
Planning for Stream Processing Systems

Anton Riabov and Zhen Liu
IBM T.J. Watson Research Center

P.O. Box 704, Yorktown Heights, New York, 10598
riabov@us.ibm.com, zhenl@us.ibm.com

Abstract

With the advent of compositional programming models in
computer science, applying planning technologies to auto-
matically build workflows for solving large and complex
problems in such a paradigm becomes not only technically
appealing but also feasible approach. The application areas
that will benefit from automatic composition include, among
others, Web services, Grid computing and stream processing
systems. Although the classical planning formalism is ex-
pressive enough to describe planning problems that arise in a
large variety of different applications, it can pose significant
limitations on planner performance in compositional appli-
cations, in particular, in stream processing systems. In this
paper we extend the classical planning formalism by intro-
ducing new language constructs that support the structure of
stream processing domains. Exposing this structure to the
planner can result in dramatic performance improvements:
our experiments show exponential planning time reduction in
comparison to most recent metric planners.

Introduction
Today, powerful computers and high-bandwidth communi-
cation are becoming increasingly affordable, stimulating the
growth of high-performance distributed computing. At the
same time, recent software development tools and technolo-
gies, including open communication protocols and compo-
sitional programming models, are paving the way for the ar-
rival of large-scale component-based software architectures,
such as web services. In such complex environments it is
likely that the same service can be obtained from different
components, or from various combinations of the compo-
nents. The end users or programmers, who would need to
assemble the components in order to accomplish their goals,
will inevitably be overwhelmed by the possibilities.

There have been increasing research efforts on methods
for automatic goal-driven composition of workflows from
information processing components. These composition
problems are naturally related to planning. Indeed, a se-
quence of decisions must be made in order to choose and
interconnect components such that the resulting processing
system satisfies a specified goal.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Planning methods have been successfully applied to Web
service composition, Grid computing, and deployment of
component-based software (for some examples see (Doshi
et al. 2004), (Blythe et al. 2003), (Kichkaylo, Ivan, &
Karamcheti 2003) and references therein). In this work it
is typically assumed that two components can be connected
once one component can accept as input the type of data pro-
duced at the output of the other component, i.e. if there is an
exact matching between the input and the output types.

In the classical planning formalism, the preconditions and
the effects of the actions are specified in terms of glob-
ally defined predicates and fluents. This model is expres-
sive enough to describe planning problems stemming from a
wide variety of applications. Motivated by the need of build-
ing the workflows automatically in compositional computer
systems and applications, we present an extension of this
classical planning formalism. We extend this approach by
adding planning language constructs that can describe mul-
tiple input and output ports of a component, thus partitioning
the flat description of action preconditions and effects into
data streams flowing into and out of the action. The data
streams are described by predicates, and we assume that the
actions compute predicates on output streams based on the
predicates on input streams. Based on these ideas we de-
signed a planning language referred to as Stream Processing
Planning Language (SPPL). While we extend the classical
planning formalism to capture the structure of stream pro-
cessing problems, SPPL formalism is strictly more general
than the classical one: if each processing component has ex-
actly one input and one output, the stream planning problem
is equivalent to the classical planning problem.

We consider the following variant of the planning prob-
lem, which is applicable to stream processing systems,
as well as to many other workflow composition applica-
tions. In stream processing domains an action represents
a stream processing component that produces one or more
new data streams from several existing ones. The data flow-
ing through the streams are described with a set of predi-
cates on the streams, and these predicates are used to spec-
ify goals, preconditions and effects. The processing com-
ponents can have multiple inputs and multiple outputs. For-
mally, we will say that the component exposes multiple in-
put ports, and multiple output ports, and a stream can be
connected to each port. Each input port is associated with a

AAAI-05 / 1205

Pr
im

al
st
re
am

s

G
oa

ls

Figure 1: An example of stream processing workflow.

precondition written in terms terms of the predicates bound
to the streams connected to it, and each output port has the
effect of initializing predicates bound to the output stream.
In the initial state only the primal streams are available.
These are the streams that come into the system from out-
side. When all input ports of a component are connected
to streams, the component produces one output stream for
each of the output ports, by filtering, annotating, or other-
wise analyzing and transforming the information it receives.
Once a stream is produced by one of the components, and
the predicates bound to the stream are initialized, the in-
put ports of any number of other components can be con-
nected to that stream. At the same time, none of the com-
ponents can modify already existing and initialized stream.
The goal of the workflow is to produce a number of output
streams requested by the user. Each of the goal streams is
described with a logical condition on the predicates bound
to the stream, similarly to input port preconditions. The so-
lution to the planning problem is a workflow, which we also
call a plan graph (Figure 1).

