
Learning Measures of Progress for Planning Domains

SungWook Yoon
Electrical & Computer Engineering

Purdue University
West Lafayette, IN 47907

sy@purdue.edu

Alan Fern
Computer Science Department

Oregon State University
Corvallis, OR 97331
afern@cs.orst.edu

Robert Givan
Electrical & Computer Engineering

Purdue University
West Lafayette, IN 47907

givan@purdue.edu

Abstract

We study an approach to learning heuristics for planning do-
mains from example solutions. There has been little work on
learning heuristics for the types of domains used in determin-
istic and stochastic planning competitions. Perhaps one rea-
son for this is the challenge of providing a compact heuristic
language that facilitates learning. Here we introduce a new
representation for heuristics based on lists of set expressions
described using taxonomic syntax. Next, we review the idea
of ameasure of progress(Parmar 2002), which is any heuris-
tic that is guaranteed to be improvable at every state. We
take finding a measure of progress as our learning goal, and
describe a simple learning algorithm for this purpose. We
evaluate our approach across a range of deterministic and
stochastic planning-competition domains. The results show
that often greedily following the learned heuristic is highly
effective. We also show our heuristic can be combined with
learned rule-based policies, producing still stronger results.

Introduction
Good plans can often be understood as seeking to achieve
specific subgoals en route to the goal. In an object-oriented
view, these subgoals, along with the goal itself, can be seen
as properties of objects, where in each case we wish to in-
crease the number of objects with the given property. Tak-
ing this view, we consider control knowledge in the form of
compact descriptions of object classes that a controller is to
select actions to enlarge. For example in BLOCKSWORLD,
in an optimal trajectory, the number of blocks “well placed”
from the table up never decreases. Or in LOGISTICS the
number of solved packages never decreases in optimal plans.

Good trajectories also often exhibit locally monotonic
properties: properties that increase for local periods, but not
all the time during the trajectory. In BLOCKSWORLD, con-
sider a block “solvable” if its desired destination is clear and
well placed from the table up. Then, in good trajectories,
while the number of blocks well placed from the table up
stays the same, the number of solvable blocks need never de-
crease locally; but, globally, the number of solvable blocks
may decrease as the number of blocks well placed from the
table up increases. Sequences of such properties can be used

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

to construct aprioritized-ensemble heuristic, where we se-
lect the action that is able to improve the highest-priority
property, while preserving higher-priority properties.

Here, we are not directly interested only in characterizing
optimal trajectories, but more generally in learning the ap-
parent strategy underlying a set of training trajectories. If we
assume the training trajectories were themselves generated
by seeking to maximize some prioritized-ensemble heuris-
tic, we can hope to recover that heuristic. More generally,
though, we seek to find heuristics that enable us to achieve
performance similar to that of the training trajectories.

When a heuristic has the property that it can always be
increased in one step, then it constitutes astrong measure of
progressin the sense of Parmar (2002). This is a desirable
property for any heuristic and we take finding such a heuris-
tic as our learning goal. Our empirical results demonstrate
that this learning goal results in useful heuristic.

It is a straightforward result that strong measures of
progress exist for any deadlock-free domain, if one is will-
ing to represent them as explicit state-to-predicate-extension
mappings, simply encoding the distance to the goal. Here,
we are interested in finding implicitly and compactly repre-
sented mappings, which may not exist in all planning do-
mains for any given representation language. It is an as-
sumption of our approach that such compactly represented
mappings can usefully if not completely characterize the
training trajectories. It is important to note that our learned
heuristics may not have the strong guarantee required for
Parmar’s definition—however, as we demonstrate, the prac-
tical benefits for planning can still be significant.

Here we give a compact representation for heuristic func-
tions using a class-description language to describe a pri-
oritized sequence of class expressions, each expression de-
noting a set of objects in a given state. Given a state, a se-
quence of class expressions induces a vector of class occu-
pancies, which we treat as lexicographically ordered; by this
means, a sequence of class expressions can be treated as a
heuristic for selecting actions. In our example above, the se-
quence (“well-placed blocks”, “solvable blocks”) represents
the idea that as long as the number of well-placed blocks
changes, we don’t care about a decrease in solvable blocks,
but otherwise we do. Given a set of training trajectories,
we provide a machine-learning approach to acquiring a se-
quence of taxonomic classes, giving a prioritized-ensemble

AAAI-05 / 1217

heuristic that approximately increases along the training tra-
jectories. We treat such a heuristic as a strong measure of
progress with respect to the training trajectories, though it
may only approximately satisfy Parmar’s definition.

