
Exploiting the Structure of Hierarchical Plans in
Temporal Constraint Propagation

Neil Yorke-Smith
Artificial Intelligence Center, SRI International, Menlo Park, CA 94025, USA

nysmith@ai.sri.com

Abstract

Quantitative temporal constraints are an essential requirement
for many planning domains. The HTN planning paradigm has
proven to be better suited than other approaches to many ap-
plications. To date, however, efficiently integrating temporal
reasoning with HTN planning has been little explored. This
paper describes a means to exploit the structure of a HTN plan
in performing temporal propagation on an associated Simple
Temporal Network. By exploiting the natural restriction on
permitted temporal constraints, the time complexity of prop-
agation can be sharply reduced, while completeness of the
inference is maintained. Empirical results indicate an order
of magnitude improvement on real-world plans.

Introduction
Quantitative temporal constraints are an essential require-
ment for many real-life planning domains (Smith, Frank, &
Jónsson 2000). The Hierarchical Task Network (HTN) plan-
ning paradigm has proven to be well-suited to many applica-
tions (Myerset al. 2002). To date, however, efficiently inte-
grating temporal reasoning within the HTN planning process
has been explored in only a few systems.

This paper describes a means to exploit the structure of
a HTN plan in performing temporal propagation on an as-
sociated Simple Temporal Network (STN). We introduce an
algorithm calledsibling-restricted propagationthat exploits
the restricted structure of STNs that arise from an HTN
plan. The idea behind the algorithm is to transverse a tree
of sub-STNs that correspond to the expansions in the HTN
task hierarchy. The HTN structure limits the sub-STNs to
have constraints only between parent and child nodes and
between sibling nodes. Because the STNs thus considered
are small, compared to theglobalSTN corresponding to the
whole plan, the overall amount of work to perform propaga-
tion is much less. Empirical results demonstrate an order of
magnitude improvement on real-world plans.

Many metric temporal planners adopt an STN to describe
the temporal relations underlying the plan. HTN planners in
this category include O-Plan (Tate, Drabble, & Kirby 1994),
SIPE-2 (Wilkins 1999), HSTS/RA/Europa (Jónssonet al.
2000), PASSAT (Myerset al. 2002), and SHOP2 (Nauet al.
2003). Similar representations are used by other HTN sys-
tems, such as IxTeT (Laborie & Ghallab 1995). Our work

is distinguished by explicit use of the HTN plan structure to
propagate on the underlying STN.

Combining planning and scheduling has been approached
from both sides of the gap (Smith, Frank, & Jónsson 2000).
Specific algorithms have been developed for temporal prop-
agation (e.g. (Tsamardinos, Muscettola, & Morris 1998))
and resource propagation (e.g. (Laborie 2003)) within a
planning context. Again, while numerous systems feature
methods to efficiently propagate temporal information and
use it in the planning or scheduling process, we are not aware
of any published results on specific algorithms to exploit
HTN structure in STN propagation.

The next section presents necessary background on HTN
planning, Simple Temporal Networks, and STN propagation
algorithms. The following sections introduce the sibling-
restricted propagation algorithm, present an initial charac-
terisation of its theoretical properties, and evaluate its im-
plementation in the PASSAT plan authoring system.

Background
Hierarchical Task Network planning (Erol, Hendler, &
Nau 1994) generalises traditional operator-based planning
through the addition of methods. Methods encode rich net-
works of tasks that can be performed to achieve an objec-
tive. Tasks within a method are temporally partially ordered,
and may have associated preconditions and effects in addi-
tion to those of the method as a whole. With HTN meth-
ods, planning can assume a hierarchical flow, with high-level
tasks being decomposed progressively into collections of
lower-level tasks through the application of matching meth-
ods with satisfied preconditions. Many large-scale, realis-
tic planning applications have employed the HTN paradigm
(Smith, Frank, & J́onsson 2000).