We have made several attempts to formulate stream pro-
cessing planning problems in PDDL (see (Ghallab et al.
1998) for definition of this planning language) and gener-
ate plans using the best available metric planners. However
the fact that each action makes its output streams available
for all subsequent actions makes the problem very difficult
for traditional solvers. Specifically, actions need to produce
predicates about an object that has not been previously ini-
tialized, and this condition turns out to be difficult to express
in PDDL. On the other hand, each stream can be described
with the same set of predicates, which can greatly simplify
planning, provided the planner can take advantage of this
property. Our experiments have shown that the extended for-
malism of SPPL gives significant advantage to the planner,
and even simple planning algorithms using this formalism
perform much better than the best of traditional planners on
common and general examples.

In what follows we describe and analyze the SPPL for-
malism in detail, and describe experiments that demonstrate
the performance advantages of the proposed formalism.

Stream Processing Planning Language
Traditional planning languages assume that actions are ap-
plied to the global state of the world, described by pred-
icates. In contrast with this assumption, in distributed
stream processing systems each of the processing compo-
nents works only with the data it receives on incoming
streams. Furthermore, descriptions of all streams have the

same structure: stream descriptor of a stream can be seen as
one object instance of a general stream description class.

Actions in SPPL
Since each processing component can receive more than one
input stream, and produce more than one output stream,
for each of these streams preconditions and effects must be
specified independently. In our planning language we will
represent each processing component by an action that has
multiple input and output ports, to which the streams can be
connected. Correspondingly, the traditional action descrip-
tion is extended as in the following example:
(:action A
:precondition [in1] (and (P1)(P2))
:precondition [in2] (and (P3)(P2))
:precondition [in3] (and (P5)(P6)(P7))
:effect [out1] (and (P4)(P6))
:effect [out2] (and (P2)))

In this example in1, in2, and in3 are the names of the in-
put ports, and out1, out2 are the names of the output ports.
The predicates P1, P2, . . . , P7 describe properties of the
streams. The exact set of the properties is determined by
the application. For example, assume that the predicate P2
is used to mark video streams. Then, according to the ac-
tion declaration above, ports in1 and in2 of the action above
must be connected to video streams, and port out2 will pro-
duce a video stream. Other predicates on the stream may
contain additional information about the stream, for example
whether this video stream has close captioning, or whether
it is encoded with MPEG-2 or MPEG-4.

Semantically this SPPL action is similar to the following
PDDL action, assuming that the variables ?in1, ?in2, ?in3
are bound to already existing streams, and ?out1, ?out2 are
bound to two distinct and uninitialized streams:
(:action A
:parameters (?in1 ?in2 ?in3 ?out1 ?out2)
:precondition (and (P1 ?in1)(P2 ?in1)

(P3 ?in2)(P2 ?in2)
(P5 ?in3)(P6 ?in3)(P7 ?in3))

:effect (and (P4 ?out1)(P6 ?out1)
(P2 ?out2)))

Above, for each predicate from the SPPL formulation we
have introduced a parameter that corresponds in PDDL to
a stream object described by the predicate. The assump-
tion we made above about assigning output port variables
to uninitialized streams can be enforced in PDDL by mak-
ing use of an auxiliary predicate that evaluates to true in the
initial state:
(:action A
:parameters (?in1 ?in2 ?in3 ?out1 ?out2)
:precondition (and

(notDefined ?out1)
(notDefined ?out2)
(P1 ?in1)(P2 ?in1)(P3 ?in2)(P2 ?in2)
(P5 ?in3)(P6 ?in3)(P7 ?in3))

:effect (and
(not (notDefined ?out1))
(not (notDefined ?out2))
(P4 ?out1)(P6 ?out1)(P2 ?out2)))

Assigning output to previously unused streams is impor-
tant for modeling workflow composition problems correctly.