In our empirical work, we learn from machine-generated
trajectories and evaluate the usefulness of our learned mea-
sures in two ways. First, we consider the learned measures
of progress directly as the sole control knowledge by choos-
ing the action that results in the best expected value on the
progress measure, breaking ties randomly. We show that
this simple approach outperforms previous learned control
policies for the setting where the only training data is trajec-
tories. Previous techniques (Martin & Geffner 2000; Yoon,
Fern, & Givan 2002) which reduce control-knowledge learn-
ing to supervised classification perform poorly unless pro-
vided with the set of all “good” actions at each state. Sec-
ond, we show that performance can be further enhanced by
combining the learned measures of progress with policies
learned via previous techniques, using the policies only to
break ties in the measure of progress (in place of random
tie breaking). In each case, we show results in a variety of
deterministic and stochastic planning domains.

We are not aware of prior work on learning heuristic func-
tions for planning domains such as those used in determin-
istic and stochastic planning competitions. The most suc-
cessful previous work (Huang, Selman, & Kautz 2000; Sam-
mut et al. 1992; Morales & Sammut 2004; Khardon 1996;
Martin & Geffner 2000) on learning control knowledge for
such domains from trajectories, uses control knowledge rep-
resented via action selection (and sometimes rejection) rules
rather than as heuristic functions, conditioning only on the
current state. Our approach is able to learn knowledge that
selects actions in part by considering their effects explicitly,
which our experiments show can be beneficial.

Problem Setup
Planning Domains. A planning domainis a tupleD =
〈P, Y,O, T,G〉. Here,P is a set of state predicates,Y is a
set of action types, andO is a domain set of objects. Astate
fact is an instance of a predicate inP applied to objects in
O (e.g., In(Box1,Truck1)), and astateis simply a finite set
of state facts. Anactionis an instance of an action type inY
applied to objects inO (e.g., Load(Box1,Truck1)). The sets
P , Y , andO implicitly define the state spaceS of all states
and the action spaceA of all actions.

T is a transition function that mapsS × A to “next state”
distributions overS, so thatT [s, a](s′) gives the probabil-
ity of transitioning to states′ after taking actiona in states.
In our system, we compactly representT using the proba-
bilistic STRIPS-like language PPDDL (Younes & Littman
2004). We will sometimes treatT as a stochastic func-
tion, where the callT [s, a] returns a states′ with probability
T [s, a](s′). G is a randomized problem generator that out-
puts planning problems according to some distribution. A
planning problemis simply a pair〈s, g〉 of an initial states
and a set of state factsg representing the goal region.1

1Our experiments include the COLORED BLOCKSWORLD
where goals have existential variables. We handle this in an ad-

Policies. A policy π is a (possibly stochastic) func-
tion that maps planning problems to actions. That is,
a policy takes as input a current state and goal condi-
tion and selects an action, ideally an action that takes
us closer to the goal. Given an initial problem〈s0, g〉,
a policy π can generate atrajectory of states-goal-action
triples(〈s0, g, a0〉, 〈s1, g, a1〉, 〈s2, g, a2〉 . . .), where ai =
π(〈si, g〉) andsi+1 = T [si, ai]. When the planning domain
and/orπ are stochastic we get a distribution over trajectories
starting froms0. We say that a trajectory is asolutionto a
planning problem〈s0, g〉 iff there is ani such thatg ⊆ si.

