: (1) a linear program-
ming (LP) solver for optimally setting the activity durations
of a set of temporally related activities, and (2) a precedence
constraint posting (PCP) search procedure for resolving re-
source conflicts and establishing resource feasibility. Within
this approach, the dual concerns of resource feasibility and
quality optimization are considered in a tightly integrated
fashion. The LP solver is embedded within the PCP proce-
dure and the impact of various constraint posting decisions
on solution quality is used to direct the search process. Wang
and Smith’s analysis centered on the design of search con-
trol heuristics, and they found it difficult to design a heuris-
tic that effectively balances the quality loss incurred in each
constraint posting step against the need to retain flexibility
for achieving resource feasibility.

In this paper, we propose an alternative approach to solv-
ing this problem, motivated by recent work in the develop-
ment of procedures for generating temporally flexible sched-
ules (Cesta, Oddi, & Smith 1998; 2000; Policellaet al.
2004b). Specifically, we use these results to first gener-
ate a resource-feasible, temporally flexible schedule, assum-

AAAI-05 / 1199

ing minimum durations for all project activities. Then, in a
second step, we relax these duration constraints and use an
LP solver as before to optimally “stretch” project activities.
We empirically contrast the performance of this newsep-
aratedalgorithm with the previously developedintegrated
algorithm. The new search algorithm is found to dominate
on problems with tighter resource capacity constraints.

We begin by specifying the quality maximization problem
of interest more precisely and describing the two alternative
solution approaches.

Problem Formulation
Given a project composed of a set of non-preemptive activi-
tiesV = {a1, . . . , an}, a set of precedence constraints, a set
of quality profiles and resources with limited capacity, the
problem is to determine the start timesi and the end time
ei of each activityai so as to maximize the sum of qualities
of all the activities. More precisely, assume the following
definitions:

- ri: release date for activityai,

- D: a common deadline for all the activities, i.e., the over-
all project deadline,

- qi: output quality from activityai; qi is a non-decreasing
linear and continuous function ofai’s duration with slope
ki, i.e.,qi = ki · (ei − si),

- di: minimum duration1 for activity ai,

- E: the set of edges in the precedence graph, if(i, j) ∈ E,
activity aj must start after activityai is completed,

- C: resource capacity available over the entire horizon;
without loss of generality, each activityai is assumed to
require one unit of resource.

Given a scheduleS = (si, ei)i∈V , let

A(S, t) := {i ∈ V | si ≤ t < ei}(t ≥ 0)

be the set of activities in progress at timet, also called the
active setat timet. Let

R(S, t) := |A(S, t)|
be the amount of resource used at time t. Then the quality
maximization problem can be formulated as follows:

maximize

Q =
n∑

i=1

qi =
n∑

i=1

ki · (ei − si) (1)

subject to

ei ≤ sj , (i, j) ∈ E, (2)

R(S, t) ≤ C, (3)

di ≤ ei − si, i ∈ V, (4)

1This assumption makes sense in practice because we are re-
quired to invest at least some amount of time to each knowledge
processing activity in order to guarantee basic quality.

ri ≤ si, i ∈ V, (5)

ei ≤ D, i ∈ V, (6)

(2), (3), (4), (5) and (6) are precedence, resource, min-
imum duration, release date and due date constraints re-
spectively. The multiple capacity (C > 1) version of this
problem has been shown to beNP-complete (Wang & Smith
2004).

Integrated Approach
The integrated approach to the quality maximization prob-
lem previously developed in (Wang & Smith 2005) was mo-
tivated by the observation that the un-capacitated version of
the problem in a project network is essentially the time/cost
tradeoff problem (Kelley Jr. & Walker 1959), and hence
the linear programming techniques used widely to solve this
problem could be exploited for use in solving the resource
constrained variant. In the subsections below, we summa-
rize their solution procedure and the search heuristics found
to be most effective.