Simple Temporal Networks For modelling and solving
the temporal aspects of planning and scheduling problems,
quantitative temporal constraint networks in the form of the
Simple Temporal Problem(Dechter, Meiri, & Pearl 1991)
are widely adopted. An STN is a restriction of theTemporal
Constraint Problemto have a single interval per constraint.
VariablesXk denote time-points and constraints represent
binary quantitative temporal relations between them. A dis-
tinguished time-point, denotedTR, marks the start of time.
Unary domain constraints are modelled as binary relations to

AAAI-05 / 1223

TR; thus all constraints have the form:lij ≤ Xj−Xi ≤ uij ,
wherelij anduij are the lower and upper bounds respec-
tively on the temporal distance between time-pointsXi and
Xj , i.e.Xj −Xi ∈ [lij , uij].

Consistency of an STN can be determined by enforcing
path consistency (PC) on the distance graph arising from the
constraints (Dechter, Meiri, & Pearl 1991). Moreover, an
STN, together with theminimal networkof time-point do-
mains, can be specified by a complete directed graph, its
d-graph, where edgei → j is labelled by the shortest path
lengthdij betweenXi andXj in the distance graph. Any
All-Pairs Shortest Path algorithm (e.g. Floyd-Warshall) may
be used to compute the d-graph given the distance graph, and
the d-graph may be represented as a sparse or densedistance
matrix. We denote its computation byPC.

Like many other planners, PASSAT employs an STN to
represent the temporal aspects of plans, using an approach
called constraint-based interval planning (Frank & Jónsson
2004). The temporal extent of each task is modelled by a
time-point each for its start and end. At regular occasions in
the planning process, checking consistency of the temporal
constraints and propagation of temporal information is re-
quired. This is achieved by invokingPC on the plan’s STN.

Propagation The basic method forPC is to use an All-
Pairs Shortest Path algorithm on the distance matrixA. The
STN is consistent iff no diagonal element is negative:aii <
0 for somei corresponds to a cycle in the d-graph (Dechter,
Meiri, & Pearl 1991). In the terminology of Bessière (1996),
this method isPC-1. Let the d-graph haveV vertices andE
edges. The complexity ofPC-1 is Θ(V 3) (Floyd-Warshall)
for a dense representation of the graph andΘ(V 2 log V +
V E) (Johnson’s algorithm) for a sparse representation. Note
that a HTN withn tasks has2n + 1 vertices in the d-graph
of its STN: two time-points for each task, plus one forTR.

Dechter (2003), Bessière (1996) present other path con-
sistency algorithms that can be specialised for the STN and
used forPC. Of note isPC-2, which avoids redundant com-
putation by use of an auxiliary data structure. For an STN
with n time-points, ifPC-1 is Θ(n3) time andΘ(n2) space,
PC-2 is Θ(n3) time butΘ(n3) space, but exhibits better per-
formance in practice provided the space requirements do not
dominate (Bessière 1996). Dechter (2003) also presents an
algorithmDPC that determines consistency but does not ob-
tain the minimal network; separately, Cesta & Oddi (1996)
present an incremental algorithm with the same function.

These algorithms are largely subsumed by4STP (Xu &
Choueiry 2003). This algorithm, which does find the mini-
mal network, outperformsPC-1, and is comparable to (dense
graphs) or outperformsDPC (sparse graphs). The algorithm
proposed in this paper invokes an STN solver repeatedly on
different STNs;4STP or any of the other methods described
for PC may be employed.

Sibling-Restricted Propagation
The idea behind sibling-restricted propagation is to exploit
the HTN structure, under a mild restriction on permitted
temporal constraints. Simple temporal constraints are per-
mitted only between parent tasks and their children, and be-

tween sibling tasks. For example, suppose taskA has been
decomposed into tasksB and E. Temporal constraints are
permitted between the start and end time-points ofA, B and
E. They are permitted betweenB and its children, but not
betweenA or E and the children ofB. Temporal constraints
are also prohibited betweenB and any other taskX.

