
Recovery Planning for Ambiguous Cases in Perceptual Anchoring

Mathias Broxvall and Silvia Coradeschi and Lars Karlsson and Alessandro Saffiotti
{mathias.broxvall,silvia.coradeschi,lars.karlsson,alessandro.saffiotti}@tech.oru.se

Center for Applied Autonomous Sensor Systems
Dept. of Technology, Örebro University

SE-701 82 Örebro, Sweden
http://www.aass.oru.se

Abstract

An autonomous robot using symbolic reasoning, sensing and
acting in a real environment needs the ability to create and
maintain the connection between symbols representing ob-
jects in the world and the corresponding perceptual repre-
sentations given by its sensors. This connection has been
named perceptual anchoring. In complex environments, an-
choring is not always easy to establish: the situation may of-
ten be ambiguous as to which percept actually corresponds
to a given symbol. In this paper, we extend perceptual an-
choring to deal robustly with ambiguous situations by provid-
ing general methods for detecting them and recovering from
them. We consider different kinds of ambiguous situations
and present planning-based methods to recover from them.
We illustrate our approach by showing experiments involving
a mobile robot equipped with a color camera and an elec-
tronic nose.

Introduction
Autonomous systems embedded in the physical world typ-
ically incorporate two different types of processes: high-
level cognitive processes, that perform abstract reasoning
and generate plans for actions; and sensory-motoric pro-
cesses, that observe the physical world and act on it. These
processes have different ways to refer to physical objects
in the environment. Cognitive processes typically (although
not necessarily) use symbols to denote objects, like ‘b1’.
Sensory-motoric processes typically operate from sensor
data that originate from observing these objects, like a re-
gion in a segmented image. If the overall system has to suc-
cessfully perform its tasks, it needs to make sure that these
processes “talk about” the same physical objects. We call
this the anchoring problem (Coradeschi & Saffiotti 2003).

An important challenge in anchoring is to resolve situa-
tions where the sensors detect several objects that are con-
sistent with the symbolic description of a desired object. In
order for an autonomous system to function robustly when
encountered with such ambiguous situations, it needs to rea-
son and act in a way that allows it to distinguish between
the perceived object and determine which one is the cor-
rect one. In (Broxvall, Karlsson, & Saffiotti 2004) a simple
case of ambiguity in anchoring due to the accumulation of

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

uncertainty has been investigated. In this paper, we take a
more general approach and analyze different types of ambi-
guity that can make the anchoring process fail. We then pro-
pose a general approach to automatically detect and isolate
these failures, and to automatically generate a conditional
plan to recover from the failure when possible. As an addi-
tional contribution, we extend the anchoring framework to
handle symbolic descriptions including relations among ob-
jects, like “the red ball near the yellow can”. Relations are
an important aspect in the description and recognition of ob-
jects and they contribute to enrich the anchoring process by
making more complex anchoring cases possible.

The motivation for using recovery planning is the pos-
sibility to handle complex situations in an optimal way in
terms of, e.g., the number of observation and movement
actions required. Due to the combinatorial nature of the
problem with different types of failures, involving differ-
ent numbers of objects characterized by different properties
and (possibly nested) relations, the number of recovery situ-
ations and plans grows exponentially and it becomes infea-
sible to use a hand-coded approach.

There are a number of systems that use planning-based
techniques to perform recovery. However, most systems
that take this approach (e.g., (Fikes, Hart, & Nilsson 1972;
Beetz & McDermott 1997; Pell et al. 1998; Seabra-Lopes
1999)) focus on the external state of the world, looking for
discrepancies between the observed state and the expected
one. In comparison, our work focus on the inability to ac-
quire the perceptual information needed to make a certain
decision, in particular about how to anchor a specific sym-
bol. The problem of perception is still unsolved in the gen-
eral case and unreliable in most practical situations. By per-
forming recovery at a higher cognitive level, we can increase
the robustness of the system in face of imperfect perception,
and handle cases which are inherently ambiguous even with
a perfect perception system.