The Precedence Constraint Posting Framework
Generally speaking, a Precedence Constraint Posting (PCP)
scheduling procedure iteratively transforms a time feasible
solution into a resource feasible solution by eliminating all
contention peaks. Acontention peakis a set of activities
which simultaneously requires resources in excess of the
resource capacityC over a maximal time window[t1, t2],
wheret1 is the start time of one of the activities in this peak,
andt2 is the end time of one of the activities in this peak.
A contention peak is eliminated (or levelled) by posting one
or more sequencing constraints between pairs of competing
activities in the peak. Each time a new constraint is posted,
constraint propagation is performed to update activity start
and end times, and to confirm that the solution is still feasi-
ble.

In the case of Wang and Smith’s procedure, the above
constraint propagation step was replaced by a call to the LP
solver. Thus, new “quality optimal” start times and dura-
tions are recomputed each time a new sequencing constraint
is posted, and, once all contention peaks are eliminated, the
final solution is returned. If the LP solver fails after a con-
straint has been posted, then the project network has become
over-constrained and is no longer temporally consistent. The
basic schedule generation framework is shown in Fig. 1. The
algorithm is described in Fig. 2.

Project

Network

Sub-procedure 1:

LP Optimization

Resource

feasible?

Yes
No

Sub-procedure 2:

Precedence

Constraint Posting

Return

failure

Return a schedule

Output the schedule

Input
activities

with
constraints

Figure 1: The Precedence Constraint Posting Framework

AAAI-05 / 1200

Quality-Maximizing Constraint Posting Algorithm
Input: A set of activities with constraints.
Output: A solution or failure
1. loop
2. apply LP solver to find infinite capacity optimal solution
3. if there is no temporal feasible solution
4. then return failure
5. else begin
6. detect contention peaks
7. if there is no peak
8. then return solution
9. elseconstraint posting:

sequence a pair of activities in some peak
10. end
11.end-loop

Figure 2: Quality-Maximizing Constraint Posting Algo-
rithm

Constraint-posting Heuristics
Given the greedy nature of the above algorithm, the heuris-
tics used to select which pair of activities to sequence after
each call to the LP solver play an important role in the al-
gorithm’s performance. In (Wang & Smith 2005) several
heuristics were tested and one named “Ratio-Loss” proved
to be most effective. Hence we adopt this heuristic in the
experiments reported below.

The “Ratio-Loss” heuristic uses different criteria to
choose the two conflicting activities to sequence at each step.
Given the set of activities currently in some contention peak,
the first activity chosen is the activity in this set with the
largestratio of “reducible duration” to slope. The second
activity chosen is the activity in the same peak that leads
to the minimum estimatedquality loss, and the pair is se-
quenced in the order that achieves this minimum quality
loss.

“Ratio” is defined as:

ratio =
ei − si − di

ki
,

where the reducible duration of an activity is the amount
greater than its minimum duration. The larger the reducible
duration, the greater the flexibility for future shrinking. The
smaller the slope, the smaller the possible quality loss if we
shrink this activity. As concluded in (Wang & Smith 2005),
bias toward the choice of activities with small slope and long
reducible duration strikes a good balance between the two
goals in the search: maximizing quality and retaining flexi-
bility.

“Quality loss” is a local estimation of the difference be-
tween the quality optimal values that would be obtained by
running the LP solver before and after posting the candidate
precedence constraint. Thus, the heuristic can be consid-
ered as a one step lookahead greedy search for a high qual-
ity solution. Estimation is used instead of an exact LP solver
computation due to computational cost.

Quality loss is estimated by locally calculating the dura-
tion changes of the pair of selected activities, saya andb,
with slopeska ≥ kb, start timessa andsb, end timesea and
eb, minimum durationsda anddb. Let Aloss be the quality

a a
BEFORE AFTER

db

b b

¨b

¨a

Figure 3: An Example for Quality Loss Estimation

loss due toa’s duration change, andBLoss be the quality
loss due tob’s duration change. Then

QualityLoss = Aloss + BLoss (7)

If sb − sa ≥ ea − eb, then sequencea beforeb, so

Aloss = ka ∗ [max{ea + db, eb} − eb] (8)

BLoss = kb ∗ [min{eb − db, ea} − sb] (9)

If sb − sa < ea − eb, then sequenceb beforea, so

Aloss = ka ∗ [max{sb + db, sa} − sa] (10)

BLoss = kb ∗ [eb −max{sa, sb + db}] (11)

An example used in (Wang & Smith 2005) to illustrate
this method is reproduced in Fig. 3. Becausesb − sa <
ea − eb, according to (10) and (11), the quality loss can be
estimated as follows:

Aloss = ka ∗ [sb + db − sa]

BLoss = kb ∗ [eb − sb − db]
The minimum estimated quality loss solution from obser-

vation is to sequenceb beforea, shrinkb’s duration to min-
imum duration, and shrinka’s duration a little bit to leave
enough space forb.