Measures of Progress
Prioritized Heuristics. Throughout we assume the context
of a planning domainD = 〈P, Y,O, T,G〉. A heuristicis
simply a mapping from planning problems (i.e., state-goal
pairs) to a totally ordered set. Typically, a heuristic re-
turns a number that is interpreted as a distance-to-goal esti-
mate. Rather, in our work, we consider prioritized heuristics
whose ranges are vectors. A prioritized-ensemble heuristic
is an ordered listF = (F1, . . . , Fn) where each compo-
nentFi is a function from planning problems to reals. The
output of a prioritized heuristic is, thus, a vector of reals.
We compare vectors using theprioritized dominancerela-
tion �, defined such that for two real-number sequences
N = (N1, . . . , Nk) and M = (M1, . . . , Mk), N � M
iff there exists ani such thatNi > Mi and for allj < i,
Nj = Mj . Prioritized-ensemble heuristics provide a useful
decomposition for defining heuristics in terms of local prop-
erties of a planning domain, as described in the introduction
section. In addition, as described in the learning section be-
low, there are natural techniques for learning such heuristics.

Given a prioritized-ensemble heuristicF , we define
a corresponding stochastic policyπF that will be used
for planning according to the heuristic. For any given
planning problem〈s, g〉, πF (〈s, g〉) returns a random ac-
tion chosen from the set argmaxaE[F (〈T [s, a], g〉)], where
the maximization is relative to� and E[F (X)] =
(E[F1(X)], . . . , E[Fn(X)]). The expectation is calculated
using the transition modelT provided by our planning do-
main. Our empirical goal is to learn anF such thatπF can
be executed quickly and gives good planning performance.

Measures of Progress.A desirable property for a heuris-
tic is that at any state there should be an action that leads to
an (expected) improvement in its value. Heuristics with this
property were calledstrong measures of progressby Parmar
(2002). Here we extend Parmar’s definition, which was for
deterministic domains, to stochastic planning domains.
Definition 1 (Strong Measure of Progress). Let F =
(F1, . . . , Fn) be an ordered list where eachFi is a function
from planning problems to integers.F is a strong measure of
progress for planning domainD iff for any reachable prob-
lem〈s, g〉 of D, eitherg ⊆ s or there exists an actiona such
thatE[F (〈T [s, a], g〉)] � F (〈s, g〉).

This definition requires that for any non-goal state there
is an action that increases (in expectation) someFi while

hoc way by immediately grounding such variables to objects that
satisfy static properties (e.g. color) of these variables in the goal.

AAAI-05 / 1218

maintaining the preceding, higher-priority components, cor-
responding to Parmar’s definition for deterministic domains.

A strong measure of progress exists for any deadlock-free
domain2; e.g., taking−F to be the expected solution length
of an optimal policy. In addition, in deterministic domains,
if one always selects actions that lead to an increase inF
then a solution will always be found in at least|S| actions.
While this worst case bound is extremely loose, in prac-
tice useful measures of progress can be defined that lead to
short solution lengths. In particular, taking the measure of
progress to be the (expected) distance to the goal will result
in optimal planning. Of course, using such a measure is not
practical since in general it cannot be computed efficiently.
Rather, we are typically interested in measures that can be
computed efficiently, yet lead to “good enough” plans.

One contribution of this paper is to show that useful
prioritized-ensemble heuristics can be learned by focusing
on the goal of satisfying the strong-measure-of-progress
property with respect to the training data. Alternatively, an-
other approach to learning heuristics is to use a function
approximator in order to learn an estimate of the distance-
to-goal function. However, our experience indicates that,
for benchmark planning domains, learning such estimates is
difficult and so far has not led to good performance.

Representing Measures of Progress
It is often natural to measure progress in a planning domain
by counting the number of objects with a certain property.
For example, in LOGISTICS problems it is desirable to in-
crease the number of objects in their final destinations, or
perhaps to increase the number of objects in a plane that
need to go to the plane’s destination. In this section, we first
describe how to represent such properties using a taxonomic
syntax for first-order logic. Next, we describe how to repre-
sent prioritized measures of progress using this syntax.

Taxonomic Syntax. Following Yoon, Fern, & Givan
(2002) our class language is an extension of taxonomic syn-
tax (McAllester & Givan 1993), a first-order language for
representing sets or classes of objects using class expres-
sions. Our language is defined by

C ::= C0 | a-thing | ¬C | (R C) | C ∩ C | (minR)
R ::= R0 | R−1 | R ∩ R | R∗.