This assumption on what STN constraints may exist be-
tween plan elements is inherent to HTN models. In particu-
lar, there is no way in standard HTN representations to spec-
ify temporal constraints between tasks in different task net-
works (Erol, Hendler, & Nau 1994). Thus sibling-restricted
propagation imposes no additional limitations on the expres-
siveness of HTNs.

The STN that arises from an HTN with the sibling con-
straint restriction has marked structure properties. The STN
can be decomposed into a tree of smaller STNs; the shape
of this tree mirrors the shape of the hierarchical structure in
the plan. By traversing this tree, invokingPC at each ‘node’
STN, we can propagate temporal information on the plan
elements. The restriction on constraints guarantees we can
propagate on this tree and lose no information compared to
propagating with the whole global STN: it means that the
algorithmSR-PC presented below is sound and complete.

Expanding a taskτ into its children imposes some implied
HTN constraints: each childτi cannot start before or finish
after its parent; in terms of Allen’s algebra,τi during τ .
STN constraints can represent all of Allen’s base relations.
They can also represent the partial ordering of children in
a task network, which we denoteτi ≤ τj (of course, chil-
dren need not be ordered). What cannot be expressed are
disjunctive constraints such as “τi occurs before or afterτj”.

Algorithm Description
To explain theSR-PC algorithm we need some details on the
distance matrix representationA = (aij) of a set of tasks.
The domainof a time-point — its current known earliest
possible start and latest possible finish times — is given by
its current temporal distance fromTR. In the minimal net-
work form of the STN, the domain of every time-point is
the broadest possible, given the constraints, such that every
value in the domain participates in at least one feasible solu-
tion to the STN (Dechter, Meiri, & Pearl 1991). Without loss
of generality, we order our distance matrices withTR= X0

as the first time-point, i.e. the first row and column. Then the
domain of a time-pointXi is [−ai0, a0i]. The initial domain
of Xi is given by any constraints between it andTR; if there
are none, its default initial domain is(−∞,∞).

Secondly, the duration of a taskτ is given the bounds on
the distance between its start and end time-points (let them
beXi andXj), i.e. the interval given by the minimum and
maximum possible temporal distances between them.1 If
there is an explicit constraint betweenXi andXj , we call
the temporal distance it describes thelocal domainof τ . For
example, the constraint10 ≤ Xj−Xi ≤ 20, implies thatτ ’s
local domain is[10, 20]. The local domain is a bound onτ ’s

1This, the standard semantics for task durations (Frank &
Jónsson 2004; Wilkins 1999), means that, given two of the task’s
start, duration and end, we can compute bounds for the third.

AAAI-05 / 1224

Algorithm 1 Sibling-Restricted Propagation
1: SR-PC (TR, root taskτ)
2: if τ is not a leaf nodethen
3: Create distance matrixA for τ
4: PerformPC onA, and update domains
5: L← children ofτ {list of pending child nodes}
6: repeat
7: for eachchild c ∈ L do
8: SR-PC (TR, c) {recurse}
9: Update local domain ofc in A

10: if any change toA occurredthen
11: Perform (incremental)PC onA and update domains
12: L← ∅
13: for eachchild c of τ do
14: if c’s global or local domain changed by line 11then
15: Add c toL {must reconsiderc}
16: until L = ∅
17: return

duration, possibly not tight if the STN is not minimal. Again
without loss of generality, we order our distance matrices to
pair the start and end time-points of each task, so that thekth

task is modelled by time-pointsX2k−1 andX2k. Then the
local domain of taskτk is [−a2k,2k−1, a2k−1,2k].

Bounds on the duration ofτ can be computed also from
the domains ofXi andXj , provided we can relate these
time-points toTR, i.e. their domains are more informative
than(−∞,∞); we call this theglobal domainof τ . If the
plan has no temporal constraints that relateτ to TR, and the
user has not specified whenτ starts or ends (in absolute time
or relative toTR), then the global domain onτ will be com-
puted as(−∞,∞). However, ifXi andXj are related to
TR, then afterPC is completed the duration ofτ computed
from their domains will coincide with the local domain ofτ .
In general, the duration ofτ is contained in the intersection
of the two sets of bounds, local and global.