Solve-and-Maximize
A different way to approach the resource constrained quality
maximization problem is to separately address the two prin-
cipal difficulties it presents: first find a feasible solution and
then achieve good quality. To maximize chances of obtain-
ing a resource feasible solution in the first phase, we simplify
the problem. First we reduce the degrees of freedom in the
problem and assume that all activities will be executed for
their minimum duration. Further, to provide greater lever-
age to the PCP process in leveling conflicts, we restrict at-
tention to the earliest start time solution and concentrate on
generating a fixed-times schedule.

Once a resource feasible solution is obtained, we must
adjust our assumptions to achieve a good quality solution
in the second phase. By relaxing the constraint that all ac-
tivities must execute for their minimum duration only, we
can provide the opportunities to expand activity durations.
However, since all analysis during schedule generation was
focused on the early start time solution, there is no guarantee
that we will not reintroduce conflicts as we begin to increase
activity durations. We are still hindered by the inflexibility
of the fixed-times schedule we have generated.

To cope with this problem, the fully instantiated solution
is transformed into a Partial Order Schedule, orPOS (Poli-
cellaet al. 2004b). APOS is a graphG(V,E) where the

AAAI-05 / 1201

Chaining(P, S)
Input : A problemP and one of its fixed-times schedulesS
Output : A partial order schedulePOS
1. POS← P
2. Sort activities according to their start times inS
3. Initialize all chains empty
4. for eachactivity ai

5. k ← SelectChain(ai)
6. ak ← last(k)
7. if ¬∃(ak ≺ ai)
8. AddConstraint(POS, ak ≺ ai)
9. last(k) ← ai

10. return POSch

Figure 4: Basic Chaining procedure.

nodesV are activities and the edgesE are temporal con-
straints between pairs of activities such that any temporal
solution to this graph is also a resource feasible solution. We
obtain a Partial Order Schedule by applying a post-process
procedure calledchaining. This procedure feeds temporal
flexibility back into the fixed-times solution. In a chaining-
form representation of the schedule, activities which require
the same resource unit are linked via precedence constraints
into precedence chains. Given this structure, each constraint
becomes more than just a simple precedence. It also repre-
sents a producer-consumer relation, allowing each activity
to know which other activity will supply the unit of resource
it requires for execution. It is clear that this representation
provides temporal flexibility, allowing chained activities to
float “back and forth” and/or to execute longer than their
minimum duration.

The chaining procedure is summarized by the algorithm
in Fig. 4. The first step sorts all activities according to their
start times in the scheduleS. Then activities are incremen-
tally allocated to the different chains. The allocation of an
activity ai to a chaink amounts to adding a precedence con-
straint (if not already present) between the current last ele-
ment of the chain,ak ← last(k), andai, as well as, in up-
dating the last element of the chainlast(k) ← ai. The func-
tion SelectChain(ai) is the core of the procedure; it can
admit different definitions giving different results. A basic
implementation chooses, for each activity, the first available
chain ofrj . Given an activityai, a chaink is availableif the
end time of the last activity allocated on it,ak, is not greater
than the start time ofai (in the algorithmak ≺ ai means that
ak preceedsai, that is, the end-time ofak is not greater than
the start-time ofai). Note that since the input to a chaining
procedure is a consistent solution it will always be possible
to find the chains that a given activityai needs.

Once a Partial Order Schedule is obtained, it is possible
to expand activity durations without danger of introducing
resource conflict. In fact, the structural properties of aPOS
prevent any two activities using same resource unit from
overlapping. Of course, duration decisions must still respect
the temporal constraints defined by the partial order sched-
ule (i.e., precedence constraints, release date, bounds over
the activity durations, common deadline). But this can be
accomplished in the same manner as before, by applying the
same LP optimization to obtain durations of activities that
optimize the overall quality of thePOS.