Several works have addressed the problem of planning for
perceptual actions. Perception planning has been studied as
a means for gathering better visual information (Kovacic,
Leonardis, & Pernus 1998), for achieving safer landmark-
based navigation (Lazanas & Latombe 1995), for perform-
ing tasks that involve sensing actions (Giacomo et al. 1997),
and for generating image processing routines (Beetz et al.
1998). None of these works, however, deal with the prob-

AAAI-05 / 1254

lem of recovery.
In the next section, we give a brief reminder of percep-

tual anchoring. In section 3 we analyze different types of
ambiguity, and explain how the ambiguity can be detected
and dealt with. In section 4 we show how the ambiguous
situation can be modeled in a planner and a recovery plan
generated automatically for those cases that can be resolved.
Finally, we demonstrate our technique by presenting a series
of experiments run on a mobile robot.

Perceptual Anchoring
Anchoring is the process of creating and maintaining the
correspondence between symbols and sensor data that re-
fer to the same physical objects. In our work, we use the
computational framework for anchoring defined in (Corade-
schi & Saffiotti 2000). In that framework, the symbol-data
correspondence for a specific object is represented by a data
structure called an anchor. An anchor includes pointers to
the symbol and sensor data being connected, together with
a set of properties useful to re-identify the object, e.g., its
color and position. These properties can also be used as in-
put to the control routines.

Consider for concreteness a mobile robot equipped with
a vision system and a symbolic planner. Suppose that the
planner has generated the action ‘GoNear(b1)’, where the
symbol ‘b1’ denotes an object described in the planner as
‘a green garbage can’. The ‘GoNear’ operator is imple-
mented by a sensori-motor loop that controls the robot us-
ing the position parameters extracted from a region in the
camera image. In order to execute the ‘GoNear(b1)’ action,
the robot must make sure that the region used in the control
loop is exactly the one generated by observing the object
that the planner calls ‘b1’. Thus, the robot uses a function-
ality called Find to link the symbol ‘b1’ to a region in the
image that matches the description ‘a tall green gas bottle’.
The output of Find is an anchor that contains, among other
properties, the current position of the gas bottle. While the
robot is moving, a functionality called Track is used to up-
date this position using new perceptual data. Should the gas
bottle go out of view for some time the Reacquire function-
ality would be called to update the anchor as soon as the
gas bottle is in view again. More details on perceptual an-
choring can be found in (Coradeschi & Saffiotti 2000; 2001;
2003).

Matching
A central ingredient in all the anchoring functionalities is
the matching between the symbolic description given by the
planner and the properties of percepts generated by the sen-
sor system. This is needed to decide which percepts to use to
create or update the anchor for a given symbol. Matchings
between a symbolic description and a percept can be partial
or complete (Coradeschi & Saffiotti 2001).

Definition Given a percept π and a description σ, we say that
π fully matches σ if each property in π matches a property
in σ and vice-versa. π partially matches σ if each property
in π matches a property in σ, but some property in σ is not
observed in π. Otherwise π does not match σ.

For example, consider the description “a gas bottle with
a yellow mark”. A gas bottle in an image where no mark is
visible provides a partial match, since the mark might not be
visible from the current viewpoint. Another example of par-
tial match is the case when several cups are identical from
the point of view of vision, but they can be distinguished
by using the sense of smell. A percept is said to be a com-
plete anchoring candidate for a symbol if it fully matches the
symbolic description of the symbol, and a partial anchoring
candidate if it partially matches the description.

Definite and indefinite descriptions

The symbolic descriptions used in the anchoring process can
be either definite or indefinite. A description is definite when
it denotes a unique object, for instance “the cup in my of-
fice”. Linguistically one uses in this case the article “the”.
An indefinite description requires that the object corresponds
to the description, but not that it is unique, for instance “a red
cup”. Definite descriptions are especially challenging when
an object is conceptually unique, but its perceptual proper-
ties do not characterize it unequivocally, for instance “the
cup that I have seen before”. This is a common event in the
Reacquire functionality when more than one object matches
the description of a previously seen object (in Reacquire, de-
scriptions are always definite). An example of this situation
is shown later in this paper.

Anchoring with Ambiguities
The matching process described in the previous section pro-
vides complete and partial anchoring candidates for a sym-
bol. The anchoring module detects the presence of ambigu-
ity on the basis of the number of complete and partial an-
choring candidates, and whether the description involved is
definite or indefinite. The following table summarizes the
cases that can occur.