Pseudocode forSR-PC is shown in Algorithm 1. Given
a task in a HTN plan, which we call theroot taskτ for the
invocation, the algorithm updates the durations of the task
and all its descendents in the plan, by recursively following
the HTN expansions. Note the root task need not be the top-
level objective of the plan, i.e. the root of the whole HTN.

Providedτ is not a leaf in the plan hierarchy, i.e. is not a
primitive action or an unexpanded task, we create a distance
matrix A (line 3). The time-points in the matrix are those
for the temporal reference pointTR, and for the start and
end time-points of the task and its children. On this distance
matrix, which corresponds to a subproblemPτ of the global
STN of the whole plan, we performPC (line 4) and update
the domains of the time-points inPτ .

We then build a listL of pendingchildren, whose sub-
STN may need to be updated (line 5), and recurse to each
child in this list (line 8). Note the list of pending children
is initially set to all children of the root task. In making the
recursive step, the local domain of the child in its distance
matrix is the intersection of its local domain inA and its
global domain. This ensures that all inference on the child’s
duration to date is propagated.

Once the recursive steps are all complete, if the local or

Figure 1: Example HTN plan with two levels of expansion

global domain of any task inPτ were updated as a result, we
update the distance matrix and performPC again (line 11);
this and subsequent invocations ofPC may be incremental.
Any child whose local domain changes as a result may have
an impact on its siblings. Thus we must recurse again to
all such children: these children are added to the new list
L (line 15) and the loop repeats. The parent–children cy-
cle terminates when parent and all childPC invocations are
quiescent (line 16). If at any point aPC invocation finds an
inconsistency,SR-PC halts and reports that the whole plan
is temporally infeasible.

Worked Example
Figure 1 depicts a small HTN plan. The top-level objec-
tive taskA has been decomposed (during the first expansion:
first level to the second) into tasksB andE. B has been de-
composed intoC andD; andE into F–H (with two further
expansions: second level to the third). The temporal bounds
on each task are shown on the three timelines. Each task has
start and end time-points. The constraints are the implied
HTN constraints (not shown), some pairwise task ordering
relations (depicted by<), and some quantitative STN con-
straints (depicted by the arrows). For example, the arrow
between the end of taskB and the start ofD corresponds to
the constraint−15 ≤ Xs32 −Xe21 ≤ 15.

The distance matrix of the global STN is shown in Fig-
ure 2; ‘- ’ denotes no explicit constraint between the two
time-points, i.e. an uninformativeXj − Xi ≤ ∞. Con-
straints prohibited by the sibling-restricted condition are
shown by ‘X’; note the marked block structure of these en-
tries. Recall that time-point domains are found in the first
row and column; local domains of tasks are found in the off-
diagonal entries. For example,B’s domain is[−a41, a14] =
(−∞,∞) while its local domain is[−a54, a45] = [20, 80].
Although the matrix as shown is sparse, it will become dense
after temporal propagation is complete.

On the STN this matrix represents,SR-PC considers sub-
problems withTRand the time-points of tasks as follows:
1: TR, A
2: TR, A, B, E
3: TR, B, C, D
4: C (leaf: just return)
5: D (leaf: just return)
6: TR, E, F, G, H
7: F (leaf: just return)
8: G (leaf: just return)

AAAI-05 / 1225

TR A B C D E F G H
TR 0 0 - - - - - - - - - - - - - - -
A 0 0 180 25 - X X X X - - X X X X X X

- 0 0 - 0 X X X X - 0 X X X X X X
B - 0 - 0 80 0 - - - - - - - - - - -

- - - -20 0 - 0 15 0 - - - - - - - -
C - X X 0 - 0 - - - X X X X X X X X

- X X - - -5 0 - - X X X X X X X X
D - X X 0 15 - 0 0 10 X X X X X X X X

- X X - - - - -5 0 X X X X X X X X
E - 0 - - 0 X X X X 0 - 0 - - - - -

- - - - - X X X X 0 0 - 0 - 0 - 0
F - X X - - X X X X 0 - 0 5 - - - -

- X X - - X X X X - - 0 0 - - 15 -
G - X X - - X X X X 0 - - 0 0 - - -

- X X - - X X X X - - - - 0 0 - -
H - X X - - X X X X 0 - - - - - 0 20

- X X - - X X X X - - - - - - -5 0

Figure 2: Complete distance matrix for the example HTN

9: H (leaf: just return)
10: TR, A, B, E (no change)
11: TR, A (no change)