(a) Project Network (with minimum duration).

(b) Fixed-times solution

(c) Partial Order Schedule

due datedue date

(d) Solution (maximum reward)

Figure 5: The Solve-and-Maximize steps.

Solve-and-Maximize
Input : A problemP
Output : A solutions
1. P ′ ← P ∪n

i=1 {ei − si = di}
2. s′ ←find-a-schedule(P ′)
3. POS← Chaining(P, s′)
4. s ←LPsolver (POS)
5. return s

Figure 6: Solve-and-Maximize.

Fig. 5 illustrates the different stages of the Solve-and-
Maximize solution procedure2. First an initial fixed-times
solution to the problem variant with activity durations equal
to their lower bound (step 1 in the algorithm) is computed3

(Fig. 5(b) and step 2). This solution is used as the seed
schedule for the chaining procedure (step 3). In this step,
the chaining procedure considers the original problemP (in-
stead ofP ′) in which activity durations are not fixed (s′ is
a solution for bothP andP ′). Eventually, exploiting the
temporal flexibility of aPOS, the activity durations are
stretched out to increase the final solution reward by a LP
solver (step 4). The Solve-and Maximize algorithm is given
in Fig. 6.

In the following empirical evaluation section we present
results obtained by one possible implementation of the
Solve-and-Maximize scheme. Specifically, we use the more
sophisticated chaining procedure introduced in (Policellaet
al. 2004a). In this work the authors have used an itera-
tive sampling method to increase the flexibility of the final
POS. In fact, since manyPOSs are obtainable from the
same fixed-times schedule, a more sophisticated approach
can produce more flexiblePOSs. In practice the method is
obtained by iterating the steps 3-4 of Fig. 6 and returning the

2In Fig. 5, the gray and black arrows represent the constraints
defined in the problem and those posted during the solving process
respectively.

3In the implemented method we have used theESTA algorithm
(Cesta, Oddi, & Smith 1998) as solver.

AAAI-05 / 1202

due date = 25 due date = 30 due date = 35

Integrated Approach
C=3
C=5
C=7

Solve-and-Maximize
C=3
C=5
C=7

solved npc quality

0.8% - -
88.8% 23.66 80.75%
99.2% 6.11 95.45%

31.2% 14.30 47.21%
100% 6.33 81.60%
100% 2.51 95.37%

solved npc quality

57.0% 62.03 48.51%
98.8% 24.67 79.91%
100% 6.07 95.33%

100% 13.94 50.87%
100% 6.27 81.37%
100% 2.52 95.28%

solved npc quality

95% 64.44 48.67%
100% 24.91 79.68%
100% 6.09 95.37%

100% 13.93 52.01%
100% 6.32 81.19%
100% 2.54 95.19%

Table 1: Experimental results.

highest quality solution found. More precisely, we use an it-
erative sampling variant guided by a heuristic which aims at
minimizing the interdependencies between pairs of chains4.
This heuristic further enhances the temporal flexibility of the
final chaining-form solution.

Experimental Evaluation
In this section we evaluate the relative performance of the
two algorithms just described. Same as in prior work (Wang
& Smith 2005), we generated data sets using precedence
constraints defined in a single mode resource constrained
project scheduling benchmark problem set5. We compare
the performance of the two algorithms using following mea-
sures:

1. solved (%). The percentage of problems solved.

2. npc. The average number of posted constraints in the gen-
erated solution.

3. quality (%). The average percentage quality normalized
to the infinite capacity solution. The infinite capacity so-
lution gives us an upper bound for the capacitated prob-
lem.

Regarding the Solve-and-Maximize procedure, the iterated
phase is repeated for 100 times. CPU times are not presented
here for the sake of space, but we note that the average solv-
ing time on the problems tested for both approaches is on
the order of a few seconds.