Here C and R are class expressions and relations respec-
tively. a-thing represents the set of all objects.C0 is any one
argument predicate from our planning domain, andR0 is any
binary predicate from the domain. Predicates in the domain
of three or more arguments are represented with multiple in-
troduced auxiliary binary predicates. Also, included inC0

andR0 are new copies of each predicate symbol, which are
used to represent the desired goal; e.g.,gclear(x) represent
thatx is clear in the goal. We also include new predicates
representing that a goal fact is satisfied in the current state;

2In general a planning domain isdeadlock freeiff for all reach-
ableplanning problems there is a sequence of actions that can reach
the goal with non-zero probability. A problem〈s, g〉 is reachable
iff G can generate a problem〈s0, g〉 such that there is some action
sequence with non-zero probability of reachings from s0.

e.g.,con(x, y) represents thatx is “correctly on”y, that is,
x is ony in both the goal and the current states.

Given a planning problem〈s, g〉 and class expressionC,
it is easy to compute the set of objects that are represented
by C in 〈s, g〉, denoted byC(s, g). If C is a one argument
predicate thenC(s, g) denotes the set of objects thatC is
true of in〈s, g〉. Expressions of the form(R C) denote the
image of the objects in classC under relationR—e.g., (on
gclear) represents the set of blocks that are currently on a
block that is supposed to be clear in the goal. The expres-
sion (minR) denotes the class of minimal elements under
relationR (viewing R as a partial order). The expression
R∗ denotes the reflexive, transitive closure of the relationR.
See Yoon, Fern, & Givan (2002) for the complete semantics.

Taxonomic Prioritized Measures. Recall that a pri-
oritized measure of progress is a sequence of functions
F = (F1, . . . , Fn) from planning problems to numbers. In
this work, we parameterize prioritized measures by a se-
quence of class expressionsC = (C1, . . . , Cn) and de-
fine the corresponding prioritized measure byFC(〈s, g〉) =
(|C1(s, g)|, . . . , |Cn(s, g)|). That is, each individual mea-
sure corresponds to a count of the objects in a certain class.

For example, in the BLOCKSWORLD consider the mea-
sure of progress described by the sequence(C1, C2)
whereC1 = (con∗ con-table) and C2 = (gon (clear ∩
con∗ con-table))). C1 the higher-priority property, is the
set of blocks well placed from the table up, andC2 is the
set of “solvable” blocks. This measure, prefers to increase
the number of well-placed blocks. When improvingC1 is
not possible, the measure will prefer to take actions that in-
crease the number of solvable blocks, while preservingC1.

Learning
In this section we describe a method for learning priori-
tized measures of progress in the taxonomic representation
described in the previous section. In particular, given a
planning-domain definition and a set of solution trajectories
of problems from the domain, we output a list of taxonomic
class expressionsC, defining a prioritized measureFC that
can be used for subsequent planning in the domain.

An underlying assumption of our approach is that the ac-
tion selections in the training trajectories can be explained
as trying to improve an unknown prioritized measure of
progress. Furthermore we assume that this measure can
be compactly represented using our taxonomic syntax rep-
resentation. Our learner then attempts to uncover the un-
known measure of progress by analyzing the trajectories. In
our experiments, we use trajectories generated by domain-
independent planners and humans, and these assumptions
will typically not be met exactly. Nevertheless, we show em-
pirically that useful measures of progress can be discovered
from these sources, leading to good planning performance.
Learning Algorithm. The raw input to our algorithm
is a planning domainD = 〈P, Y,O, T,G〉 and a set of
trajectoriesJ = {J1, . . . , Jm} where eachJi is a fi-
nite sequence of state-goal-action triples. We defineJ to
be the multi-set of all state-goal-action triples inJ . We
say that a triple(s, g, a) is coveredby a class expression
C, if |C(s, g)| 6= E(|C(T [s, a], g)|). In the case where

