Learning Measures of Progress for Planning Domains

SungWook Yoon Alan Fern Robert Givan
Electrical & Computer Engineering Computer Science Department Electrical & Computer Engineering
Purdue University Oregon State University Purdue University
West Lafayette, IN 47907 Corvallis, OR 97331 West Lafayette, IN 47907
sy@purdue.edu afern@cs.orst.edu givan@purdue.edu
Abstract to construct grioritized-ensemble heurististhere we se-

_ o _ lect the action that is able to improve the highest-priority
We_study an approach to I_earnlng heuristics for plannlng do- property, while preserving higher-priority properties.
mains from example solutions. There has been little work on Here, we are not directly interested only in characterizing

learning heuristics for the types of domains used in determin- timal traiectori but v in | ing th
istic and stochastic planning competitions. Perhaps one rea- ~ OPtUMmaltrajectories, but more generally in iearning the ap-

son for this is the challenge of providing a compact heuristic parent strategy underlying a set of training trajectories. If we
language that facilitates learning. Here we introduce a new assume the training trajectories were themselves generated

representation for heuristics based on lists of set expressions by seeking to maximize some prioritized-ensemble heuris-
described using taxonomic syntax. Next, we review the idea tic, we can hope to recover that heuristic. More generally,

of ameasure of progregfarmar 2002), which is any heuris- though, we seek to find heuristics that enable us to achieve
tic that is guaranteed to be improvable at every state. We performance similar to that of the training trajectories.

take finding a measure of progress as our learning goal, and When a heuristic has the property that it can always be
describe a simple learning algorithm for this purpose. We increased in one step, then it constitutegrang measure of

evaluate our approach across a range of deterministic and . b .
stochastic planning-competition domains. The results show progressn the sense of Parmar (2002). This is a desirable

that often greedily following the learned heuristic is highly property for any heuristic and we take finding such a heuris-
effective. We also show our heuristic can be combined with tic as our learning goal. Our empirical results demonstrate
learned rule-based policies, producing still stronger results. that this learning goal results in useful heuristic.

It is a straightforward result that strong measures of
) progress exist for any deadlock-free domain, if one is will-
Introduction ing to represent them as explicit state-to-predicate-extension
Good plans can often be understood as seeking to achieveMappings, simply encoding the distance to the goal. Here,
specific subgoals en route to the goal. In an object-oriented We are interested in finding implicitly and compactly repre-
view, these subgoals, along with the goal itself, can be seen Sénted mappings, which may not exist in all planning do-
as properties of objects, where in each case we wish to in- Mains for any given representation language. It is an as-
crease the number of objects with the given property. Tak- Sumption of our approach that such compactly represented
ing this view, we consider control knowledge in the form of Mappings can usefully if not completely characterize the
compact descriptions of object classes that a controller is to training trajectories. It is important to note that our learned

select actions to enlarge. For example indBKSWORLD, heuristics may not have the strong guarantee required for
in an optimal trajectory, the number of blocks “well placed” Parmar’s definition—however, as we demonstrate, the prac-
from the table up never decreases. Or indisTICSthe tical benefits for planning can still be significant.

number of solved packages never decreases in optimal plans. Here we give a compact representation for heuristic func-
Good trajectories also often exhibit locally monotonic tions using a class-description language to describe a pri-
properties: properties that increase for local periods, but not Oritized sequence of class expressions, each expression de-
all the time during the trajectory. InIBCKSWORLD, con- noting a set of objects in a given state. Given a state, a se-
sider a block “solvable” if its desired destination is clear and duence of class expressions induces a vector of class occu-
well placed from the table up. Then, in good trajectories, Pancies, which we treat as lexicographically ordered; by this
while the number of blocks well placed from the table up Means, a sequence of class expressions can be treated as a
stays the same, the number of solvable blocks need never de-heuristic for selecting actions. In our example above, the se-
crease locally; but, globally, the number of solvable blocks duence (“well-placed blocks”, “solvable blocks”) represents
may decrease as the number of blocks well placed from the the idea that as long as the number of well-placed blocks

table up increases. Sequences of such properties can be use@hanges, we don't care about a decrease in solvable blocks,
but otherwise we do. Given a set of training trajectories,