The Hardness of Different Problem Sets
For the same temporal network (i.e. the same set of prece-
dence constraints), a problem can be hardened along two dif-
ferent dimensions: by moving the common deadline earlier
or by lowering the resource capacity. To give a comprehen-
sive comparison of our algorithms, we have tested the ap-
proaches on the problems at different levels of hardness. In
particular, nine data sets of 400 problems each were gener-
ated with the combination of three resource capacity values
(3, 5, and 7) and three different due dates (25, 30, and 35) re-
spectively. Each problem has 32 activities, and 32 uniformly
distributed random integers in the range[1, 50] represent the
slopes for each problem. The release date of each activity is
an integer uniformly distributed in the range[0, 5]. Last, a

4In (Policellaet al. 2004a) it is namedH2.
5http://www.bwl.uni-kiel.de/Prod/psplib/datasm.html. File-

name:j30.sm.tgz.

uniformly distributed random integer in the range[1, 3] rep-
resents the minimum duration of an activity.

The overall performance results6 are given in Table 1.
There are three points worth mentioning here. First, for the
duedate = 25 problems, 25 of the 400 problems are known
to be infeasible. To provide a fair comparison,solvedis the
percentage of problems solved out of the feasible problems.
Second, in cases where one algorithm cannot solve all prob-
lems for a given capacity and deadline setting,quality and
constraintsare calculated based on the commonly solved
problems. Third, there are some blanks in Table 1; these
are due to the fact that the integrated approach solves much
fewer problems than the other approach, and such a small
set of commonly solved problems does not provide the rep-
resentative information we need for comparison.

Integrated vs. Separated
From an analysis of Table 1 several observations can be
made. A first observation regards the number ofsolved
problems: when resource capacity constraints are loose, the
integrated approach performs comparably to the separated
scheme under different deadline settings. However, in prob-
lems with tighter capacity constraints we find that the sepa-
rated approach performs much better.

With regard toquality, the results are more surprising.
Even though the integrated scheme takes into account the
quality goal at each step of the solving process, it turns out
to produce lower-quality schedules on most of the data sets,
and, in particular, on the hardest ones. This behavior is con-
firmed bynpc, where we can see that the separated scheme
posts fewer constraints than the integrated approach. These
results indicate that there is a synergy between the objec-
tive of maintaining temporal flexibility and that of maximiz-
ing quality. The separated scheme builds up a more flexible
schedule at the first stage. And this flexibility helps to pro-
duce better high-quality schedules in the second stage. By
attempting to consider quality maximization along the way
to generating a resource feasible solution, the integrated ap-
proach lessens its opportunities to retain temporal flexibility.

A Further Analysis on Temporal Flexibility
To further confirm our hypothesis about the utility of main-
taining temporal flexibility from the standpoint of maximiz-
ing quality, we replace the iterative chaining procedure used

6Regarding the implementation, two different libraries have
been used as LP solver: LINGO 8.0 in case of the Integrated Search
and Ilog CPLEX 8.0 in the Separated approach.

AAAI-05 / 1203

(a) AlternativePOS w.r.t. Fig. 5(c)

due datedue date

(b) Better solution w.r.t. Fig. 5(d)

Figure 7: The effects of temporal flexibility on the quality
solution.

in our previous experiments with a simpler version presented
in Fig. 4. In this simpler chaining procedure aPOS is gen-
erated using a trivial heuristic, without consideration of the
flexibility of the result. Table 2 shows the results obtained
using this chaining version. We can see that the solution
quality degrades greatly compared to the original algorithm.
In particular in the case ofC = 7, the quality values are
reduced from approximately 95% to approximately 70%.

We illustrate the importance of temporal flexibility in the
separated scheme approach by a simple example shown in
Fig. 7. Fig 7(a) presents a differentPOS for the same fixed
times schedule in Fig. 5(b). It has greater flexibility than the
POS in Fig. 5(c) (as there are fewer constraints between
pairs of chains) and thus is capable of producing a solution
of better quality (compare Fig. 5(d) and Fig. 7(b)).

quality due date = 25 due date = 30 due date = 35

C=3 46.39% 49.03% 49.88%
C=5 67.53% 67.67% 68.26%
C=7 70.03% 70.57% 71.55%

Table 2: Quality values using the simple chaining method.