To illustrate the propagation steps ofSR-PC, consider its
invocation withA as the root, i.e. line 2 (TR, A, B, E)
above. After the initial call toPC, we recurse to each child:
first toB (the next three lines), then toE (the following four
lines). SinceA’s distance matrix was updated by changed
domains forB andE both, we callPC again (line 10 above,
line 11 in Algorithm 1). After this step, neither child ofA
has had its global or local domain updated; thus there are no
tasks inL for the next iteration (line 16 in Algorithm 1), and
soSR-PC terminates.

Algorithm Properties
Because children can be added to the pending list (line 15)
on every iteration, it is not obvious that the loop in the Algo-
rithm 1 terminates. The proof comes from considering the
circumstances when a local domain of a child task can be
updated. We now sketch the principle ideas.

Lemma 1. Let τ be a task with no grandchildren, andA be
its distance matrix formed by Algorithm 1 afterPC has been
initially applied (i.e. on first entry to the loop). Suppose the
local domain ofτ in A, dτ , is tightened, and all other local
domains held constant. When consistency is restored with
PC, a further tightening ofdτ cannot occur.

The main result applies this lemma in structural induction
over the tree of STNs considered bySR-PC. The base case
is trivial, since Algorithm 1 returns immediately, with no
changes to any domain, when invoked on a leaf node.

Theorem 2. Let Π be a HTN plan withP its underlying
(global) STN. Letτ0 be the top-level objective task ofΠ.
Algorithm 1 invoked onτ0 terminates.

Proof. Let λ(Π) be the number of iterations through the
loop in lines 6–16. We proceed by induction over the tree
of STNs thatSR-PC transverses. Consider a taskτ with
childrenτ1, . . . τf . LetA be the distance matrix created for
τ . Observe that if a child has no children itself, thenPC and
soSR-PC invoked on the child’s distance matrix affects no

change (since all of the child’s distance matrix is contained
in A, andPC has been invoked onA in line 4). In particular,
this holds whenτ has no grandchildren.

On the first iteration through the loop, any of the local do-
mains ofτ or one or moreτi may be tightened by the con-
sistency restoration ofA in line 11. As a result, any of the
children may potentially be re-added toL. On the second
iteration through the loop,SR-PC is invoked on every child
in L. Considerτi ∈ L. The only change toτi’s distance ma-
trix Ai as formed bySR-PC on the recursive call, compared
toAi at theendof the previous call (i.e. during iteration 1),
is that the local domaindτi of τi may be narrowed. But by
the inductive hypothesis and Lemma 1, thenSR-PC affects
no change todτi . Since this is true for every childτi ∈ L,
there are no changes to update toA when all the recursive
calls have completed. Hence no children ofτ are re-added
toL on the second iteration, and sinceL = ∅ in line 16, the
algorithm thus terminates withλ(Π) ≤ 2.

Theorem 2 tells us that, in the STN tree, we haveλ = 0
for leaf nodes,1 for nodes without grandchildren, and at
most 2 otherwise. With termination established, we can
prove that the inference obtained bySR-PC is exactly the
same asPC, i.e. Algorithm 1 is sound and complete.

Theorem 3. Algorithm 1 invoked onτ0 reports inconsis-
tency iffP is inconsistent; otherwise it computes identical
minimal domains asPC onP .