Copyright © 2005, American Association for Artificial Intelli- we provide a machine-learning approach to acquiring a se-
gence (www.aaai.org). All rights reserved. guence of taxonomic classes, giving a prioritized-ensemble

AAAI-05 /1217

heuristic that approximately increases along the training tra-

jectories. We treat such a heuristic as a strong measure oftion that maps planning problems to actions.

progress with respect to the training trajectories, though it
may only approximately satisfy Parmar’s definition.
In our empirical work, we learn from machine-generated

Policies. A policy 7 is a (possibly stochastic) func-
That is,
a policy takes as input a current state and goal condi-
tion and selects an action, ideally an action that takes
us closer to the goal. Given an initial problets, g),

trajectories and evaluate the usefulness of our learned mea-a policy = can generate #&ajectoryof states-goal-action
sures in two ways. First, we consider the learned measurestriples((so, g, ao), (s1,9, a1), (s2, 9, a2) ...), wherea; =

of progress directly as the sole control knowledge by choos-

7((si,g)) ands;11 = T'[s;, a;]. When the planning domain

ing the action that results in the best expected value on the and/orr are stochastic we get a distribution over trajectories
progress measure, breaking ties randomly. We show that starting fromsy. We say that a trajectory is golutionto a

this simple approach outperforms previous learned control
policies for the setting where the only training data is trajec-
tories. Previous techniques (Martin & Geffner 2000; Yoon,
Fern, & Givan 2002) which reduce control-knowledge learn-
ing to supervised classification perform poorly unless pro-
vided with the set of all “good” actions at each state. Sec-

ond, we show that performance can be further enhanced by

combining the learned measures of progress with policies
learned via previous techniques, using the policies only to
break ties in the measure of progress (in place of random
tie breaking). In each case, we show results in a variety of
deterministic and stochastic planning domains.

We are not aware of prior work on learning heuristic func-

tions for planning domains such as those used in determin-

istic and stochastic planning competitions. The most suc-
cessful previous work (Huang, Selman, & Kautz 2000; Sam-
mutet al. 1992; Morales & Sammut 2004; Khardon 1996;
Martin & Geffner 2000) on learning control knowledge for

such domains from trajectories, uses control knowledge rep-
resented via action selection (and sometimes rejection) rules

rather than as heuristic functions, conditioning only on the

current state. Our approach is able to learn knowledge that

selects actions in part by considering their effects explicitly,
which our experiments show can be beneficial.

Problem Setup

Planning Domains. A planning domairis a tupleD =
(P,Y,0,T,G). Here,P is a set of state predicates, is a
set of action types, an@ is a domain set of objects. étate
factis an instance of a predicate i applied to objects in
O (e.g., In(Box1,Truckl)), and stateis simply a finite set
of state facts. Amctionis an instance of an action type¥n
applied to objects i) (e.g., Load(Box1,Truckl)). The sets
P, Y, andO implicitly define the state space of all states
and the action spac# of all actions.

T is a transition function that mags x A to “next state”
distributions overS, so thatT'[s, a](s’) gives the probabil-
ity of transitioning to state’ after taking actior in states.

In our system, we compactly represdntusing the proba-
bilistic STRIPS-like language PPDDL (Younes & Littman
2004). We will sometimes tredf’ as a stochastic func-
tion, where the call'[s, o] returns a state’ with probability
T[s,a](s"). G is a randomized problem generator that out-
puts planning problems according to some distribution. A
planning problenis simply a pair(s, g) of an initial states
and a set of state factsrepresenting the goal regidn.

10ur experiments include the AQCORED BLOCKSWORLD
where goals have existential variables. We handle this in an ad-

planning problensy, g) iff there is ani such thay C s,.