Conclusions and Future Work
In this paper we described a new strategy for solving
a scheduling problem where activities have a duration-
dependent linear quality profiles, and activity durations must
be determined that maximize overall quality within given
deadline and resource constraints. Our main contribution
is an optimization procedure where resource feasibility and
quality maximization concerns are treated separately. At the
core of our solving procedure is the simple and effective
idea that temporally flexible solutions provide bettergrist
for generating higher quality schedules. After generating a
resource feasible schedule, we transform it into a temporally
flexible partial order schedule, which is then provided as in-
put to an optimizing LP solver.

We compare the proposed optimization procedure with
a previously developed procedure that takes an integrated
approach to solving the problem, attempting to minimize
quality loss in the course of generating a resource feasible
solution. Experimental results confirm that while both ap-
proaches perform comparably on easier problem sets, the
separated approach leads to better solving ability and higher
quality final solutions on problem sets with tighter resource
capacity constraints. It is clear from these results that an

ability to retain greater temporal flexibility in the schedule
promotes better quality final solutions.

We are pursuing future work in several directions. First,
we are working on a new tighter upper-bound of the ob-
jective function which takes resource capacity into account.
Next, we would like to extend our optimization procedure
to more complex variations of this scheduling problem (e.g.,
piece-wise linear profiles, multiple resource skill levels). Fi-
nally, we are interested in the possibility of some sort of
middle ground solution technique, drawing on the qualities
of both algorithms considered in this paper.

Acknowledgements. Wang and Smith’s research has been
funded in part by the National Science Foundation under
contract # 9900298 and the CMU Robotics Institute. Po-
licella and Oddi’s work has been sponsored in part by ASI
(Italian Space Agency) under the project SACSO and by the
Italian Ministry for Education, University and Research un-
der the project RoboCare.

References
Cesta, A.; Oddi, A.; and Smith, S. F. 1998. Profile Based Al-
gorithms to Solve Multiple Capacitated Metric Scheduling Prob-
lems. InProceedings of the4th International Conference on Ar-
tificial Intelligence Planning Systems, AIPS-98, 214–223.

Cesta, A.; Oddi, A.; and Smith, S. F. 2000. Iterative Flattening:
A Scalable Method for Solving Multi-Capacity Scheduling Prob-
lems. InProceedings of the17th National Conference in Artificial
Intelligence (AAAI’00).

Dean, T. L., and Boddy, M. 1988. An analysis of time-dependent
planning. InProceedings of the 7th National Conference on Ar-
tificial Intelligence, 49–54. St. Paul, MN: AAAI Press.

Kelley Jr., J., and Walker, M. 1959.Critical Path Planning and
Scheduling: An introduction. Mauchly Associates Inc.

Khatib, L.; Morris, P. H.; Morris, R. A.; and Rossi, F. 2001. Tem-
poral Constraint Reasoning With Preference. InProceedings of
the17th International Joint Conference on Artificial Intelligence.

Policella, N.; Oddi, A.; Smith, S. F.; and Cesta, A. 2004a. Gener-
ating Robust Partial Order Schedules. In Wallace, M., ed.,Princi-
ples and Practice of Constraint Programming,10th International
Conference, CP 2004, volume 3258 ofLecture Notes in Computer
Science, 496–511. Springer.

Policella, N.; Smith, S. F.; Cesta, A.; and Oddi, A. 2004b. Gener-
ating Robust Schedules through Temporal Flexibility. InProceed-
ings of the14th International Conference on Automated Planning
& Scheduling, ICAPS’04, 209–218. AAAI.

Schwarzfischer, T. 2003. Quality and Utility - Towards a Gen-
eralization of Deadline and Anytime Scheduling. InProceedings
of the13th International Conference on Automated Planning &
Scheduling, ICAPS’03.

Wang, X., and Smith, S. F. 2004. Generating Schedules to Max-
imize Quality. Technical Report TR-04-25, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA.

Wang, X., and Smith, S. F. 2005. Retaining Flexibility to Max-
imize Quality: When the Scheduler Has the Right to Decide Ac-
tivity Durations. InProceedings of the15th International Con-
ference on Automated Planning & Scheduling, ICAPS’05.

Zilberstein, S. 1993.Operational rationality through compilation
of anytime algorithms. Ph.D. Dissertation, Computer Science Di-
vision, University of California at Berkeley.

AAAI-05 / 1204