Matches Definite Indefinite
Case full partial result action result action

1 0 0 Fail Search Fail Search
2 0 1+ Fail Observe Fail Observe
3 1 0 Ok — Ok —
4 1 1+ Ok/Fail -/Observe Ok —
5 2+ any Conflict — Ok —

In cases 1 and 2 no anchoring candidates have been found
fully matching the symbolic description. In case 1 the re-
covery module can try to recover by making a search. In
case 2 temporary anchors are created for each of the partial
candidates and these anchors are returned to the recovery
module. A recovery plan is constructed and executed aiming
at observing the missing properties of the object. If the situ-
ation is successfully disambiguated, the planner informs the
anchoring module about which of the candidate perceived
objects should be used for anchoring.

Case 3 is the ideal case where just one complete candidate
is present. The anchoring module selects that percept.

In cases 4 and 5 at least one complete candidate for the
symbol is present. If the symbolic description is indefinite
any one of these complete candidates can be selected for

AAAI-05 / 1255

anchoring the symbol. If the description is definite the pres-
ence of several candidates can constitute a problem. In case
4 where a complete candidate and partial ones are present a
cautious approach consists of constructing and executing a
recovery plan aiming at observing the missing properties of
the partial candidates in order to rule them out. However the
complete candidate could also be selected, this is why we
have ok/fail as result. Case 5 constitutes a serious problem:
as the matchings are full, the situation cannot be resolved by
getting more perceptual information. Instead, the descrip-
tion has to be considered insufficient, and needs to be made
more precise (how to do that is not addressed in this paper).

Finally, we should point to some particularly difficult sit-
uations: when important characteristics of the object have
changed in an unpredictable way (e.g., the shape has been
deformed); and when our percepts are not just uncertain but
wrong (e.g., a reflection is seen as a mark). In such cases,
we might get mismatches that should have been matches,
and vice versa, which leads to an erroneous estimate of the
situation and hence does not allow a correct recovery.

Relational properties and ambiguity
An interesting challenge in the treatment of ambiguity is rep-
resented by situations where an object can be described not
only by its properties, like color and shape, but also by its
relations to other objects. By considering relations, we may
be able to resolve cases where the known properties of the
object are not sufficient to distinguish it from other similar
objects. An example is “the green garbage can that is near
the red ball and the blue box”. We consider the object that
needs to be anchored, in the example “the green can”, as the
primary object and the other objects related to it, in the ex-
ample “the red ball” and “the blue box”, secondary objects.
In this paper we consider in particular binary relations and
we allow for descriptions with several relations.

The anchoring process handles relational cases by con-
sidering the relation as an additional property of the primary
object. In the previous example, being “near the red ball” is
an additional property of the object besides being a garbage
can and being green. Clearly a relational property has the
additional complexity that an anchor needs to be found also
for the secondary object. The anchoring process for the sec-
ondary object is the same as the one for the primary object:
the secondary object can be described as definite or indefi-
nite and it can have complete, partial or no anchoring candi-
dates.

In practice we first consider all possible candidates for
the primary object based on the non-relational properties
in its description. Then for each of these candidates we
try to find anchors for all secondary objects on the basis
of their descriptions and their relations to the primary ob-
ject. A relational anchoring candidate is represented by
a list (π0, (π1,1 . . .), (π2,1 . . .), . . .) containing a candidate
percept π0 for the primary object and for each secondary
object, a (possibly empty) list of all candidate percepts sat-
isfying the expected relation.

We say that a relational anchoring candidate is completely
matching if, by applying the table of cases above, the re-
sult of anchoring is “OK” for the primary object candidate

(viewed as a single-element list) and for each secondary ob-
ject candidate list. For instance in the example above if the
garbage can, the red ball, and the blue box are seen and the
red ball and blue box are near the garbage can, then this con-
stitutes a complete matching. A relational anchoring candi-
date is partially matching if the result of anchoring is “fail”
for at least one of the candidate lists, but for no object the
result is “conflict”. A “fail” indicates that an object is not
seen or some of its properties are not perceived, for instance
a mark is not visible. The planner can in this case select
searching and observation actions. Finally, the presence of
a “conflict” indicates that one of the objects was described
as unique, but more than one object was found correspond-
ing to the description. For instance, given that the object
to anchor was “the green garbage can near the red ball” a
“conflict” would be present if a garbage can and two red
balls both near the can were detected. In this case additional
observation actions would not help and a more accurate de-
scription would be needed.