AAAI-05 / 1219

|C(s, g)| < E(|C(T [s, a], g)|), we say that the triple ispos-
itively covered, otherwise if|C(s, g)| > E(|C(T [s, a], g)|)
the example isnegatively covered. Our learner searches for
sequence of class expressionsC = (C1, . . . , Cn) such that
the corresponding prioritized measureFC is approximately a
strong measure of progress with respect to the training data.
That is, for each state-goal-action triple〈s, g, a〉 in the train-
ing dataE[FC(〈T [s, a], g〉)] � FC(〈s, g〉). This requires
that each training example is positively covered by someCi

and is not negatively covered by anyCj with j < i.
Our algorithm, shown in Figure 1, searches for class ex-

pressions in the order of highest to lowest priority, similar
to Rivest-style decision-list learning (Rivest 1987).Learn-
Prioritized-Measure starts with an empty list of classes and
then searches for the first class expressionC1 by calling
Find-Best-Measure. Intuitively, this search attempts to find
a C1 with no negative coverage that positively covers many
training instances. For instances that are positively covered
by C1, the strong measure of progress condition is satisfied.
For the remaining instances, we still need to find lower prior-
ity class expressions that positively cover them. For this pur-
pose, we remove from the training set any instances that are
covered byC1 and search forC2 again by callingFind-Best-
Measure. The algorithm repeats this process of removing
instances fromJ and finding new class expressions until all
of the instances are removed, orFind-Best-Measureis un-
able to find a “good enough” class expression.

The routineFind-Best-Measuresearches for a good class
expression via a heuristically-guided beam search over a re-
stricted space of class expressions. In particular, letCd be
the set of all intersection-free class expressions of depth at
mostd. The beam search conducts a search over longer and
longer intersections of class expressions selected fromCd,
attempting to find a concept with high positive and low neg-
ative coverage. The beam widthb and maximum depthd are
user specified and wereb = 5, d = 3 in our experiments.

Our beam-search heuristic is weighted accuracy. Given
a set of training triplesJ and a class expressionC, let p
andn be the number of positively and negatively covered
instances inJ respectively. Our heuristic value is given by
H(J, C) = p − ωn. The parameterω is chosen by the user
and trades off positive and negative coverage. In our experi-
ments, we useω = 4. We performed limited evaluations of
other more sophisticated heuristics (for example those stud-
ied in Furnkranz & Flach (2003)), but none appeared to per-
form significantly better than weighted accuracy.

Pitfalls. An assumption of our technique is that the train-
ing trajectories depict good planning performance and that
our learner is able to uncover a measureFC that approxi-
mately captures the behavior. One shortcoming of our cur-
rent algorithm is that it can be fooled by properties that
monotonically increase along all or many trajectories in a
domain, even those that do not solve the planning problem.

For example, consider a domain with a class expression
whose extension never decreases and frequently increases
along any trajectory. Our learner will likely output this class
expression as a solution, although it does not in any way dis-
tinguish good from bad trajectories. In most of our experi-
mental domains, such properties do not seem to exist, or at

Learn-Prioritized-Measures (J, b, d)

// state-goal-action triplesJ, beam widthb, depthd

C ← nil ;

while |J| > 0

C′ ← Find-Best-Measure(J, b, d);

if H(J, C′) > 0

C = append(C, C′); // addC′ at end

J← remove-covered(J, C′);

elseReturn C

Return C;

Find-Best-Measure(J, b, d)

B ← {a-thing}; H∗ ← −∞;

repeat
G = B ∪ {C′ ∩ Cb | Cb ∈ B, C′ ∈ Cd}
B = beam-select(G, J, b); // select bestb concepts

C∗← argmaxCb∈BH(J, Cb);

if (H(J, C∗) = H∗) thenReturn C∗;

H∗ ← H(J, C∗);

Figure 1:Pseudo-code for learning prioritized measure

least are not selected by our learner. However, in EXPLOD-
ING BLOCKSWORLD this problem did appear to arise and
hurt the performance of measures alone as policies. Rule-
based policy learning combined with measures overcame
this problem, as shown in the experimental section.

There are a number of possible approaches to dealing with
this pitfall, which we will pursue in future work. For exam-
ple, one idea is to generate a set of random (legal) trajecto-
ries and reward class expressions that can apparently distin-
guish between the random and training trajectories.