AAAI-05 / 1206

In stream processing, each component creates new output
streams, and these streams, once created, are never modi-
fied or removed from the workflow by other components.
Therefore, SPPL actions should not change properties of
any streams that existed before the action was applied, and
should create new streams instead. While this rule is known
to the SPPL planner natively, domain-independent PDDL
planners require additional predicates, as well as precondi-
tions and effects defined in every action definition, to ensure
that action effect applies to previously unused streams.

Merging of Input Predicates
In the model that we described above, the predicates that
are not listed in the effect statement, will always be false
on the stream connected to the output port, independently of
corresponding input predicate values. However, in stream
processing domains output predicates often depend on the
input predicates. For example, a component that processes
video may preserve closed captioning, if it was contained
in the input stream. Therefore, SPPL must define formulas
for computing the output predicate values, that at least allow
some predicates to propagate from the input streams to the
output streams.

Extending PDDL formalism to single input, multiple out-
put case is straightforward: it is sufficient to specify effects
for each of the outgoing streams. Effect statement will spec-
ify only the changes that must be applied to predicates on
the input stream in order to compute the output stream pred-
icates, and the rest remains unchanged. But what happens if
one of the actions has more than one input, and same predi-
cate evaluates to true only on a subset of the input streams?
In our previous example, action A, if the predicate P5 is true
for the input streams connected to the ports in1 and in3, but
is false for in2, what should the value of P5 be on the output
stream out1? What about P5 on out2?

In general, the syntax developed for conditional effects in
PDDL can be used to specify the formulas for computing
output predicates based on the input predicates. However,
this approach would require the enumerating all propagated
predicates in every effect statement. Since we expect predi-
cate propagation to be very common, it can be unreasonable
to assume that in the formulation we can list the names of
many predicates in each action definition.

For these reasons, in our current implementation of SPPL
we distinguish between two categories of predicates: the
predicates that will be propagated from input to output, and
the predicates that will not be propagated. The second cat-
egory of predicates follows the model described in previous
subsection.

We further subdivide the predicates that fall within the
first category into two groups that we call AND-logic and
OR-logic. The predicates are assigned to groups during
problem formulation based on the condition required for the
predicates to be propagated from the inputs to the outputs. A
predicate from the AND-logic group must be true on all in-
put streams of an action in order to be propagated and set to
true on the output. A predicate belonging to OR-logic group
will be propagated to the output if it evaluates to true on at
least one input stream. Addition and deletion lists in the ac-

tion effect statement are applied after the propagation rules.
Note that once the decision to apply the action is made, the
choice of propagation rule for each predicate is independent
of the action, and only depends on the predicate itself.

The AND-logic group contains predicates that can be re-
quired by a precondition or a goal expression to be true on
every stream in the workflow that leads to satisfying the con-
straint. Predicates in the OR-logic group can be used for
describing stream properties that can satisfy the precondi-
tion as long as they are present on one of the input streams.
Non-propagating predicates can be used to implement sim-
ple input-to-output matching in cases when the output of the
action can be determined independently of the input.

Optimization Metrics in Stream Processing
Many researchers have considered planning domains where
a resource metric is used as a minimization objective during
construction of the plan. For example, the planning algo-
rithm described in (Kichkaylo, Ivan, & Karamcheti 2003)
considers the characteristics of the underlying hardware net-
work, on which the software stream processing components
are deployed and make deployment decisions based on re-
source availability in the network. Due to the anticipated
large number of processing components and the need for
more expressivity in specifying action effects in our model
we decided to decouple the planning and resource allocation
problems, and solve them separately.

In the current implementation we assign a scalar resource
cost to each action. The optimization objective in this setting
is the sum of costs of all actions used in the workflow. This
resource model roughly corresponds to scheduling all pro-
cessing components on the same processor and minimizing
utilization of the limited processor resource. Alternatively,
it can be seen as minimization of the cost associated with
implementing the plan, given the cost of performing each
action.

Complexity and Expressivity of SPPL
If each action has one input and one output, the problem
of finding a legal plan becomes equivalent to finding a le-
gal plan in STRIPS domain, which is known to be PSPACE
(Bylander 1992), and therefore the problems of finding the
optimal or feasible plan are at least as hard.