Once each relational candidate has been classified this
way, the entire situation is classified according to the ta-
ble of cases based on the number of complete and partial
relational anchoring candidates. In case of ambiguity the re-
covery module is invoked, which devises a plan to acquire
additional information about primary and/or secondary can-
didate objects according to the matching results of the ob-
jects.

The above concepts are illustrated in the following ex-
ample. This example will also be used throughout the next
section.

Example The robot is presented with the symbolic descrip-
tion “g1 is a garbage can near a red ball with a mark” and
given the task to go near g1. To do this, the robot needs
to anchor the symbol g1. Consider a situation where a
garbage can and a red ball are seen, but no mark is visi-
ble. Applying our table of anchoring cases we find that
this corresponds to case 3, one fully matching percept
(ok), for the primary object and case 2, one or more partial
matches (fail), for the secondary object. This implies that
the entire relational candidate is a partial match. Applying
the case table to our singleton set of relational candidates,
we find that we have case 2, a partial match (fail). Thus,
to be sure that the observed garbage can is the requested
one, the red ball has to be observed further to test if it has
any marks visible from other viewpoints.

Notice that we allow cases when the secondary object
is not initially found due to, for instance, occlusion. The
framework also allows for nested relations, for instance “the
red ball near the blue box touching the green can”. An addi-
tional case we have not considered yet is when the relational
property per se is not observable, for instance it cannot be es-
tablished if two objects are touching from the current view.

Recovery Planning for Anchoring
We propose an approach to actively recover from the recov-
erable cases above by automatically analyzing and encoding
the ambiguous situation as a planning problem and gener-
ating a conditional recovery plan. In practise we use a re-

AAAI-05 / 1256

covery module using a conditional possibilistic/probabilistic
planner called PTLplan (Karlsson 2001). PTLplan searches
in a space of belief states, where a belief state represents
the agent’s incomplete and uncertain knowledge about the
world at some point in time. A belief state can be consid-
ered to represent a set of hypotheses about the actual state
of the world, for instance that a certain gas bottle has a mark
on it or has not a mark on it. Actions can both have causal
effects that change properties in the world, and observation
effects that lead to a splitting up of a belief state into several
new and more informative belief states. The latter leads to
conditional branches in the plan.

A recovery situation in anchoring typically occurs when
the robot is executing some higher-level plan and encounters
one of the ambiguous but recoverable cases above. Such a
situation is handled in five steps:

1. The problematic situation is detected and classified as
above, and the top-level plan is halted.

2. The recovery module formulates an initial situation (be-
lief state) by considering the properties of the requested
object and of the perceived objects, and generating dif-
ferent hypotheses for which of the objects corresponds to
the requested object. It also formulates a goal that the
requested object should be identified if present.

3. The recovery module calls the planner with the belief state
and the goal as input, and a plan is returned.

4. The plan is executed, and either the requested object is
found and identified and can be anchored, or it is estab-
lished that it cannot be identified.

5. If recovery was successful, the top-level plan is resumed.

We now present steps 2, 3 and 4 in more detail.

Formulating the initial situations and goals
When there are one or more partially matching anchoring
candidates, the agent needs to figure out which of them ac-
tually corresponds to the requested object s. Thus, the re-
covery module formulates a set of hypotheses that consist of
the different ways s can be anchored, based on the known
properties of s and its secondary objects and the observed
properties of the perceived objects.

1. One starts with a combined description d for the requested
object and its related objects. For each anchoring candi-
date ai = (πi,0, (πi,1,1 . . .), (πi,2,1 . . .), . . .), a descrip-
tion di of the perceived objects of ai is computed.
Example The robot Pippi is looking for g1, described
as d = (and (shape g1 = garbage-can) (near g1 b1 = t)
(shape b1 = ball) (mark b1 = t)). Two anchoring candi-
dates are found: a1 = (pi1 (pi2)) and a2 = (pi3 (pi4)) .
Their descriptions are d1 = (and (shape pi1 = garbage-
can) (near pi1 pi2 = t) (shape pi2 = ball) (mark pi2 = t f))
and d2 = (and (shape pi3 = garbage-can) (near pi3 pi4 = t)
(shape pi4 = ball) (mark pi4 = t f)). Note that “= t f” denotes
that the particular property can be both true and false, i.e.
it’s unknown.