Theoretical Complexity For an HTN with approximately
uniform branching from the root task, we have characterised
an initial theoretical measure of expected time and space
complexity of SR-PC. We suppose a mean branching fac-
tor (i.e. number of children for each expanded task)f , and
mean depth (i.e. number of expansions from root to primitive
action)d. For example, Figure 1 hasf = 7/3 andd = 2.
Our complexity analysis depends onλ(Π), the number of it-
erations through the loop in Algorithm 1. Theorem 2 proved
λ ≤ 2. The mean value ofλ for a plan depends on the entries
of the distance matrices, i.e. on the temporal constraints. In
practice, we findλ is often closer to1 than2. We are work-
ing to obtain a more precise characterisation by considering
commonly-occurring structures of STN constraints.

Experimental Results
We have implementedSR-PC in the PASSAT system, with
encouraging results. We compareSR-PC with naive PC ,
by which we mean invokingPC on the distance matrix of
the global STN: in the example, the matrix of Figure 2. For
both methods, the STN solver used forPC was fullPC-1; we
discuss below the role of more advanced STN solvers, such
as incrementalPC-1 based on Dijkstra’s algorithm.

For an existing, real-world Special Operations Forces
(SOF) domain, Table 1 comparesSR-PC and naivePC on
a selection of complete and partial plans.2 The columns dis-
play, respectively, the name of the plan, the number of tasks

2The results are for a number of scenarios, including the
hostage rescue scenario described in Myerset al. (2002). The ex-
periments were conducted on a 1.6GHz Pentium M with 512MB
of memory, using Allegro Lisp 6.2.

AAAI-05 / 1226

plan tasks, d f SR-PC naivePC cpu ratio

vars time space cpu (s) time space cpu (s)

airfield-1 40, 27 3.15 2.62 2200 169 0.01 531000 6560 0.49 49

airfield-2 108, 27 8.66 3.19 80600 6500 0.4 10200000 47100 5.21 13.02

recon-1 61, 15 3.73 1.96 31900 2980 0.24 1860000 15100 1.08 4.50

hostage-1 48, 16 3.66 3.91 23700 1910 0.07 913000 9400 0.62 8.86

hostage-2 59, 27 3.23 4.58 36900 2690 0.1 1690000 14200 1.092 10.92

hostage-3 169, 82 4.58 3.67 90800 6890 0.331 42500000 122000 21.73 65.65

Table 1:SR-PC and naivePC on SOF domain plans

 0.1

 1

 10

 100

 1000

 10000

 4 6 8 10 12 14 16

ra
tio

depth

time
space

cpu

Figure 3: Mean time, space, and runtime ratios vs depth

and non-ground variables, the mean depthd and branching
factorf of the HTN; and for each method, measures of the
number of operations for time and space,3 and the actual
CPU runtime (in seconds). Note that all three measures are
empirical: the time and space are counted operations during
the experimental runs. The final column shows the ratio of
CPU runtimes; greater than1 is favourable toSR-PC. Over-
all, on these real plans,SR-PC outperformsPC by approxi-
mately an order of magnitude.

Figures 3 and 4 present a comparison ofSR-PC and naive
PC on randomly generated plans from an abstract domain.
The random generator accepts the parameters: minimum
and maximum bounds on the depthd; the meanf and the
maximum of a geometric distribution for the number of chil-
dren of each node; and bounds on the number of temporal
constraints in each expansion. The temporal constraints are
chosen uniformly from a predefined set. The top-level ob-
jective was co-identified withTR, i.e.Xτ0 − TR= 0.

Figure 3 shows counted operations for time and space,
and the empirical runtime, as HTN depthd increases. The
ratios between the two methods plotted are forf = 1.4;
the y axis is a log-scale. Note how the observed runtime
ratio (denoted CPU) closely correlates with the time and

3These metrics assume, forn time-points, that an implemen-
tation of PC has time complexityΘ(n3) for full propagation, and
Θ(n2) when incremental, i.e. for (re)computation for one time-
point. This is fitting for a dense representation of distance matrices,
as currently in PASSAT.