Measures of Progress

Prioritized Heuristics. Throughout we assume the context
of a planning domaiD = (P,Y,0,T,G). A heuristicis
simply a mapping from planning problems (i.e., state-goal
pairs) to a totally ordered set. Typically, a heuristic re-
turns a number that is interpreted as a distance-to-goal esti-
mate. Rather, in our work, we consider prioritized heuristics

whose ranges are vectors. A prioritized-ensemble heuristic

is an ordered list' = (Fi,...,F,) where each compo-
nentF; is a function from planning problems to reals. The
output of a prioritized heuristic is, thus, a vector of reals.
We compare vectors using theioritized dominanceela-
tion -, defined such that for two real-number sequences
N = (Ny,...,Ny) andM = (Mi,...,M), N = M
iff there exists an such thatV; > M; and for allj < i,
N; = M;. Prioritized-ensemble heuristics provide a useful
decomposition for defining heuristics in terms of local prop-
erties of a planning domain, as described in the introduction
section. In addition, as described in the learning section be-
low, there are natural techniques for learning such heuristics.
Given a prioritized-ensemble heuristie, we define
a corresponding stochastic polieyr that will be used
for planning according to the heuristic. For any given
planning problem(s, g), 7r((s,g)) returns a random ac-
tion chosen from the set argmai[F'((T'[s, a], g))], where
the maximization is relative to- and E[F(X)]
(E[F1(X)],..., E[F,(X)]). The expectation is calculated
using the transition moddl’ provided by our planning do-
main. Our empirical goal is to learn & such thatrr can
be executed quickly and gives good planning performance.
Measures of ProgressA desirable property for a heuris-
tic is that at any state there should be an action that leads to
an (expected) improvement in its value. Heuristics with this
property were calledtrong measures of progrdssParmar
(2002). Here we extend Parmar’s definition, which was for
deterministic domains, to stochastic planning domains.
Definition 1 (Strong Measure of Progress). Let F
(F1,...,F,) be an ordered list where eadh is a function
from planning problems to integers. is a strong measure of
progress for planning domaim iff for any reachable prob-
lem (s, g) of D, eitherg C s or there exists an actioa such
that E[F((T[s,a],)] = F({s.9)).
This definition requires that for any non-goal state there
is an action that increases (in expectation) sdevhile

hoc way by immediately grounding such variables to objects that
satisfy static properties (e.g. color) of these variables in the goal.

AAAI-05 /1218

maintaining the preceding, higher-priority components, cor-
responding to Parmar’s definition for deterministic domains.

A strong measure of progress exists for any deadlock-free

domairt; e.g., taking— F to be the expected solution length
of an optimal policy. In addition, in deterministic domains,
if one always selects actions that lead to an increask in
then a solution will always be found in at ledst actions.

e.g.,con(z,y) represents that is “correctly on"y, that is,
x is ony in both the goal and the current states.

Given a planning problenis, g) and class expressiafi,
it is easy to compute the set of objects that are represented
by C'in (s, g), denoted byC(s, g). If C is a one argument
predicate therC(s, g) denotes the set of objects thatis
true of in (s, g). Expressions of the forrikR C') denote the

While this worst case bound is extremely loose, in prac- image of the objects in clags under relationk—e.g., n
tice useful measures of progress can be defined that lead togclear) represents the set of blocks that are currently on a
short solution lengths. In particular, taking the measure of block that is supposed to be clear in the goal. The expres-
progress to be the (expected) distance to the goal will result sion (min R) denotes the class of minimal elements under
in optimal planning. Of course, using such a measure is not relation R (viewing R as a partial order). The expression
practical since in general it cannot be computed efficiently. R* denotes the reflexive, transitive closure of the relafion
Rather, we are typically interested in measures that can be See Yoon, Fern, & Givan (2002) for the complete semantics.
computed efficiently, yet lead to “good enough” plans. Taxonomic Prioritized Measures. Recall that a pri-
One contribution of this paper is to show that useful oritized measure of progress is a sequence of functions
prioritized-ensemble heuristics can be learned by focusing F = (Fi,..., F,) from planning problems to numbers. In
on the goal of satisfying the strong-measure-of-progress this work, we parameterize prioritized measures by a se-
property with respect to the training data. Alternatively, an- quence of class expressiois = (Ci,...,C,) and de-
other approach to learning heuristics is to use a function fine the corresponding prioritized measurefyy((s, g)) =
approximator in order to learn an estimate of the distance- (|C(s,g)l,...,|Cn(s,g)|). That is, each individual mea-
to-goal function. However, our experience indicates that, sure corresponds to a count of the objects in a certain class.
for benchmark planning domains, learning such estimatesis For example, in the BOCKSWORLD consider the mea-
difficult and so far has not led to good performance. sure of progress described by the sequelicg, Cs)
where C4 (con* con-table) and C; = (gon (clear N
con* con-table))). C; the higher-priority property, is the
set of blocks well placed from the table up, afid is the