2. Next, for each di two extra sets of descriptions d+

i and d−
i

are computed as follows.

a) Certain properties for certain perceived objects πijk in
the candidate will be unspecified in di, implying a partial
match. We can constrain all unspecificed properties for
such a πijk in terms of a formula d+

ijk, such that di ∧ d+

ijk

forms a description for πijk that matches the one in d. By
constraining any of the properties not to match in terms of
a formula d−

ijk, one can likewise make it a mismatching
description.
Example For d1 we get d+

1,0 = > and d+

1,1,1 = (mark pi2 =

t), and d−
1,0 = ⊥ and d−

1,1,1 = (mark pi2 = f), and similarily
for d2.
b) If there are several objects πij1, . . . , πijk partially
matching related object number j in a candidate, one can
combine those to get a match by making at least one of
them match1:

d+

i,j =
∨

1≤l≤k

d+

ijl.

One can make a mismatch by making all of them mis-
match:

d−i,j =
∧

1≤l≤k

d−ijl.

Example d+

1,1 = d+

1,1,1 and d−
1,1 = d−

1,1,1.
c) If there is no candidate percept for a specific related ob-
ject, we assume that it has not been seen yet, as discussed
below.
d) Each d+

i is a description of candidate i that completely
matches d, by making the primary perceived object πi,0

and one perceived object for each related object com-
pletely matching:

d+

i = d+

i,0 ∧

∧

j

d+

i,j .

Likewise, each d−
i contains the different ways in which

either the primary perceived object or all candidate per-
ceived objects for one related object can mismatch:

d−i = d−
i,0 ∨

∨

j

d−i,j .

Example We get d+

1 = > ∧ (mark pi2 = t), and d−
1 =

⊥ ∨ (mark pi2 = f).

3. Each hypothesis then consists of a matching description
for one candidate and mismatching descriptions for the re-
maining ones. To each hypothesis is also added the state-
ment (anchor s = πi,0) denoting that s should be anchored
to the object anchored by πi,0:

hi = d+

i ∧

∧

j 6=i

d−j ∧ (anchor s = πi,0)

There is also one hypothesis that no object matches:∧
j d−j ∧ (anchor s = f). Finally, if the recovery module

takes a cautious approach and wish to ascertain that no
more than one object is matching (in particular in case 3),

1In the following, we divert from the Lisp-style syntax for log-
ical formulae in order to enhance readability.

AAAI-05 / 1257

it might also add hypotheses consisting of d+

i ∧ d+

j for
each pair of candidates, and (anchor s = f).
Example We get the following (incautious) set of hy-
potheses:

h1: (mark pi2 = t) ∧ (mark pi4 = f) ∧ (anchor b1 = pi1)
h2: (mark pi2 = f) ∧ (mark pi4 = t) ∧ (anchor b1 = pi3)
h3: (mark pi2 = f) ∧ (mark pi4 = f) ∧ (anchor b1 = f)

In addition, each of the two first hypotheses can be
subdivided further into three different hypotheses
regarding from where the mark can be detected: (mark-
visible-from pi2 = r1_1) etc. To the above is added
information about the topology of the room and other
relevant background information.

The goal is achieved once a specific action (anchor s x)
has been performed. It represents the decision to anchor the
symbol s to some specific perceived object x (or to no object
at all, if x = f). This action has as a precondition that x is
the only remaining anchor for s: (nec (anchor s = x)). Thus,
all other candidate anchors have to be eliminated before the
anchor action is applied.

If no candidate has been found for the primary object
(case 1) the recovery module hypothesize that the object
is somewhere but is not visible from the current position.
Therefore, the initial situation consists of a number of hy-
potheses concerning from what position the object can be
found, each of the form (visible-from s = pos) where pos =
f signifies that the object is nowhere around. The planning
goal is formulated as (exists (?x) (nec (visible-from s = ?x))),
which means that the agent has determined from what place
the object is visible. A missing secondary object in an an-
choring candidate is treated in a similar way, but here the
relation involved is also part of the hypothesis.