The non-metric version of the problem has a polynomial
solution, if the predicates are not propagated from input to
output, i.e. AND-logic and OR-logic groups are empty. The
metric version, that is NP-hard in general, is polynomially
solvable under this conditions, if in addition every action
has single input and single output.

The expressivity of our model, as defined in (Nebel 2000),
is at least that of STRIPS and less than that of planning mod-
els with general conditional effects, since for any STRIPS
problem a corresponding formulation for stream planning
can be constructed, and since the values of the output predi-
cates are computed using restricted merging formulas.

The advantage of using stream planning formulation di-
rectly, instead of constructing a PDDL formulation first,
solving it, and later converting the solution back to streams

AAAI-05 / 1207

and stream processing components, lies in the added effi-
ciency that the search algorithm can gain from the additional
structure explicitly specified in the SPPL formulation. The
approach of translating SPPL to PDDL using variables to
identify streams, as described in Section m will likely cause
a metric PDDL planner to generate at least O(N !) candidate
plans for each unique candidate workflow graph of length
N due to the symmetry in assigning stream objects to action
parameters. Although methods for detecting different types
of symmetries in general planning domains are known (Fox
& Long 2002), SPPL makes the symmetry explicit and sim-
plifies the planner’s task by ensuring that the planner has the
most complete knowledge of problem structure.

Planning Algorithm
We have implemented a general branch-and-bound proce-
dure for solving the problem, which allows us to experiment
with different search methods for finding optimal plans.
Branch and bound is a standard approach to solving combi-
natorial problems, and it has been shown to be a successful
method for solving planning problems.

Currently, the backward search (from the goal) is imple-
mented: at each branching node a goal is chosen from the set
of available nodes, and is connected to an existing primal or
derived stream or to a newly instantiated action. If an action
is instantiated, the input ports of the action are registered as
new goals to be satisfied at the next step. The preconditions
of the action in combination with the constraints on the out-
put of the action are used to specify the new goal constraint
for each of the inputs. The search tree is pruned if the cost
of partial workflow exceeds the bound on cost, defined by
the current solution or by problem constraints.

The algorithm gains additional efficiency from precom-
puting pairs of commutative actions and considering only
one of the two possible orderings in the pair, therefore
achieving the same effect as GraphPlan (Blum & Furst
1995). This is a stream equivalent of applying the commuta-
tive actions in parallel, extending this approach to the more
general stream planning scenario. Potential conflicts (mu-
texes) are precomputed as well, and for each input port a lists
of compatible actions is constructed. These lists are further
filtered during branching according to the revised goals.

Experiments
We performed numerical experiments to study the perfor-
mance benefits of our formalism. In these experiments we
compare the performance of our planner to the performance
of Metric-FF (Hoffmann 2003) 1 and LPG-td (Gerevini,
Saetti, & Serina 2004). We have chosen these planners be-
cause they have demonstrated top performance among met-
ric solvers in the International Planning Competition (in
2002 and 2004 resp.), and were available for evaluation.

In our experiments we generated a simple instance of the
stream processing planning problem, and formulated it in
both PDDL and the extended planning language. We then
varied the size of the example and measured the time it

1In our version of Metric-FF we have increased the maximum
number of predicates and actions to 200 from the default value 50.

took each of the planners to find the solution. We have
constructed the examples that represent elementary plan-
ning problems that are likely to occur (in combinations) in
practical stream processing planning scenarios. Therefore,
the performance demonstrated by Metric-FF and LPG-td on
these examples is indicative of the performance on signifi-
cantly more complex problems that arise in practice.

All planners were run in sequence on the same 3.0 Ghz
Pentium 4 computer with 500 megabytes of memory. For
the same problem size, performance of the same planner
can vary due to the randomness in problem instance gen-
eration and the random decisions taken by the planner (for
example, LPG-td employs random restarts). Therefore we
measured the average planning time on 15 randomly gener-
ated instances for each problem size. The experiments were
terminated if the running time exceeded 10 minutes.