Experiments
Procedure. We evaluated our learning approach in both
deterministic and stochastic domains. Our determinis-
tic domains included the three domains from test suite
1 of the 3rd International Planning Competition, DE-
POTS, ZENOTRAVEL, and DRIVERLOG, along with two
domains that have been used in previous work on learn-
ing rule-based policies, BLOCKSWORLD and LOGISTICS.
Our stochastic domains included COLORED (and UNCOL-
ORED) BLOCKSWORLD, EXPLODING BLOCKSWORLD,
and BOXWORLD, which come from the 1st International
Probabilistic Planning Competition (IPPC-1) held in 2004.
For our deterministic domains, we generated training tra-
jectories using the planner FF (Hoffmann & Nebel 2001).
For stochastic domains, we generated trajectories accord-
ing to a human-written policy. From the generated trajecto-
ries, we learned a prioritized-ensemble measure of progress.
For comparison we also used the system described in Yoon,
Fern, & Givan (2002) to learn rule-based policies from tra-
jectories. The rule-based policies are simply lists of rules of
the form “If a condition is true then take a certain action”.

Figure 2 summarizes the problem sizes used for both
training and testing in each domain. Each evaluation mea-
sured the success ratio (SR) (fraction of solved problems)
and average solution length (AL) ofsolvedproblems on a

AAAI-05 / 1220

set of randomly drawn problems, using a solution time limit
of 2000 cpu seconds. In addition to evaluating the learned
measures and rule-based policies in isolation we also evalu-
ated thecombined policy, which selects an action randomly
from the actions that both maximize the learned measure and
are suggested by the policy. If the intersection is empty, then
the combined policy selects an action according to the mea-
sure.

We conducted 20 trials in each domain, each involved
drawing 20 training problems, generating the corresponding
trajectories, learning a measure of progress and rule-based
policy, and then evaluating the results. Figures 3 and 4 show
the averages over the trials. Each row corresponds to a sin-
gle planning domain. The second column gives the (SR)
and (AL) of the learned rule-based policy. The third and
fourth columns gives the same information for the learned
measures and the combined policy respectively. The final
column gives the performance of FF on the test distribution.

Deterministic Domains
Success Ratio. For all deterministic domains except
DRIVERLOG the learned measures lead to relatively good
success ratios, indicating that our learned measures of
progress are indeed capturing useful notions of progress. We
believe that the primary reason for the relatively poor perfor-
mance in DRIVERLOG is that our concept language (which
is also used by the rule-based policy learner) is not expres-
sive enough to capture the key concept of “path”.

The success ratio of the measures are generally superior
to the rule-based policies. We believe that the relatively poor
success ratio of the rule-based policies is due to the fact the
training examples don’t completely separate good actions
from bad actions. That is, each state in the training data
is only labeled by a single action and the learner tries to
find rules that select those actions and avoid selecting other
actions. In reality a single training state may have many
equally good actions, and the particular action that ends up
in the training set is largely arbitrary. For example, in the
BLOCKSWORLD there are often many blocks are equally
good to pick-up. The rule-based policy learner will try to
avoid selecting the good actions that are not in the training
data, making the learning problem quite difficult.

Prior rule-based policy learners (Martin & Geffner 2000;
Yoon, Fern, & Givan 2002) have avoided this difficulty by
labeling training data with all good actions. However, this
information is not always available. Comparably, when
learning measures of progress, as long as the trajectories ex-
hibit monotonic properties then it is not important which ac-
tion of the good actions appear in the training data. That is,
measures of progress can be invariant to the specific action
used to make progress since they capture information about
what the action does. Rather, rule-based policies focus on
information about where an action is applied not the effects.
In this sense learning measures of progress appears more
natural when our training data consists of only trajectories.

Average Length.The rule-based policies achieve a sign-
ficantly better AL than the learned measures. That is, when
the rule-based policy solves a problem it typically finds a
shorter solution, suggesting that the learned measures do not

completely distinguish good actions from not so useful ac-
tions. On inspection, we found that the solution trajectories
from the measures often include random actions that do not
appear to make progress, yet do not destroy progress. In
other words, the trajectories include bits of non-destructive
wandering in between actions that make real progress.