Generating the recovery plan
After the initial situation and the goal have been established,
plan generation starts, using the initial belief state and goal
and the set of available actions. The following action, for
instance, is for looking for marks (and other visual charac-
teristics) on objects.
(ptl-action
:name (look-at ?y)
:precond (((?p) (robot-at = ?p)) ((?y) (perceived-object ?y)))
:results (cond

((and (mark ?y = t) (mark-visible-from ?y = ?p))
(obs (mark! ?y = t)))

((not (and (mark ?y = t)
(mark-visible-from ?y = ?p)))

(obs (mark! ?y = f))))
:execute ((aiming-at me ?y)(anchor-find ?y)))

In short, the precond part states that the action requires a
perceived object ?y and a current position ?p. The result part
states that if ?y has a mark, and if the robot looks at ?y from
the position from which the mark is visible, then the robot
will observe the mark (and thus know that there is a mark),
and otherwise it will not observe any mark. The obs form is
the way to encode that the agent makes a specific observa-
tion, and different observation results in different new belief
states. In this case, there would be one belief state where
the agent knows there is a mark, and one where it knows

Table 1: Experimental results

Experiments #Anchors Success

a Find 2 odors 11 82%
Find 3 odors 15 80%
Find 4 odors 21 76.3%
Find 5 odors 25 76%

b Reacquire 2 gas bottles 15 87%
Reacquire 3 gas bottles 10 80%
Reacquire 4 gas bottles 10 90%

c Find can near (occluded) ball 10 80%
Find can near ball with mark 15 93%

d Multiple recoveries 24 79%

there isn’t a mark on that side. If the agent keeps making
observations, it can ideally eliminate anchoring hypotheses
(signified by (anchor s = x)) until only one remains. It can
then perform the action (anchor s x). Recall that the goal is
to have done an anchor.

PTLplan is a progressive planner, so it starts from the ini-
tial belief state and adds actions until a belief state satisfying
the goal is reached. When an action results in several new
belief states with different observations, the planner inserts a
conditional branching in the plan and continues planning for
each branch separately. In order to search more efficiently,
the planner can also eliminate belief states that invalidate a
given temporal logic formula.

The following plan is generated for looking for marks on
a red ball pi2 from three different positions, starting from a
fourth position:

((move r1_2) (look-at pi2)
(cond

((mark! pi2 = f) (move r1_3) (look-at pi2)
(cond

((mark! pi2 = f) (move r1_4) (look-at pi2)
(cond

((mark! pi2 = t) (anchor g1 pi1) :success)
((mark! pi2 = f) (anchor g1 f) :fail)))

((mark! pi2 = t) (anchor g1 pi1) :success))
((mark! pi2 = t) (anchor g1 pi1) :success)))

Note how a conditional branching follows after each ap-
plication of look-at: the first clause “(mark! pi2 = t/f)” of each
branch is the observation one should have made in order to
enter that branch, and the subsequent clauses are actions.

Plan execution
The anchoring plan is then executed: the actions such as
(look-at pi2) are translated into executable perceptive and
movement tasks (see field :execute in the definition of look-
at above). The anchor action has a special role: it causes the
symbol of the requested object to be anchored to a specific
perceived object. The robot can then continue performing
the task in its top-level plan that was interrupted.

Experimental Evaluation
To be able to experimentally evaluate the methods described
above we have implemented and integrated them with a
fuzzy behavior based system, the Thinking Cap (Saffiotti,

AAAI-05 / 1258

Figure 1: Experimental setups: (a) complementary sensors, (b) displaced object, (c) relations, (d) multiple recoveries.

Konolige, & Ruspini 1995), used for controlling a mobile
robot called Pippi. Our primary sensor modality is through a
vision system connected to the camera. As a second sensor
modality we use a commercially available electronic nose
(Cyranose Sciences Inc. 2000) capable of distinguishing be-
tween a number of odors. See Loutfi et al. (2004) for more
information on how the electronic nose can be used together
with the PTL planner and anchoring.

We present several experiments that illustrate a variety of
ambiguous situations and how they are handled. The results
of the experiments are summarized in Table 1. As perfor-
mance measure we count the number of anchoring opera-
tions needed to achieve the top-level goal when performing
a number of repetitions using the same setup. Note that we
do not count any recursive anchoring operations performed
during the recovery phase. We compare the total number of
successful operations with the total number of required op-
erations for all repetitions of the respective setups. For the
first three scenarios only one top-level anchoring operation
is required per setup and the numbers thus also reflects the
total number of runs. The last scenario was run a total of
eight times and each run required the top-level anchoring of
three objects.