Representing Measures of Progress

It is often natural to measure progress in a planning domain . . - :
by counting the number of objects with a certain property. set of “solvable” blocks. This measure, pr_efers to increase
For example, in bGISTICS problems it is desirable to in- the number of well-placed blocks. When improvi6g is
crease the number of objects in their final destinations, or NOt possible, the measure will prefer to take actions that in-
perhaps to increase the number of objects in a plane that créase the number of solvable blocks, while preserting

need to go to the plane’s destination. In this section, we first
describe how to represent such properties using a taxonomic
syntax for first-order logic. Next, we describe how to repre-
sent prioritized measures of progress using this syntax. tized measures of progress in the taxonomic representation

Taxonomic Syntax. Following Yoon, Fern, & Givan described in the previous section. In particular, given a
(2002) our class language is an extension of taxonomic syn- planning-domain definition and a set of solution trajectories
tax (McAllester & Givan 1993), a first-order language for of problems from the domain, we output a list of taxonomic
representing sets or classes of objects using class expres<lass expressions, defining a prioritized measur€: that
sions. Our language is defined by can be used for subsequent planning in the domain.

. . An underlying assumption of our approach is that the ac-
C == C |athing [~C [(R C) [CNC | (minR) tion selections in the training trajectories can be explained
R:=Ry|R'|RNR|R"

as trying to improve an unknown prioritized measure of

. . progress. Furthermore we assume that this measure can
Here C' and i are class expressions and relations respec- pe compactly represented using our taxonomic syntax rep-
tively. a-thing represents the set of all objects; isanyone resentation. Our learner then attempts to uncover the un-
argument predicate from our planning domain, &dsany ynown measure of progress by analyzing the trajectories. In
binary predicate from the domain. Predicates in the dpmqm our experiments, we use trajectories generated by domain-
of three or more arguments are represented with multiple in- jhqenendent planners and humans, and these assumptions
troduced auxiliary binary predicates. Also, includedip will typically not be met exactly. Nevertheless, we show em-
and R, are new copies of each predicate symbol, which are irically that useful measures of progress can be discovered
used to represent the desired goal; egglear(x) represent
thatx is clear in the goal. We also include new predicates

from these sources, leading to good planning performance.
representing that a goal fact is satisfied in the current state

Learning
In this section we describe a method for learning priori-

_Learning Algorithm. The raw input to our algorithm
'is a planning domainD = (P,Y,0,T,G) and a set of
2In general a planning domain ékeadlock freéff for all reach- tr,a]eCtO”es‘] = {J1. s Jm} _Whe”_a each/; is a fi-
ableplanning problems there is a sequence of actions that can reach Nite sequence of state-goal-action triples. We defirte
the goal with non-zero probability. A problefs, ¢) is reachable be the multi-set of all state-goal-action triples.jn We
iff G can generate a problefso, g) such that there is some action ~ say that a triple(s, g, a) is coveredby a class expression
sequence with non-zero probability of reachinfyom so. C, if |C(s,9)] # E(|C(T[s,al,g)|). In the case where

AAAI-05 /1219

|C(s,9)| < E(|C(T[s,al,g)|), we say that the triple ipos-
itively covered otherwise if|C(s, g)| > E(|C(T[s,al, 9)|)

the example isiegatively coveredOur learner searches for
sequence of class expressighs= (Cy,...,C,) such that

the corresponding prioritized measufeis approximately a
strong measure of progress with respect to the training data.
That is, for each state-goal-action trigle g, a) in the train-

ing dataE[F:((T[s,al,g))] = Fe({s,g)). This requires
that each training example is positively covered by sdme
and is not negatively covered by a@y with j < i.