 1

 10

 100

 1000

 10000

 100000

 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
ra

tio

branching

time
space

cpu

Figure 4: Mean time, space, and runtime ratios vs branching

space measures. Even for the plans of greatest depth,SR-
PC performs propagation within user reaction time. For in-
stance, whend = 16, SR-PC requires 0.21s compared to 73s
for naivePC. Indeed, the runtime forSR-PC increases ap-
proximately linearly withd, while PC exhibits exponential
growth. This behaviour is characteristic across other values
of f asd varies. Figure 4 shows the effect of varying the
mean branching factorf . The ratios plotted are ford = 5.
In contrast with the depth, as the branching factor increases,
the advantage ofSR-PC overPC begins to display a possi-
bility of leveling off. Further experiments are needed to ob-
serve the trend at greater depths, and for plans with higher
values for bothd andf at the same time.

Additional experiments varying the temporal consistency
of the plan (not reported for space reasons) indicateSR-PC
has the greatest advantage when the probability of consis-
tency is lower; for inconsistent problems,SR-PC is able to
diagnose the inconsistency earlier. We conjecture this is be-
cause the cause of the inconsistency often arises from local
interactions within a task network.

Discussion PASSAT is designed to assist the user in a
mixed-initiative fashion. In such a user-interactive context,
responsiveness of the system is crucial for effective plan au-
thoring, even when developing significant plans with many
temporal constraints. Thus, although the difference in ab-
solute runtime for the SOF domains are in the order of sec-
onds, temporal propagation withSR-PC makes the system
noticeably and crucially more responsive.

AAAI-05 / 1227

The theoretical time complexity of naivePC is cubic in
the number of time-points. In practice as the plan size grows,
our results suggest that the space required comes to dom-
inate; this explains whyPC exhibits exponential runtime
growth in Figure 3. Our preliminary characterisation of the
complexity ofSR-PC indicates, in terms off , a complexity
of Θ(f4fd) versusΘ(f3) for PC. As Figure 4 suggests, this
implies that the deeper the HTN tree compared to its width,
the greater the advantage (or the lesser the disadvantage, at
least) ofSR-PC if other factors are held constant. However,
the influence of other factors is relevant, as shown by Ta-
ble 1; consistency of the global STN is one of these.

By its operation,SR-PC automatically decomposes the
global STN into sub-STNs based on the HTN structure.
This is similar to decomposition of STN via its articula-
tion points into biconnected components, which is known
to be effective in speeding up propagation (Dechter, Meiri,
& Pearl 1991). In our case, however, the global STN is a
single biconnected component due to the implied HTN con-
straints. ThusSR-PC also propagates information between
sub-STNs, via the parent task’s distance matrix.

The STN solver is a black-box inSR-PC (in fact, within
SR-PC, multiple methods forPC can be used on different
occasions); the specific STN solverS parameterisesSR-PC
to the algorithm instanceSR-S. BesidesPC-1, we imple-
mented the STN solverPC-2 in PASSAT, and comparedPC-
1, PC-2, SR-PC-1 andSR-PC-2. We found that the space
required forPC-2 (building the queue of time-point triples)
quickly dominates the runtime, even for modest size plans.

As future work, the sophistication of4STP can be lever-
aged inSR-4STP (similar to how it can be leveraged as a
black-box in a TCSP solver (Xu & Choueiry 2003)). For
naivePC,4STP would be expected to outperformPC-1 be-
cause the initial distance matrices are relatively sparse —
compare Figure 2. On the other hand,4STP is expected to
bring a smaller benefit toSR-PC because the sub-STNs are
smaller and more dense.

Conclusion and Future Work
We have presented an algorithm to efficiently perform tem-
poral propagation on the Simple Temporal Network under-
lying a temporal hierarchical plan. Sibling-restricted prop-
agation exploits the restricted constraints due to the HTN
structure, decomposing the STN into a tree of sub-STNs.
The SR-PC algorithm has been implemented in the PAS-
SAT planning system, and empirical results demonstrate the
effectiveness of the algorithm. Ongoing work is provide a
more precise theoretical characterisation of the complexity.