Our system has a success rate between 76% and 93% for
these experiments, and most failures happened because the
perceptual system delivered wrong data. The planner never
failed to find a plan, and typically did so in a fraction of a
second, with 1.5 s as the longest recorded time.

It should be noted that each one of the scenarios below
could potentially be solved by a ad hoc procedure, provided
that the type of perceptual anomaly encountered were known
beforehand. One of the strengths of our approach is that one
and the same generic domain model was used to deal with
all these situations in a uniform way.

(a) Recovery using complementary sensors

In this first series of experiments we show how ambiguous
cases due to partial matching of the description can be re-
solved by using a complementary sensor modality. The ex-
periments are performed by using a number of cups contain-
ing different substances. The cups are scattered throughout
a room containing other objects and the task of Pippi is to
find a cup that is characterized by both a visual and an odor
description (Figure 1 (a)).

When Pippi attempts to anchor an object with the descrip-
tion “the green cup that smells of ethanol”, it finds several

objects matching the visual description. In order to recover
from this situation, Pippi determined that the odor part of
the description (“smells of ethanol”) was needed and used
its e-nose to sample the different cups.

A number of configurations of the above scenario where
tried with 2 to 5 cups containing different substances. The
odor part of the description as well as the positions of the
cups and other objects where varied. Pippi was given the
description of the target object and generated and executed a
conditional plan examining all candidate cups until the cor-
rect one was found.

The occasional failures were due to either misclassifica-
tion of odors and/or problems with the vision module.

(b) Reacquiring Displaced Objects
The second series of experiments concerned the resolution
of ambiguous situations when an object is to be reacquired.
The scenario involved two or more identically colored gas
bottles in a room together with other objects such as boxes
(Figure 1 (b)). One gas bottle named gb-b was distinguished
by a white mark on one side. Pippi started from one posi-
tion in the room, and tried to find gb-b by visually scanning
the room. As the mark was initially turned towards Pippi,
the correct gas bottle was easily found. While the robot per-
formed other tasks the gas bottles where rearranged so that
the position of gb-b was no longer accurate. The next time
Pippi needed to reacquire gb-b, it could not determine which
gas bottle was the correct one by using position information
or by observing the, now occluded, mark.

Pippi then generated a plan to go to different positions in
the room observing the gas bottles and looking for the mark.
A number of variation of the scenario were tried, varying the
number of gas bottles, their rotation, initial and final posi-
tions. For the result in Table 1 we count here only the reac-
quire operations since the initial find operations where all
trivial to perform, counting also the find operations would
instead have yielded success rates in the range 90-95%.

When several gasbottles were involved the recovery was
non-trivial because multiple perceptual faults often led to ad-
ditional recursive recovery plans being executed.

(c) Anchoring with relations
Two series of experiments involving relations to other ob-
jects have also been run. The first scenario uses a descrip-
tion “the green garbage can near the red ball”, where “near”
is defined as a fuzzy relation on the estimated positions of

AAAI-05 / 1259

percepts. There are two green cans visible, but the red ball
is hidden behind one of them. Here, Pippi generates a plan
to tour the room looking for the red ball, and when it is
detected, to check which can it is near. The second sce-
nario uses the description “the green garbage can near the
red ball with a mark”, and involves a single can and a red
ball with the mark turned in different directions. In this sce-
nario, Pippi generates a plan where it searches for a mark on
the secondary object, i.e. the ball.

(d) Multiple recoveries

The final set of experiments was meant to test recovery from
multiple anchoring failures while executing a longer top-
level plan. We gave Pippi the goal that three known garbage
cans should be inspected and that Pippi should return home.
From the initial information the planner generated a plan
consisting of 15 steps, including 3 anchoring operations and
which was executed successfully in only some of the setups.
In some other setups perceptual ambiguities were encoun-
tered during the execution: a mark was not visible and/or
a nearby ball was occluded. In different cases different top-
level anchoring operations required additional actions result-
ing in the total execution of up to 27 actions. Pippi success-
fully handled most of these cases in ways similar to those
described in the previous experiments and achieved the top-
level goals. Most of the failures were caused by faults in the
low-level perception, and a few by bad self localization. The
cases where subsequent anchoring operations where not ex-
ecuted due to earlier failures where also counted as failures
here. Otherwise we would have a success rate of 86%.