Our algorithm, shown in Figure 1, searches for class ex-
pressions in the order of highest to lowest priority, similar
to Rivest-style decision-list learning (Rivest 198Zgarn-
Prioritized-Measure starts with an empty list of classes and
then searches for the first class expresgignby calling
Find-Best-Measure Intuitively, this search attempts to find
a C, with no negative coverage that positively covers many
training instances. For instances that are positively covered
by C1, the strong measure of progress condition is satisfied.
For the remaining instances, we still need to find lower prior-
ity class expressions that positively cover them. For this pur-
pose, we remove from the training set any instances that are
covered byC; and search fof’s again by calling-ind-Best-
Measure The algorithm repeats this process of removing
instances fronJ and finding new class expressions until all
of the instances are removed, Kind-Best-Measureis un-
able to find a “good enough” class expression.

The routing=ind-Best-Measuresearches for a good class
expression via a heuristically-guided beam search over a re-
stricted space of class expressions. In particulaiClebe
the set of all intersection-free class expressions of depth at

Learn-Prioritized-Measures (J, b, d)
/I state-goal-action triple§, beam widthb, depthd
C «— nil;

while |J] > 0
C’ « Find-Best-MeasurgJ, b, d);
if H(J,C") >0
C = appendC, C’); /laddC’ atend
J « remove-covered, C’);
elseReturn C'
Return C;

Find-Best-Measure(J, b, d)
B « {a-thing}; H* «— —o0;
repeat
G=BU{C'NCy | Cy, € B,C' € Cyq}
B = beam-sele¢(, J, b); /I select besb concepts
C* — argma, c s H(J, Cs);
if (H(J,C*) = H") thenReturn C*;
H* — H(J,C");

Figure 1:Pseudo-code for learning prioritized measure

least are not selected by our learner. However, X IEOD-
ING BLOCKSWORLD this problem did appear to arise and
hurt the performance of measures alone as policies. Rule-
based policy learning combined with measures overcame
this problem, as shown in the experimental section.

There are a number of possible approaches to dealing with
this pitfall, which we will pursue in future work. For exam-
ple, one idea is to generate a set of random (legal) trajecto-

mostd. The beam search conducts a search over longer and'ies and reward class expressions that can apparently distin-

longer intersections of class expressions selected fgm
attempting to find a concept with high positive and low neg-
ative coverage. The beam widitand maximum deptt are
user specified and webe= 5, d = 3 in our experiments.

Our beam-search heuristic is weighted accuracy. Given
a set of training tripleg and a class expressiaf, let p
andn be the number of positively and negatively covered
instances inJ respectively. Our heuristic value is given by
H(J,C) = p — wn. The parametev is chosen by the user
and trades off positive and negative coverage. In our experi-
ments, we use = 4. We performed limited evaluations of
other more sophisticated heuristics (for example those stud-
ied in Furnkranz & Flach (2003)), but none appeared to per-
form significantly better than weighted accuracy.

Pitfalls. An assumption of our technique is that the train-
ing trajectories depict good planning performance and that
our learner is able to uncover a measte that approxi-
mately captures the behavior. One shortcoming of our cur-
rent algorithm is that it can be fooled by properties that
monotonically increase along all or many trajectories in a
domain, even those that do not solve the planning problem.

For example, consider a domain with a class expression

guish between the random and training trajectories.