In deterministic domains, a potential remedy for this
problem could be to use FF’s search technique ofenforced
hill-climbing (Hoffmann & Nebel 2001), which conducts a
breadth-first search for a path to a state where the heuristic
makes progress. The resulting path is then included in the
plan, which may often be significantly shorter than the paths
found by the non-destructive random wandering. We also
note that the ability to simply find a plan quickly is valuable,
as post-processing techniques could conceivably be devel-
oped to prune away wasteful action sequences—e.g. work
has been done on learning plan re-write rules for simplifying
sub-optimal solutions (Ambite, Knoblock, & Minton 2000).

Trajectories from the rule-based policies are qualitatively
different. Typically, the policies select actions that appear
to make progress, but sometimes select destructive actions
(undoing progress), eventually resulting in failure. By com-
bining the rule-based policies and measures we can filter out
these destructive actions but also reduce the amount of wan-
dering observed for the measures. As the results show, the
combination typically achieves the success ratio of the mea-
sure and the average length of the rule-based policy.

Comparing to Prior Work. For benchmark planning
domains, the most successful prior work on learning poli-
cies from trajectories produce rule-based policies. Khardon
(1999) learns rule-based policies from only trajectories,
without providing the sets of all good actions. Khardon
(1999) reports experiments in BLOCKSWORLD and LO-
GISTICS yielding 0.56 SR for 20 blocks, and 0.59 SR for
20 packages respectively, which are similar to our rule-
based policy learner and worse than our learned measures of
progress. Martin & Geffner (2000) learns rule-based poli-
cies from trajectories, but requires that the set of all optimal
actions be provided for each state, thus using more infor-
mation than we are here. Martin & Geffner (2000) reports
experiments in BLOCKSWORLD yielding 0.75 SR for 20
blocks, which is better than our rule-based learner but worse
than our learned measures. Thus, our learned measures out-
perform the SR of the most closely related previous work in
the domains they considered.

Comparing to FF. Compared to FF, the combined
measures and rules win in two domains, DEPOTS and
BLOCKSWORLD, and lose in three domains, LOGISTICS,
DRIVERLOG, and ZENOTRAVEL. Thus, for some domains,
we can learn measures from FF trajectories that allow us (in
combination with rules) to outperform FF on large problems.

Stochastic Domains
For stochastic domains, we compared our results to FF-
Replan, the overall winner of IPPC 2004. FF-Replan deter-
minizes a stochastic domain using the most likely outcomes
for each action, and solves the resulting deterministic do-
main, replanning using FF whenever an “unexpected” out-
come occurs. The learned measures substantially improve

AAAI-05 / 1221

Domains Training Problem Size Testing Problem Size

Depots 2 depots, 2 distributors 2 depots, 2 distributors

6 crates 12 crates

Driverlog 3 junctions, 3 drivers 3 junctions, 8 drivers

6 packages, 3 trucks 10 packages, 8 trucks

ZenoTravel 5 cities, 2 planes 6 cities, 3 planes

8 persons 20 persons

Block 10 blocks 20 blocks

Logistic 1 plane, 3 cities, 3 locations 1 plane, 3 cities, 3 locations

10 packages 20 packages

(Un) Colored

Blocksworld 10 blocks, 5 colors 20 blocks, 5 colors

Exploding 5 blocks 10 blocks

Boxworld 5 boxes, 5 cities 5 boxes, 10 cities

Figure 2:Domain Sizes

Domains Rules Measures R + M FF

Depots 0.30 (40) 0.84 (90) 0.90 (51) 0.85 (75)

Driverlog 0.40 (58) 0.47 (188) 0.60 (67) 0.95 (35)

ZenoTravel 0.98 (35) 0.90 (85) 0.98 (34) 1.00 (27)

Block 0.58 (59) 0.94 (83) 0.87 (59) 0.84 (62)

Logistics 0.40 (110) 0.89 (168) 0.92 (109) 1.00 (91)

Figure 3:Deterministic Domains

on the SR of both FF-Replan and the rule-based policies
in two of the four domains, again with an increase in plan
length. In BOXWORLD, FF-Replan outperforms all of the
learned knowledge. As for DRIVERLOG, above we believe
that this is due to inadequate knowledge representation.