Conclusions
To a mobile robot that is sensing, reasoning and acting in a
complex environment, the ability to anchor symbols to per-
ceptual data is essential. In this paper we have extended the
anchoring framework to deal with ambiguous cases where
there is more than one percept that matches the symbolic
description of an object. We have proposed an approach
for actively solving such cases by automatically analyzing
and encoding the ambiguous situation as a planning prob-
lem and generating a conditional recovery plan. Our ap-
proach has been implemented and tested in a variety of ex-
periments involving a mobile robot with sensing capabilities
such as vision and olfaction. The algorithms and domain
knowledge used in the recovery planning do not depend on
the specific failure type and the larger examples could be
handled automatically using the same mechanisms as in the
single-failure cases. An additional contribution is the use of
relations in the description of objects. Relations allow for
richer descriptions and more complex ambiguity cases.

Acknowledgements
This work has been supported partly by the Swedish Re-
search Council (Vetenskapsrådet), and partly by ETRI (Elec-
tronics and Telecommunications Research Institute, Korea)
through the project “Embedded Component Technology and
Standardization for URC(2004-2008)”.

References
Beetz, M., and McDermott, D. 1997. Expressing transfor-
mations of structured reactive plans. In Proc. of the Euro-
pean Conf. on Planning,, 64–76. Springer.
Beetz, M.; Arbuckle, T.; Cremers, A. B.; and Mann, M.
1998. Transparent, flexible, and resource-adaptive image
processing for autonomous service robots. In Proc. of the
13th ECAI Conf, 158–170.
Broxvall, M.; Karlsson, L.; and Saffiotti, A. 2004. Steps
toward detecting and recovering from perceptual failures.
In Proceedings of the 8th Conference on Intelligent Au-
tonomous Systems, 793–800. IOS Press.
Coradeschi, S., and Saffiotti, A. 2000. Anchoring symbols
to sensor data: preliminary report. In Proc. of the 17th
AAAI Conf., 129–135.
Coradeschi, S., and Saffiotti, A. 2001. Perceptual anchor-
ing of symbols for action. In Proc. of the 17th IJCAI Conf.,
407–412.
Coradeschi, S., and Saffiotti, A. 2003. An introduction to
the anchoring problem. Robotics and Autonomous Systems
43(2-3):85–96. Special issue on perceptual anchoring.
Cyranose Sciences Inc. 2000. The cyranose 320 electronic
nose. User’s Manual Revision D.
Fikes, R.; Hart, P.; and Nilsson, N. 1972. Learning and
executing generalized robot plans. Artificial Intelligence
3(4):251–288.
Giacomo, G. D.; Iocchi, L.; Nardi, D.; and Rosati, R. 1997.
Planning with sensing for a mobile robot. In Proc. of the
4th European Conf. on Planning, 158–170.
Karlsson, L. 2001. Conditional progressive planning under
uncertainty. In Proc. of the 17th IJCAI Conf., 431–438.
Kovacic, S.; Leonardis, A.; and Pernus, F. 1998. Planning
sequences of views for 3-D object recognition and pose de-
termination. Pattern Recognition 31:1407–1417.
Lazanas, A., and Latombe, J. 1995. Motion planning with
uncertainty: A landmark approach. Artificial Intelligence
76(1-2):285–317.
Loutfi, A.; S.Coradeschi; Karlsson, L.; and Broxvall, M.
2004. Putting olfaction into action: Using an electronic
nose on a multi-sensing mobile robot. In Proc. of the IEEE
Int. Conf. on Intelligent Robots and Systems.
Pell, B.; Bernard, D.; Chien, S.; Gat, E.; Muscettola, N.;
Nayak, P.; Wagner, M.; and Williams, B. 1998. An au-
tonomous spacecraft agent prototype. Autonomous Robots
5(1):1–27.
Saffiotti, A.; Konolige, K.; and Ruspini, E. 1995. A
multivalued-logic approach to integrating planning and
control. Artificial Intelligence 76(1–2):481–526.
Seabra-Lopes, L. 1999. Failure recovery planning in as-
sembly based on acquired experience: learning by analogy.
In Proc. IEEE Intl. Symp. on Assembly and Task Planning.

AAAI-05 / 1260