Experiments

Procedure. We evaluated our learning approach in both
deterministic and stochastic domains. Our determinis-
tic domains included the three domains from test suite
1 of the 3rd International Planning Competition,ED
POTS ZENOTRAVEL, and DRIVERLOG, along with two
domains that have been used in previous work on learn-
ing rule-based policies, IBDCKSWORLD and LOGISTICS

Our stochastic domains included>CoRED (and WNCOL-
ORED) BLOCKSWORLD, EXPLODING BLOCKSWORLD,

and BoxwoRLD, which come from the 1st International
Probabilistic Planning Competition (IPPC-1) held in 2004.
For our deterministic domains, we generated training tra-
jectories using the planner FF (Hoffmann & Nebel 2001).
For stochastic domains, we generated trajectories accord-
ing to a human-written policy. From the generated trajecto-
ries, we learned a prioritized-ensemble measure of progress.
For comparison we also used the system described in Yoon,
Fern, & Givan (2002) to learn rule-based policies from tra-
jectories. The rule-based policies are simply lists of rules of

whose extension never decreases and frequently increaseghe form “If a condition is true then take a certain action”.

along any trajectory. Our learner will likely output this class
expression as a solution, although it does not in any way dis-
tinguish good from bad trajectories. In most of our experi-
mental domains, such properties do not seem to exist, or at

Figure 2 summarizes the problem sizes used for both
training and testing in each domain. Each evaluation mea-
sured the success ratio (SR) (fraction of solved problems)
and average solution length (AL) gblvedproblems on a

AAAI-05 /1220

set of randomly drawn problems, using a solution time limit completely distinguish good actions from not so useful ac-
of 2000 cpu seconds. In addition to evaluating the learned tions. On inspection, we found that the solution trajectories
measures and rule-based policies in isolation we also evalu- from the measures often include random actions that do not
ated thecombined policywhich selects an action randomly appear to make progress, yet do not destroy progress. In
from the actions that both maximize the learned measure and other words, the trajectories include bits of non-destructive
are suggested by the policy. If the intersection is empty, then wandering in between actions that make real progress.
the combined policy selects an action according to the mea- In deterministic domains, a potential remedy for this
sure. problem could be to use FF's search techniquerbrced
We conducted 20 trials in each domain, each involved hill-climbing (Hoffmann & Nebel 2001), which conducts a
drawing 20 training problems, generating the corresponding breadth-first search for a path to a state where the heuristic
trajectories, learning a measure of progress and rule-basedmakes progress. The resulting path is then included in the
policy, and then evaluating the results. Figures 3 and 4 show plan, which may often be significantly shorter than the paths
the averages over the trials. Each row corresponds to a sin-found by the non-destructive random wandering. We also
gle planning domain. The second column gives the (SR) note that the ability to simply find a plan quickly is valuable,
and (AL) of the learned rule-based policy. The third and as post-processing techniques could conceivably be devel-
fourth columns gives the same information for the learned oped to prune away wasteful action sequences—e.g. work
measures and the combined policy respectively. The final has been done on learning plan re-write rules for simplifying
column gives the performance of FF on the test distribution. sub-optimal solutions (Ambite, Knoblock, & Minton 2000).
Trajectories from the rule-based policies are qualitatively
Deterministic Domains different. Typically, the policies select actions that appear
Success Ratio. For all deterministic domains except 0 make progress, but sometimes select destructive actions
DRIVERLOG the learned measures lead to relatively good (undoing progress), eventually resulting in failure. By com-
success ratios, indicating that our learned measures of bining the rule-based policies and measures we can filter out
progress are indeed Capturing useful notions of progress. We the_se destructive actions but also reduce the amount of wan-
believe that the primary reason for the relatively poor perfor- dering observed for the measures. As the results show, the
mance in DRIVERLOG is that our concept language (which ~ combination typically achieves the success ratio qf the mea-
is also used by the rule-based policy learner) is not expres- sure and the average length of the rule-based policy.
sive enough to capture the key concept of “path”. Comparing to Prior Work. For benchmark planning
The success ratio of the measures are generally superiordomains, the most successful prior work on learning poli-
to the rule-based policies. We believe that the relatively poor Cies from trajectories produce rule-based policies. Khardon
success ratio of the rule-based policies is due to the fact the (1999) learns rule-based policies from only trajectories,
training examples don't completely separate good actions Without providing the sets of all good actions. Khardon
from bad actions. That is, each state in the training data (1999) reports experiments inLBCksWORLD and Lo-
is only labeled by a single action and the learner tries to GISTICS yielding 0.56 SR for 20 blocks, and 0.59 SR for
find rules that select those actions and avoid selecting other 20 packages respectively, which are similar to our rule-
actions. In reality a single training state may have many based policy learner and worse than our learned measures of
equally good actions, and the particular action that ends up Progress. Martin & Geffner (2000) learns rule-based poli-
in the training set is largely arbitrary. For example, in the cies from trajectories, but requires that the set of all optimal
BLOCKSWORLD there are often many blocks are equally actions be provided for each state, thus using more infor-
good to pick-up. The rule-based policy learner will try to mation than we are here. Martin & Geffner (2000) reports
avoid selecting the good actions that are not in the training €xperiments in BocksWoRrLD yielding 0.75 SR for 20
data, making the learning problem quite difficult. blocks, which is better than our rule-based learner but worse
Prior rule-based policy learners (Martin & Geffner 2000; than our learned measures. Thus, our learned measures out-
Yoon, Fern, & Givan 2002) have avoided this difficulty by ~Pperform the SR of the most closely related previous work in
labeling training data with all good actions. However, this the domains they considered. _
information is not always available. Comparably, when =~ Comparing to FF. Compared to FF, the combined
learning measures of progress, as long as the trajectories ex-measures and rules win in two domainsgr®Ts and
hibit monotonic properties then it is not important which ac- BLOCKSWORLD, and lose in three domains,0lGIsTICS
tion of the good actions appear in the training data. Thatis, DRIVERLOG, and ZENGTRAVEL. Thus, for some domains,
measures of progress can be invariant to the specific action We can learn measures from FF trajectories that allow us (in
used to make progress since they capture information about Combination with rules) to outperform FF on large problems.
what the action does. Rather, rule-based policies focus on . .
information about where an action is applied not the effects. Stochastic Domains
In this sense learning measures of progress appears moreFor stochastic domains, we compared our results to FF-
natural when our training data consists of only trajectories. Replan, the overall winner of IPPC 2004. FF-Replan deter-
Average Length. The rule-based policies achieve a sign- minizes a stochastic domain using the most likely outcomes
ficantly better AL than the learned measures. That is, when for each action, and solves the resulting deterministic do-
the rule-based policy solves a problem it typically finds a main, replanning using FF whenever an “unexpected” out-
shorter solution, suggesting that the learned measures do notcome occurs. The learned measures substantially improve