In the EXPLODING BLOCKSWORLD the rule-based pol-
icy significantly outperforms the learned measure in SR, ex-
posing a weakness of our learning technique noted earlier. In
particular, in this domain the set of “detonated” blocks never
decreases and frequently increases. Thus, the number of det-
onated blocks is a monotonic property that is learned by our
system, and thus following our learned measure will tend to
detonate blocks whenever possible. However, blindly deto-
nating blocks in this domain is dangerous as it can destroy
the table. As discussed earlier there are a number of exten-
sions to our basic approach to address this issue. We note
that the EXPLODING BLOCKSWORLD was one of the most
difficult domains from IPPC-1, and the combined rules and
measures achieve a respectable0.74 SR. This is encourag-
ing given that none of the planners in IPPC-1 were able to
solve the representative problem from this domain.

Conclusion
We introduced a compact representation for prioritized-
ensemble heuristics using lists of set expressions described
in taxonomic syntax. We also introduced the learning ob-
jective of finding heuristics that are (approximately) strong
measures of progress, which suggested a simple technique
for learning such heuristics. We show that the learned
heuristics are useful for planning in both stochastic and de-
terministic benchmark domains, and when combined with
learned rule-based policies can yield state-of-the-art results.

Domains Rules Measures R + M FF-Replan

Exploding 0.44 (63) 0.10 (37) 0.74 (67) 0.07 (20)

Colored 0.69 (71) 0.96 (77) 0.97 (71) 0.45 (67)

UnColored 0.70 (70) 0.96 (76) 0.97 (71) 0.46 (68)

Boxworld 0.26 (51) 0.20 (71) 0.20 (34) 1.00 (36)

Figure 4:Stochastic Domains

Acknowledgements
We thank the reviewers for helping to improve this paper.
This work was supported by NSF grant 0093100-IIS.

References
Ambite, J. L.; Knoblock, C. A.; and Minton, S. 2000.
Learning plan rewriting rules. InArtificial Intelligence
Planning Systems, 3–12.
Furnkranz, J., and Flach, P. A. 2003. An analysis of rule
evaluation metrics. InICML.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.Journal
of Artificial Intelligence Research14:263–302.
Huang, Y.-C.; Selman, B.; and Kautz, H. 2000. Learning
declarative control rules for constraint-based planning. In
Proceedings of the 17th International Conferebce on Ma-
chine Learning, 415–422. Morgan Kaufmann, San Fran-
cisco, CA.
Khardon, R. 1996. Learning to take actions. InAAAI/IAAI,
Vol. 1, 787–792.
Khardon, R. 1999. Learning action strategies for planning
domains.Artificial Intelligence113(1-2):125–148.
Martin, M., and Geffner, H. 2000. Learning generalized
policies in planning domains using concept languages. In
Proceedings of the 7th International Conference on Knowl-
edge Representation and Reasoning.
McAllester, D., and Givan, R. 1993. Taxonomic syntax for
first-order inference.Journal of the ACM40:246–283.
Morales, E., and Sammut, C. 2004. Learning to fly by com-
bining reinforcement learning with behavioural cloning. In
ICML.
Parmar, A. 2002. A Logical Measure of Progress for Plan-
ning. InAAAI/IAAI, 498–505. AAAI Press.
Rivest, R. 1987. Learning decision lists.Machine Learning
2(3):229–246.
Sammut, C.; Hurst, S.; Kedzier, D.; and Michie, D. 1992.
Learning to fly. InProceedings of the Ninth International
Conference on Machine Learning. Aberdeen: Morgan
Kaufmann.
Yoon, S.; Fern, A.; and Givan, R. 2002. Inductive policy
selection for first-order MDPs. InProceedings of the Eigh-
teenth Conference on Uncertainty in Artificial Intelligence.
Younes, H. L. S., and Littman, M. L. 2004. Ppddl1.0:
An extension to pddl for expressing planning domains with
probabilistic effects. InTechnical Report CMU-CS-04-162.

AAAI-05 / 1222