Generating Stream Planning Problems
The problem instances are constructed by first generating
a flow graph: a random binary in-tree rooted at the goal
stream, in which nodes have 2 incoming links with proba-
bility 0.3. For each arc in this tree we assign a unique pred-
icate that is created as an effect of the action corresponding
to the tail node, and require the same predicate in the pre-
condition of the action associated with the head node. The
predicate produced by the root is listed in the goal require-
ments. This assignment of predicates mimics the stream data
type compatibility constraints. It ensures that the generated
flow graph can be reconstructed during planning.

The leaf nodes in this tree are actions corresponding to
the data sources. The data sources are the generators of the
primal streams. They do not require any specific inputs and
can be inserted in the plan at any time. However, while reg-
ular actions can appear in the plan multiple times, at most
one instance of each data source can be included in the plan.
This condition may be enforced directly by the planner, as
in our implementation, or via a global predicate.

To specify optimization criteria, we have generated two
random numbers for each node of the flow graph: the re-
source utilization and the quality contribution.
(:action N1i0 ...
:effect (and (increase (cost) 111)

(increase (quality) 81) ...))

For stream processing elements, both numbers follow Gaus-
sian distribution with mean 100 and standard deviation 20.
For sources, the mean quality is 1000 with deviation 200,
and resource utilization constant 0. We have specified the
sum of resource utilization numbers as the metric for mini-
mization, and a minimum value for the sum of quality values
as a goal constraint:
(:metric MINIMIZE (cost))
(:goal (and (>= (quality) 5110) ...))

The total plan quality is computed as the sum of quality val-
ues assigned to planned actions. The quality metric roughly
corresponds to the profit from investment in resources.

Additional effort is needed to prevent traditional planners
from constructing plans that generate unused streams. Since
the plans corresponding to the generated instances have in-
tree structure, we can require that each generated stream is

AAAI-05 / 1208

connected to the goal or to one of the input ports. To enforce
this we used a predicate defined on stream objects indicating
whether the stream is in a valid state (i.e. both ends of the
stream are connected or the stream objects is not used). At
the goal all stream objects must be in a valid state.

Important feature of stream processing is the functional
dependency of output predicate sets on input predicates of
the actions. To illustrate this, we have included one pred-
icate that follows AND-logic during propagation. Condi-
tional effects make it easy to write the AND formula that
computes the value of output stream predicate based on the
values corresponding to the incoming streams:
(:action N3i0
:parameters (?in1 ?in2 ?out - stream)
...
:effect (and ...

(when (and (catA ?in1) (catA ?in2))
(and (catA ?out)))))

Of the two planners that we evaluated, only Metric-FF al-
lows conditional effects. For LPG-td we translated this ac-
tion into two actions. One action required the predicate on
both input streams in the precondition and created the pred-
icate on the output stream, and another did not require or
produce the predicate. The stream planner can recognize
and support AND-logic natively, based on the declaration of
the predicate as an AND-logic predicate.

First Scalability Experiment
There are multiple ways to encode stream planning prob-
lems in PDDL. We begin with evaluating the simplest encod-
ing that maps one stream processing action to a single PDDL
action, provided that conditional effects are supported.

In our encoding we use action parameters to refer to
stream objects connected to inputs and outputs of the action.
Since each stream processing action produces new stream
objects without changing existing ones, each output stream
object must be instantiated for the first time. In problem defi-
nition we declare sufficient number of stream objects (twice
the number of actions), and initialize (notDefined ?s)
predicate for each object. This predicate is removed once
the stream object is used in effect of an action.

The following example illustrates this encoding. Consider
the stream processing action:
(:action N1
:precondition [in1] (and (T1))
:precondition [in2] (and (T2))
:effect [out] (and (T3)))

The corresponding PDDL action will be:
(:action N1
:parameters (?in1 ?in2 ?out - stream)
:precondition (and

(notDefined ?out) (T1 ?in1) (T2 ?in2))
:effect (and

(not (notDefined ?out)) (T3 ?out)))

The following table shows the results of the experiments.
The first column contains the number of actions in the plan
and the other columns contain the minimum, maximum and
average running time in seconds for all planners that we
tested. Column titled Stream corresponds to our SPPL plan-
ner implementation. In the table, “*” indicates that the solu-
tion was not found after 10 minutes, and “#” indicates that

the solver terminated abnormally due to insufficient memory
or other reasons. In this and other experiments the timeouts
were often caused by thrashing that occurs when planners
allocate and use more memory than is physically available.