AAAI-05 /1221

Domains | Training Problem Size Testing Problem Size
Depots | 2 depots, 2 distributors 2 depots, 2 distributors
6 crates 12 crates
Driverlog 3 junctions, 3 drivers 3 junctions, 8 drivers
6 packages, 3 trucks 10 packages, 8 trucks
ZenoTravel | 5 cities, 2 planes 6 cities, 3 planes
8 persons 20 persons
Block 10 blocks 20 blocks
Logistic 1 plane, 3 cities, 3 locations| 1 plane, 3 cities, 3 locations|
10 packages 20 packages
(Un) Colored
Blocksworld 10 blocks, 5 colors 20 blocks, 5 colors
Exploding 5 blocks 10 blocks
Boxworld 5 boxes, 5 cities 5 boxes, 10 cities
Figure 2:Domain Sizes
Domains Rules Measures R+M FF
Depots 0.30 (40) | 0.84 (90) | 0.90 (51) | 0.85(75)
Driverlog 0.40 (58) 0.47 (188) 0.60 (67) | 0.95(35)
ZenoTravel | 0.98 (35) | 0.90 (85) | 0.98 (34) | 1.00(27)
Block 0.58 (59) 0.94 (83) 0.87 (59) | 0.84(62)
Logistics 0.40 (110) 0.89 (168) 0.92 (109) | 1.00(91)

Figure 3:Deterministic Domains

on the SR of both FF-Replan and the rule-based policies
in two of the four domains, again with an increase in plan
length. In BoxwoRLD, FF-Replan outperforms all of the
learned knowledge. As for RVERLOG, above we believe
that this is due to inadequate knowledge representation.