While the results in PASSAT forSR-PC are favourable
over naivePC, we have several improvements to make to
the implementation. As noted, the present implementation
usesPC-1 as the STN solver. Despite the small average size
of the STNs solved bySR-PC, better performance is likely
with a stronger solver, such as4STP. Second, there may
be value in employing a sparse array representation. Third,
coincidence of time-points is not actively exploited.

The reasoning problem addressed in this paper is deter-
mining the consistency and computing the minimal domains
of time-points, for an STN underlying a plan. In both HTN

and non-HTN planning, the plan is built incrementally; thus
the associated STN is also built incrementally, and inference
on it should exploit incremental constraint addition (and re-
moval on backtracking). Incremental versions of classical
STNs algorithms are widely used (Cesta & Oddi 1996).
An important next step for us is therefore to extendSR-PC
to an incremental version of the algorithm. In HTN plan-
ning, constraints are added (removed) when a task network
is expanded (expansion backtracked). Besides making use
of an incremental STN solver, incrementalSR-PC thus in-
volves determining the highest task in the HTN tree that has
changed, and considering the STN tree rooted at this task
rather than at the top-level objective.

Acknowledgments Thanks to H. Bui, J. Frank and K. Myers
for helpful discussions on this topic, to M. Tyson for implementa-
tion assistance, and to the reviewers for their suggestions.

References
Bessìere, C. 1996. A simple way to improve path consistency in
interval algebra networks. InProc. of AAAI-96, 375–380.
Cesta, A., and Oddi, A. 1996. Gaining efficiency and flexibility
in the simple temporal problem. InProc. of TIME-96, 45–50.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks.Artificial Intelligence49(1–3):61–95.
Dechter, R. 2003.Constraint Processing. San Francisco, CA:
Morgan Kaufmann.
Erol, K.; Hendler, J.; and Nau, D. 1994. Semantics for hier-
archical task-network planning. Technical Report CS-TR-3239,
Computer Science Department, University of Maryland.
Frank, J., and J́onsson, A. 2004. Constraint-based attribute and
interval planning.Constraints8(4):339–364.
Jónsson, A. K.; Morris, P. H.; Muscettola, N.; Rajan, K.; and
Smith, B. 2000. Planning in interplanetary space: Theory and
practice. InProc. of AIPS’00, 177–186.
Laborie, P., and Ghallab, M. 1995. Planning with sharable re-
source constraints. InProc. of IJCAI’95, 1643–1649.
Laborie, P. 2003. Algorithms for propagating resource constraints
in ai planning and scheduling: existing approaches and new re-
sults.Artificial Intelligence143(2):151–188.
Myers, K. L.; Tyson, W. M.; Wolverton, M. J.; Jarvis, P. A.; Lee,
T. J.; and desJardins, M. 2002. PASSAT: A user-centric plan-
ning framework. InProc. of the Third Intl. NASA Workshop on
Planning and Scheduling for Space.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, W.; Wu,
D.; and Yaman, F. 2003. SHOP2: An HTN planning system.J.
Artificial Intelligence Research20:379–404.
Smith, D.; Frank, J.; and Jónsson, A. 2000. Bridging the gap
between planning and scheduling.Knowledge Eng. Review15(1).
Tate, A.; Drabble, B.; and Kirby, R. 1994. O-Plan2: An architec-
ture for command, planning and control. In Fox, M., and Zweben,
M., eds.,Intelligent Scheduling. Morgan Kaufmann.
Tsamardinos, I.; Muscettola, N.; and Morris, P. H. 1998. Fast
transformation of temporal plans for efficient execution. InProc.
of AAAI-98, 254–261.
Wilkins, D. E. 1999.Using the SIPE-2 Planning System. Artifi-
cial Intelligence Center, SRI International, Menlo Park, CA.
Xu, L., and Choueiry, B. Y. 2003. A new efficient algorithm for
solving the simple temporal problem. InTIME’03, 212–222.

AAAI-05 / 1228