Plan Stream Metric-FF LPG-td
size min avg max min avg max min avg max

5 0.1 0.5 2.6 0.1 0.3 1.1 0.5 1.8 4.2
7 0.1 0.1 0.3 0.1 * * 1.5 75.2 267.0
9 0.1 0.1 0.2 0.2 * * 36.1 * *

11 0.0 0.1 0.1 0.5 * * 345.4 * *
15 0.1 0.1 0.1 * * * # # #
25 0.1 4.1 10.0 * * * # # #
50 4.3 7.5 9.8 # # # # # #

500 8.5 10.4 15.0 # # # # # #

In this experiment we generated trivial stream planning
problems, which have a single feasible plan. Moreover, find-
ing this plan is trivial due to the unique matching of input
and output predicates on each link. However, starting from
just 11 actions, the planning problem becomes hard to solve
for Metric-FF and LPG-td. We believe that the reason for
such poor performance is excessive enumeration of different
assignments of stream objects to stream variables, caused by
the PDDL encoding. In the next experiment we modify the
encoding to help planners avoid this enumeration.

Improved Scalability Experiment
The previous encoding allowed the planners to substitute
different stream objects in action parameters, generating ex-
ponentially many alternative variable assignments. To help
planners avoid this inefficiency we can assign fixed stream
objects to the output stream variables. This can be achieved
by defining unique predicate on the stream object and in-
cluding that predicate in the precondition of the action:
(:action N1
:parameters (?in1 ?in2 ?out - stream)
:precondition (and

(notDefN1 ?out) (T1 ?in1) (T2 ?in2))
:effect (and

(not (notDefN1 ?out)) (T3 ?out)))

Then, at the initialization, the predicate notDefN1 is de-
fined only for one stream name: (notDefN1 S1). How-
ever, this approach allows to use action N1 at most once. To
allow multiple instances of the same action within one plan,
we generate multiple copies of each action with different
stream objects connected to output streams.

Two copies of each action are generated in this experi-
ment. The table below summarizes experiment results.

Plan Stream Metric-FF LPG-td
size min avg max min avg max min avg max

5 0.0 0.1 0.2 0.0 0.1 0.3 0.3 0.4 0.7
11 0.0 0.1 0.1 0.2 10.7 56.6 0.5 1.0 2.3
15 0.1 1.1 2.8 46.0 * * 0.9 12.7 19.8
19 0.1 1.8 4.9 * * * 1.5 19.8 25.7
30 0.3 1.1 2.5 * * * 12.8 29.8 57.5
35 0.3 10.2 29.9 * * * 329.0 * *
50 0.1 6.7 13.5 # # # # # #

500 8.4 9.9 12.5 # # # # # #

Experiment shows that this encoding can indeed improve
performance of the traditional planners, and the effect is es-
pecially noticeable in LPG-td. However, the problems of
size above 50 can only be solved by stream processing plan-
ner. We employ this encoding in our following experiments.

AAAI-05 / 1209

Growing Action Set Experiment
In this experiment we considered a scenario in which there
exist exactly 2 candidate plans, each composed of 6 actions.
The planner must choose the best plan based on resource and
quality characteristics. To scale the problem we generated
actions that do not participate in candidate plans.

The first column in the table below shows the number of
stream processing actions generated. The number of PDDL
actions is higher due to the expansion during translation.

Stream Stream Metric-FF LPG-td
actions min avg max min avg max min avg max

18 0.1 0.1 0.3 0.2 * * 0.8 5.4 31.8
27 0.1 0.1 0.1 0.4 * * 1.2 6.0 25.4
39 0.1 3.2 8.1 2.3 * * 4.6 47.2 147.8
45 0.3 6.8 11.0 3.7 * * 27.0 * *
51 5.4 7.5 11.5 5.4 * * 56.4 # #
57 5.5 7.8 10.0 57.1 * * # # #
75 5.5 7.1 10.9 # # # # # #

312 6.1 7.3 8.9 # # # # # #
1512 34.8 36.7 42.9 # # # # # #

This experiment shows again that the stream planning for-
malism allows our planner to scale much better than the tra-
ditional planners: it can solve problems of 1500 actions in
under 40 seconds, while it takes the other planners more than
10 minutes to solve problems of just 57 actions.