In the EXPLODING BLOCKSWORLD the rule-based pol-
icy significantly outperforms the learned measure in SR, ex-
posing a weakness of our learning technique noted earlier. In
particular, in this domain the set of “detonated” blocks never

decreases and frequently increases. Thus, the number of det-

onated blocks is a monotonic property that is learned by our
system, and thus following our learned measure will tend to
detonate blocks whenever possible. However, blindly deto-
nating blocks in this domain is dangerous as it can destroy
the table. As discussed earlier there are a number of exten-

sions to our basic approach to address this issue. We note

that the EXPLODING BLOCKSWORLD was one of the most
difficult domains from IPPC-1, and the combined rules and
measures achieve a respectablgl SR. This is encourag-
ing given that none of the planners in IPPC-1 were able to
solve the representative problem from this domain.

Conclusion
We introduced a compact representation for prioritized-

ensemble heuristics using lists of set expressions described

in taxonomic syntax. We also introduced the learning ob-
jective of finding heuristics that are (approximately) strong

measures of progress, which suggested a simple technique

for learning such heuristics. We show that the learned
heuristics are useful for planning in both stochastic and de-
terministic benchmark domains, and when combined with
learned rule-based policies can yield state-of-the-art results.

Domains Rules Measures R+M FF-Replan
Exploding 0.44 (63) | 0.10 (37) | 0.74 (67) | 0.07 (20)
Colored 0.69 (71) 0.96 (77) 0.97 (71) 0.45 (67)
UnColored 0.70 (70) 0.96 (76) 0.97 (71) 0.46 (68)
Boxworld 0.26 (51) | 0.20 (71) | 0.20 (34) | 1.00 (36)

Figure 4:Stochastic Domains

Acknowledgements

We thank the reviewers for helping to improve this paper.
This work was supported by NSF grant 0093100-IIS.

References

Ambite, J. L.; Knoblock, C. A.; and Minton, S. 2000.
Learning plan rewriting rules. Irtificial Intelligence
Planning System$8-12.

Furnkranz, J., and Flach, P. A. 2003. An analysis of rule
evaluation metrics. IhCML.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic seafebrnal
of Artificial Intelligence Research4:263-302.

Huang, Y.-C.; Selman, B.; and Kautz, H. 2000. Learning
declarative control rules for constraint-based planning. In
Proceedings of the 17th International Conferebce on Ma-
chine Learning 415-422. Morgan Kaufmann, San Fran-
cisco, CA.

Khardon, R. 1996. Learning to take actionsAAAI/IAAL,
Vol. 1, 787-792.

Khardon, R. 1999. Learning action strategies for planning
domains.Atrtificial Intelligencel13(1-2):125-148.

Martin, M., and Geffner, H. 2000. Learning generalized

policies in planning domains using concept languages. In
Proceedings of the 7th International Conference on Knowl-
edge Representation and Reasoning

McAllester, D., and Givan, R. 1993. Taxonomic syntax for
first-order inferenceJournal of the ACMA0:246—-283.

Morales, E., and Sammut, C. 2004. Learning to fly by com-
bining reinforcement learning with behavioural cloning. In
ICML.

Parmar, A. 2002. A Logical Measure of Progress for Plan-
ning. INAAAI/IAAI, 498-505. AAAI Press.

Rivest, R. 1987. Learning decision lisidachine Learning
2(3):229-246.

Sammut, C.; Hurst, S.; Kedzier, D.; and Michie, D. 1992.
Learning to fly. InProceedings of the Ninth International
Conference on Machine Learning Aberdeen: Morgan
Kaufmann.

Yoon, S.; Fern, A.; and Givan, R. 2002. Inductive policy
selection for first-order MDPs. IRroceedings of the Eigh-
teenth Conference on Uncertainty in Artificial Intelligence
Younes, H. L. S., and Littman, M. L. 2004. PpddI1.0:
An extension to pddl for expressing planning domains with
probabilistic effects. ITechnical Report CMU-CS-04-162

AAAI-05 /1222