In practice the problems are likely to exhibit this structure,
having small optimal plan size together with a large number
of actions that are not used in the solution. The assumption
of only 2 candidate plans is too strong to hold in practice.
We will address this issue in our next experiment.

Resource/Quality Tradeoff Experiment
In our last experiment we study how well our planner can
scale with respect to the size of the problem, if the choice
of action is not trivial, and the number of plan candidates
is large. We generate a single plan graph for each problem
instance. For each non-leaf node of the graph we now gen-
erate two alternative actions that have the same input and
output requirements, but different resource and quality val-
ues. Constructing the optimal plan now requires choosing
one of the alternatives in each of the nodes.

Plan Stream Metric-FF LPG-td
size min avg max min avg max min avg max

5 0.1 0.2 0.3 0.1 0.1 0.2 0.4 0.5 0.8
9 0.1 0.3 0.5 0.2 * * 0.9 1.2 1.9

11 0.3 0.7 1.1 0.5 * * 1.5 3.1 15.8
15 2.3 5.1 9.3 * * * 5.1 11.1 35.5
19 13.7 46.6 71.4 426.6 * * 49.9 * *

This combinatorial search problem quickly becomes hard
for our simple implementation, but it still has advantage over
Metric-FF and LPG. We conclude that even in complex prac-
tical problems the structure expressed in SPPL is likely to
lead to performance improvements, since simple binary tree
graphs commonly appear as sub-graphs in the solution.

Conclusion
In this paper we investigated the application of planning
for automatic construction of stream processing workflows,
the new and important area of planning applications. We

found that an extension of the classical planning formal-
ism targeted towards stream processing planning problems
can contribute to significant improvement in planner per-
formance. This new formalism is flexible, backward-
compatible with the classic formalism, and can be used in
many automatic workflow composition applications.

We see two general directions in which our work can
be further extended. First, more sophisticated and efficient
planning algorithms can be developed for this formalism.
We have implemented a simple backward search algorithm,
and nevertheless were able to demonstrate advantages of the
approach. However, there is a need in more efficient algo-
rithms due to typically large sizes of these planning prob-
lems. Because SPPL extends classical planning, most of the
heuristics and bounds developed for classical planning can
be extended or applied directly in this framework. Second,
the stream planning formalism we proposed can be enriched
to include such PDDL extensions as conditional effects and
functions computed on streams. The language we use for de-
scribing stream processing domains can be easily extended
to incorporate corresponding statements.

Acknowledgments
We thank our colleague Genady Ya. Grabarnik for the assis-
tance and valuable insights that he provided to us in prepa-
ration of this work. We also thank the anonymous reviewers
for their very helpful comments and suggestions.

References
Blum, A. L., and Furst, M. 1995. Fast planning through
planning graph analysis. In Proc. IJCAI-95, 1636–1642.
Blythe, J.; Deelman, E.; Gil, Y.; Kesselman, K.; Agarwal,
A.; Mehta, G.; and Vahi, K. 2003. The role of planning in
grid computing. In Proc. ICAPS-03.
Bylander, T. 1992. Complexity results for serial decom-
posability. In Proc. AAAI-92.
Doshi, P.; Goodwin, R.; Akkiraju, R.; and Verma, K. 2004.
Dynamic workflow composition using Markov decision
processes. In Proc. ICWS-04.
Fox, M., and Long, D. 2002. Extending the exploitation of
symmetries in planning. In Proc. AIPS-02, 83–91.
Gerevini, A.; Saetti, A.; and Serina, I. 2004. Planning in
PDDL2.2 domains with LPG-TD. In International Plan-
ning Competition, ICAPS-04.
Ghallab, M.; Howe, A.; Knoblock, C.; and McDermott, D.
1998. PDDL. The planning domain definition language.
Technical Report DCS TR-1165, Yale Center for Compu-
tational Vision and Control.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state vari-
ables. Journal of AI Research 20:291–341.
Kichkaylo, T.; Ivan, A.; and Karamcheti, V. 2003. Con-
strained component deployment in wide-area networks us-
ing AI planning techniques. In Proc. IPDPS-03.
Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. Journal of AI Re-
search 12:271–315.

AAAI-05 / 1210

